On some equations over finite fields

par Ioulia BAOULINA

Abstract

RÉSumé. Dans ce papier, suivant L. Carlitz, nous considérons des équations particulières à n variables sur le corps fini à q éléments. Nous obtenons des formules explicites pour le nombre de solutions de ces équations, sous une certaine condition sur n et q.

Abstract. In this paper, following L. Carlitz we consider some special equations of n variables over the finite field of q elements. We obtain explicit formulas for the number of solutions of these equations, under a certain restriction on n and q.

1. Introduction and results

Let p be an odd rational prime, $q=p^{s}, s \geq 1$, and \mathbb{F}_{q} be the finite field of q elements. In 1954 L . Carlitz [4] proposed the problem of finding explicit formula for the number of solutions in \mathbb{F}_{q}^{n} of the equation

$$
\begin{equation*}
a_{1} x_{1}^{2}+\cdots+a_{n} x_{n}^{2}=b x_{1} \cdots x_{n}, \tag{1.1}
\end{equation*}
$$

where $a_{1}, \ldots, a_{n}, b \in \mathbb{F}_{q}^{*}$ and $n \geq 3$. He obtained formulas for $n=3$ and also for $n=4$ and noted that for $n \geq 5$ it is a difficult problem. The case $n=3, a_{1}=a_{2}=a_{3}=1, b=3$ (so-called Markoff equation) also was treated by A. Baragar [2]. In particular, he obtained explicitly the zeta-function of the corresponding hypersurface.

Let g be a generator of the cyclic group \mathbb{F}_{q}^{*}. It may be remarked that by multiplying (1.1) by a properly chosen element of \mathbb{F}_{q}^{*} and also by replacing x_{i} by $k_{i} x_{i}$ for suitable $k_{i} \in \mathbb{F}_{q}^{*}$ and permuting the variables, the equation (1.1) can be reduced to the form

$$
\begin{equation*}
x_{1}^{2}+\cdots+x_{m}^{2}+g x_{m+1}^{2}+\cdots+g x_{n}^{2}=c x_{1} \cdots x_{n}, \tag{1.2}
\end{equation*}
$$

where $a \in \mathbb{F}_{q}^{*}$ and $n / 2 \leq m \leq n$. It follows from this that it is sufficient to evaluate the number of solutions of the equation (1.2).

Let N_{q} denote the number of solutions in \mathbb{F}_{q}^{n} of the equation (1.2), and $d=\operatorname{gcd}(n-2,(q-1) / 2)$. Recently the present author [1] obtained the explicit formulas for N_{q} in the cases when $d=1$ and $d=2$. Note that in the case when $d=1, N_{q}$ is independent of c.

In this paper we determine explicitly N_{q} if d is a special divisor of $q-1$. Our main results are the following two theorems.

Theorem 1.1. Suppose that $d>1$ and there is a positive integer l such that $2 d \mid\left(p^{l}+1\right)$ with l chosen minimal. Then

$$
\begin{aligned}
N_{q}= & q^{n-1}+\frac{1}{2}\left(1+(-1)^{n}\right)(-1)^{m} q^{(n-2) / 2}(q-1) \\
& +(-1)^{m+1}(q-1)^{n-m} \sum_{\substack{k=0 \\
2 \mid k}}^{2 m-n}\binom{2 m-n}{k} q^{k / 2} \\
& +(-1)^{((s / 2 l)-1)(n-1)} 2^{n-1} q^{(n-1) / 2} T,
\end{aligned}
$$

where

$$
T=\left\{\begin{aligned}
d-1 & \text { if } m=n \text { and } c \text { is a } d \text { th power in } \mathbb{F}_{q}^{*} \\
-1 & \text { if } m=n \text { and } c \text { is not a dth power in } \mathbb{F}_{q}^{*}, \\
0 & \text { if } m<n
\end{aligned}\right.
$$

