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On some equations over finite fields

par Ioulia BAOULINA

Résumé. Dans ce papier, suivant L. Carlitz, nous considérons des
équations particulières à n variables sur le corps fini à q éléments.
Nous obtenons des formules explicites pour le nombre de solutions
de ces équations, sous une certaine condition sur n et q.

Abstract. In this paper, following L. Carlitz we consider some
special equations of n variables over the finite field of q elements.
We obtain explicit formulas for the number of solutions of these
equations, under a certain restriction on n and q.

1. Introduction and results

Let p be an odd rational prime, q = ps, s ≥ 1, and Fq be the finite field of
q elements. In 1954 L. Carlitz [4] proposed the problem of finding explicit
formula for the number of solutions in Fnq of the equation

(1.1) a1x
2
1 + · · ·+ anx

2
n = bx1 · · ·xn,

where a1, . . . , an, b ∈ F∗
q and n ≥ 3. He obtained formulas for n = 3 and

also for n = 4 and noted that for n ≥ 5 it is a difficult problem. The
case n = 3, a1 = a2 = a3 = 1, b = 3 (so-called Markoff equation) also
was treated by A. Baragar [2]. In particular, he obtained explicitly the
zeta-function of the corresponding hypersurface.

Let g be a generator of the cyclic group F∗
q . It may be remarked that by

multiplying (1.1) by a properly chosen element of F∗
q and also by replacing

xi by kixi for suitable ki ∈ F∗
q and permuting the variables, the equation

(1.1) can be reduced to the form

(1.2) x2
1 + · · ·+ x2

m + gx2
m+1 + · · ·+ gx2

n = cx1 · · ·xn,
where a ∈ F∗

q and n/2 ≤ m ≤ n. It follows from this that it is sufficient to
evaluate the number of solutions of the equation (1.2).

Let Nq denote the number of solutions in Fnq of the equation (1.2), and
d = gcd(n − 2, (q − 1)/2). Recently the present author [1] obtained the
explicit formulas for Nq in the cases when d = 1 and d = 2. Note that in
the case when d = 1, Nq is independent of c.

In this paper we determine explicitly Nq if d is a special divisor of q− 1.
Our main results are the following two theorems.
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Theorem 1.1. Suppose that d > 1 and there is a positive integer l such
that 2d | (pl + 1) with l chosen minimal. Then

Nq = qn−1 +
1
2

(1 + (−1)n)(−1)mq(n−2)/2(q − 1)

+ (−1)m+1(q − 1)n−m
2m−n∑
k=0
2|k

(
2m− n

k

)
qk/2

+ (−1)((s/2l)−1)(n−1)2n−1q(n−1)/2T,

where

T =


d− 1 if m = n and c is a dth power in F∗

q,
−1 if m = n and c is not a dth power in F∗

q,
0 if m < n.

Theorem 1.2. Suppose that 2 | n, m = n/2, 2d - (n − 2) and there is a
positive integer l such that d | (pl + 1). Then

Nq = qn−1 + (−1)n/2q(n−2)/2(q − 1) + (−1)(n−2)/2(q − 1)n/2.

2. Preliminary lemmas

Let ψ be a nontrivial multiplicative character on Fq. We define sum T (ψ)
corresponding to character ψ as

T (ψ) =
1

q − 1

∑
x1,...,xn∈Fq

ψ(x2
1 + · · ·+ x2

m + gx2
m+1 + · · ·+ gx2

n)ψ̄(x1 · · ·xn).

(we extend ψ to all of Fq by setting ψ(0) = 0). The Gauss sum correspond-
ing to ψ is defined as

G(ψ) =
∑
y∈F∗q

ψ(y) exp(2πiTr(y)/p),

where Tr(y) = y + yp + yp
2
+ · · ·+ yp

s−1
is the trace of y from Fq to Fp.

In the following lemma we have an expression for Nq in terms of sums
T (ψ).
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Lemma 2.1. We have

Nq = qn−1 +
1
2

(1 + (−1)n) (−1)m+bn(q−1)/4cq(n−2)/2(q − 1)

+ (−1)m+1
[
(−1)(q−1)/2q − 1

]n−m 2m−n∑
k=0
2|k

(−1)k(q−1)/4

(
2m− n

k

)
qk/2

+
∑
ψd=ε
ψ 6=ε

ψ̄(c)T (ψ),

where bn(q − 1)/4c is the greatest integer less or equal to n(q − 1)/4 and∑
ψd=ε
ψ 6=ε

means that the summation is taken over all nontrivial characters ψ

on Fq of order dividing d.

Proof. See [1, Lemma 1]. �

Let η denote the quadratic character on Fq (η(x) = +1,−1, 0 according
x is a square, a non-square or zero in Fq). In the next lemma we give the
expression for sum T (ψ) in terms of Gauss sums.

Lemma 2.2. Let ψ be a character of order δ on Fq, where δ > 1 and δ | d.
Let λ be a character on Fq chosen so that λ2 = ψ and

ordλ =
{

δ if 2 - δ,
2δ if 2 | δ.