Theorem 1.2. Suppose that $2 \mid n, m=n / 2,2 d \nmid(n-2)$ and there is a positive integer l such that $d \mid\left(p^{l}+1\right)$. Then

$$
N_{q}=q^{n-1}+(-1)^{n / 2} q^{(n-2) / 2}(q-1)+(-1)^{(n-2) / 2}(q-1)^{n / 2}
$$

2. Preliminary lemmas

Let ψ be a nontrivial multiplicative character on \mathbb{F}_{q}. We define sum $T(\psi)$ corresponding to character ψ as
$T(\psi)=\frac{1}{q-1} \sum_{x_{1}, \ldots, x_{n} \in \mathbb{F}_{q}} \psi\left(x_{1}^{2}+\cdots+x_{m}^{2}+g x_{m+1}^{2}+\cdots+g x_{n}^{2}\right) \bar{\psi}\left(x_{1} \cdots x_{n}\right)$.
(we extend ψ to all of \mathbb{F}_{q} by setting $\psi(0)=0$). The Gauss sum corresponding to ψ is defined as

$$
G(\psi)=\sum_{y \in \mathbb{F}_{q}^{*}} \psi(y) \exp (2 \pi i \operatorname{Tr}(y) / p)
$$

where $\operatorname{Tr}(y)=y+y^{p}+y^{p^{2}}+\cdots+y^{p^{s-1}}$ is the trace of y from \mathbb{F}_{q} to \mathbb{F}_{p}.
In the following lemma we have an expression for N_{q} in terms of sums $T(\psi)$.

Lemma 2.1. We have

$$
\begin{aligned}
N_{q}= & q^{n-1}+\frac{1}{2}\left(1+(-1)^{n}\right)(-1)^{m+\lfloor n(q-1) / 4\rfloor} q^{(n-2) / 2}(q-1) \\
& +(-1)^{m+1}\left[(-1)^{(q-1) / 2} q-1\right]^{n-m} \sum_{\substack{k=0 \\
2 \mid k}}^{2 m-n}(-1)^{k(q-1) / 4}\binom{2 m-n}{k} q^{k / 2} \\
& +\sum_{\substack{\psi^{d}=\varepsilon \\
\psi \neq \varepsilon}} \bar{\psi}(c) T(\psi)
\end{aligned}
$$

where $\lfloor n(q-1) / 4\rfloor$ is the greatest integer less or equal to $n(q-1) / 4$ and $\sum_{\substack{\psi^{d}=\varepsilon \\ \psi \neq \varepsilon}}$ means that the summation is taken over all nontrivial characters ψ on \mathbb{F}_{q} of order dividing d.

Proof. See [1, Lemma 1].
Let η denote the quadratic character on $\mathbb{F}_{q}(\eta(x)=+1,-1,0$ according x is a square, a non-square or zero in \mathbb{F}_{q}). In the next lemma we give the expression for sum $T(\psi)$ in terms of Gauss sums.

Lemma 2.2. Let ψ be a character of order δ on \mathbb{F}_{q}, where $\delta>1$ and $\delta \mid d$. Let λ be a character on \mathbb{F}_{q} chosen so that $\lambda^{2}=\psi$ and

$$
\operatorname{ord} \lambda=\left\{\begin{array}{ccc}
\delta & \text { if } & 2 \nmid \delta \\
2 \delta & \text { if } & 2 \mid \delta
\end{array}\right.
$$

Then

$$
\begin{aligned}
T(\psi)= & \frac{1}{2 q} \lambda\left(g^{n-m}\right) G(\psi)\left(G(\bar{\lambda})^{2}-G(\bar{\lambda} \eta)^{2}\right)^{n-m} \\
& \times\left[(G(\bar{\lambda})+G(\bar{\lambda} \eta))^{2 m-n}+(-1)^{n+((n-2) / \delta)}(G(\bar{\lambda})-G(\bar{\lambda} \eta))^{2 m-n}\right] .
\end{aligned}
$$

Proof. See [1, Lemma 2].
The following lemma determines explicitly the values of certain Gauss sums.

Lemma 2.3. Let ψ be a multiplicative character of order $\delta>1$ on \mathbb{F}_{q}. Suppose that there is a positive integer l such that $\delta \mid\left(p^{l}+1\right)$ and $2 l \mid s$. Then

$$
G(\psi)=(-1)^{(s / 2 l)-1+(s / 2 l) \cdot\left(\left(p^{l}+1\right) / \delta\right)} \sqrt{q}
$$

Proof. It is analogous to that of [3, Theorem 11.6.3].
Now we use Lemmas 2.2 and 2.3 to evaluate the sum $T(\psi)$ in a special case.

Lemma 2.4. Let ψ be a character of order δ on \mathbb{F}_{q}, where $\delta>1$ and $\delta \mid d$. Suppose that there is a positive integer l such that $2 \delta \mid\left(p^{l}+1\right)$ and $2 l \mid s$. Then

$$
T(\psi)=\left\{\begin{array}{cl}
(-1)^{((s / 2 l)-1)(n-1)} 2^{n-1} q^{(n-1) / 2} & \text { if } m=n \\
0 & \text { if } m<n
\end{array}\right.
$$

Proof. Let λ be a character with the same conditions as in Lemma 2.2. If δ is odd then the order of $\bar{\lambda}$ is equal δ and the order of $\bar{\lambda} \eta$ is equal 2δ. Since $2 \delta \mid\left(p^{l}+1\right)$ and $2 l \mid s$, by Lemma 2.3, it follows that

$$
\begin{equation*}
G(\bar{\lambda})=(-1)^{(s / 2 l)-1} \sqrt{q} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
G(\bar{\lambda} \eta)=(-1)^{(s / 2 l)-1+(s / 2 l) \cdot\left(\left(p^{l}+1\right) / 2 \delta\right)} \sqrt{q} \tag{2.2}
\end{equation*}
$$

If δ is even then $\bar{\lambda}$ and $\bar{\lambda} \eta$ are the characters of order 2δ. Then similar reasoning yields

$$
\begin{equation*}
G(\bar{\lambda})=G(\bar{\lambda} \eta)=(-1)^{(s / 2 l)-1+(s / 2 l) \cdot\left(\left(p^{l}+1\right) / 2 \delta\right)} \sqrt{q} \tag{2.3}
\end{equation*}
$$

In any case $G(\bar{\lambda})^{2}=G(\bar{\lambda} \eta)^{2}$. Therefore, by Lemma 2.2, $T(\psi)=0$ for $m<n$.

Now suppose that $m=n$. Since $\left(p^{l}+1\right) / \delta$ is even, it follows that

$$
\begin{equation*}
G(\psi)=(-1)^{(s / 2 l)-1} \sqrt{q} \tag{2.4}
\end{equation*}
$$

If δ is odd then $n+((n-2) / \delta)$ is even, and from (2.1), (2.2), (2.4) and Lemma 2.2 we obtain

$$
\begin{aligned}
T(\psi)= & \frac{1}{2 q}(-1)^{(s / 2 l)-1} \sqrt{q} \cdot(-1)^{((s / 2 l)-1) n} q^{n / 2} \\
& \times\left[\left(1+(-1)^{(s / 2 l) \cdot\left(\left(p^{l}+1\right) / 2 \delta\right)}\right)^{n}+\left(1-(-1)^{(s / 2 l) \cdot\left(\left(p^{l}+1\right) / 2 \delta\right)}\right)^{n}\right] \\
= & (-1)^{((s / 2 l)-1)(n-1)} 2^{n-1} q^{(n-1) / 2}
\end{aligned}
$$

and therefore lemma is established in this case.
If δ is even then n is even, and (2.3), (2.4) and Lemma 2.2 imply

$$
\begin{aligned}
T(\psi) & =\frac{1}{2 q}(-1)^{(s / 2 l)-1} \sqrt{q} \cdot(-1)^{\left((s / 2 l)-1+(s / 2 l) \cdot\left(\left(p^{l}+1\right) / 2 \delta\right)\right) n} 2^{n} q^{n / 2} \\
& =(-1)^{((s / 2 l)-1)(n-1)} 2^{n-1} q^{(n-1) / 2}
\end{aligned}
$$

This completes the proof of Lemma 2.4.