Then

T (ψ) =
1
2q
λ(gn−m)G(ψ)

(
G(λ̄)2 −G(λ̄η)2

)n−m
×

[(
G(λ̄) +G(λ̄η)

)2m−n + (−1)n+((n−2)/δ)
(
G(λ̄)−G(λ̄η)

)2m−n
]
.

Proof. See [1, Lemma 2]. �

The following lemma determines explicitly the values of certain Gauss
sums.

Lemma 2.3. Let ψ be a multiplicative character of order δ > 1 on Fq.
Suppose that there is a positive integer l such that δ | (pl + 1) and 2l | s.
Then

G(ψ) = (−1)(s/2l)−1+(s/2l)·((pl+1)/δ)√q.

Proof. It is analogous to that of [3, Theorem 11.6.3]. �

Now we use Lemmas 2.2 and 2.3 to evaluate the sum T (ψ) in a special
case.
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Lemma 2.4. Let ψ be a character of order δ on Fq, where δ > 1 and δ | d.
Suppose that there is a positive integer l such that 2δ | (pl + 1) and 2l | s.
Then

T (ψ) =
{

(−1)((s/2l)−1)(n−1)2n−1q(n−1)/2 if m = n,
0 if m < n.

Proof. Let λ be a character with the same conditions as in Lemma 2.2. If δ
is odd then the order of λ̄ is equal δ and the order of λ̄η is equal 2δ. Since
2δ | (pl + 1) and 2l | s, by Lemma 2.3, it follows that

G(λ̄) = (−1)(s/2l)−1√q(2.1)

and

G(λ̄η) = (−1)(s/2l)−1+(s/2l)·((pl+1)/2δ)√q.(2.2)

If δ is even then λ̄ and λ̄η are the characters of order 2δ. Then similar
reasoning yields

(2.3) G(λ̄) = G(λ̄η) = (−1)(s/2l)−1+(s/2l)·((pl+1)/2δ)√q.

In any case G(λ̄)2 = G(λ̄η)2. Therefore, by Lemma 2.2, T (ψ) = 0 for
m < n.

Now suppose that m = n. Since (pl + 1)/δ is even, it follows that

(2.4) G(ψ) = (−1)(s/2l)−1√q.

If δ is odd then n+ ((n− 2)/δ) is even, and from (2.1), (2.2), (2.4) and
Lemma 2.2 we obtain

T (ψ) =
1
2q

(−1)(s/2l)−1√q · (−1)((s/2l)−1)nqn/2

×
[(

1 + (−1)(s/2l)·((p
l+1)/2δ)

)n
+

(
1− (−1)(s/2l)·((p

l+1)/2δ)
)n]

= (−1)((s/2l)−1)(n−1)2n−1q(n−1)/2,

and therefore lemma is established in this case.
If δ is even then n is even, and (2.3), (2.4) and Lemma 2.2 imply

T (ψ) =
1
2q

(−1)(s/2l)−1√q · (−1)((s/2l)−1+(s/2l)·((pl+1)/2δ))n2nqn/2

= (−1)((s/2l)−1)(n−1)2n−1q(n−1)/2.

This completes the proof of Lemma 2.4. �
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3. Proof of the theorems

Proof of Theorem 1.1. Since 2d | (pl + 1) and 2d | (q − 1), it follows that
2l | s and q ≡ 1 (mod 8). Appealing to Lemmas 2.1 and 2.4, we deduce
that

Nq = qn−1 +
1
2

(1 + (−1)n)(−1)mq(n−2)/2(q − 1)(3.1)

+ (−1)m+1(q − 1)n−m
2m−n∑
k=0
2|k

(
2m− n

k

)
qk/2

+ (−1)((s/2l)−1)(n−1)2n−1q(n−1)/2T,

where

T =


∑
ψd=ε
ψ 6=ε

ψ̄(c) if m = n,

0 if m < n.

Thus, from (3.1) and the well-known relation∑
ψd=ε
ψ 6=ε

ψ̄(c) =
{
d− 1 if c is a dth power in F∗

q ,
−1 if c is not a dth power in F∗

q ,

Theorem 1.1 follows. �

Proof of Theorem 1.2. Since d | (n − 2), 2d - (n − 2) and 2 | n, it follows
that 2 | d. Therefore q ≡ 1 (mod 4) and, by Lemma 2.1,

Nq = qn−1+(−1)n/2q(n−2)/2(q−1)+(−1)(n−2)/2(q−1)n/2+
∑
ψd=ε
ψ 6=ε

ψ̄(c)T (ψ).

Let ψ be a character of order δ on Fq, where δ > 1 and δ | d. If 2δ | d
then there is a positive integer l such that 2δ | (pl + 1) and 2l | s. Thus, by
Lemma 2.4, T (ψ) = 0. If 2δ - d then d/δ and (n− 2)/d are odd. Therefore
(n− 2)/δ is odd and, by Lemma 2.2, T (ψ) = 0, as desired. �
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