3. Proof of the theorems

Proof of Theorem 1.1. Since $2 d \mid\left(p^{l}+1\right)$ and $2 d \mid(q-1)$, it follows that $2 l \mid s$ and $q \equiv 1(\bmod 8)$. Appealing to Lemmas 2.1 and 2.4, we deduce that

$$
\begin{align*}
N_{q}= & q^{n-1}+\frac{1}{2}\left(1+(-1)^{n}\right)(-1)^{m} q^{(n-2) / 2}(q-1) \tag{3.1}\\
& +(-1)^{m+1}(q-1)^{n-m} \sum_{\substack{k=0 \\
2 \mid k}}^{2 m-n}\binom{2 m-n}{k} q^{k / 2} \\
& +(-1)^{((s / 2 l)-1)(n-1)} 2^{n-1} q^{(n-1) / 2} T
\end{align*}
$$

where

$$
T=\left\{\begin{array}{cl}
\sum_{\substack{\psi^{d}=\varepsilon \\
\psi \neq \varepsilon}} \bar{\psi}(c) & \text { if } m=n \\
0 & \text { if } m<n
\end{array}\right.
$$

Thus, from (3.1) and the well-known relation

$$
\sum_{\substack{\psi^{d}=\varepsilon \\
\psi \neq \varepsilon}} \bar{\psi}(c)=\left\{\begin{aligned}
d-1 & \text { if } c \text { is a } d \text { th power in } \mathbb{F}_{q}^{*}, \\
-1 & \text { if } c \text { is not a } d \text { th power in } \mathbb{F}_{q}^{*}
\end{aligned}\right.
$$

Theorem 1.1 follows.
Proof of Theorem 1.2. Since $d \mid(n-2), 2 d \nmid(n-2)$ and $2 \mid n$, it follows that $2 \mid d$. Therefore $q \equiv 1(\bmod 4)$ and, by Lemma 2.1,
$N_{q}=q^{n-1}+(-1)^{n / 2} q^{(n-2) / 2}(q-1)+(-1)^{(n-2) / 2}(q-1)^{n / 2}+\sum_{\substack{\psi^{d}=\varepsilon \\ \psi \neq \varepsilon}} \bar{\psi}(c) T(\psi)$.
Let ψ be a character of order δ on \mathbb{F}_{q}, where $\delta>1$ and $\delta \mid d$. If $2 \delta \mid d$ then there is a positive integer l such that $2 \delta \mid\left(p^{l}+1\right)$ and $2 l \mid s$. Thus, by Lemma 2.4, $T(\psi)=0$. If $2 \delta \nmid d$ then d / δ and $(n-2) / d$ are odd. Therefore $(n-2) / \delta$ is odd and, by Lemma $2.2, T(\psi)=0$, as desired.

References

[1] I. Baoulina, On the Problem of Explicit Evaluation of the Number of Solutions of the Equation $a_{1} x_{1}^{2}+\cdots+a_{n} x_{n}^{2}=b x_{1} \cdots x_{n}$ in a Finite Field. In Current Trends in Number Theory, Edited by S. D. Adhikari, S. A. Katre and B. Ramakrishnan, Hindustan Book Agency, New Delhi, 2002, 27-37.
[2] A. Baragar, The Markoff Equation and Equations of Hurwitz. Ph. D. Thesis, Brown University, 1991.
[3] B. C. Berndt, R. J. Evans, K. S. Williams, Gauss and Jacobi Sums. Wiley-Interscience, New York, 1998.
[4] L. Carlitz, Certain special equations in a finite field. Monatsh. Math. 58 (1954), 5-12.
Ioulia BaOUlina
The Institute of Mathematical Sciences
CIT Campus, Taramani
Chennai 600113, India
E-mail: jbaulina@mail.ru, baoulina@imsc.res.in

