On some equations over finite fields

par Ioulia BAOULINA

RÉSUMÉ. Dans ce papier, suivant L. Carlitz, nous considérons des équations particulières à n variables sur le corps fini à q éléments. Nous obtenons des formules explicites pour le nombre de solutions de ces équations, sous une certaine condition sur n et q.

ABSTRACT. In this paper, following L. Carlitz we consider some special equations of n variables over the finite field of q elements. We obtain explicit formulas for the number of solutions of these equations, under a certain restriction on n and q.

1. Introduction and results

Let p be an odd rational prime, $q = p^s$, $s \ge 1$, and \mathbb{F}_q be the finite field of q elements. In 1954 L. Carlitz [4] proposed the problem of finding explicit formula for the number of solutions in \mathbb{F}_q^n of the equation

(1.1)
$$a_1 x_1^2 + \dots + a_n x_n^2 = b x_1 \cdots x_n,$$

where $a_1, \ldots, a_n, b \in \mathbb{F}_q^*$ and $n \geq 3$. He obtained formulas for n = 3 and also for n = 4 and noted that for $n \geq 5$ it is a difficult problem. The case n = 3, $a_1 = a_2 = a_3 = 1$, b = 3 (so-called Markoff equation) also was treated by A. Baragar [2]. In particular, he obtained explicitly the zeta-function of the corresponding hypersurface.

Let g be a generator of the cyclic group \mathbb{F}_q^* . It may be remarked that by multiplying (1.1) by a properly chosen element of \mathbb{F}_q^* and also by replacing x_i by $k_i x_i$ for suitable $k_i \in \mathbb{F}_q^*$ and permuting the variables, the equation (1.1) can be reduced to the form

(1.2)
$$x_1^2 + \dots + x_m^2 + gx_{m+1}^2 + \dots + gx_n^2 = cx_1 \cdots x_n,$$

where $a \in \mathbb{F}_q^*$ and $n/2 \leq m \leq n$. It follows from this that it is sufficient to evaluate the number of solutions of the equation (1.2).

Let N_q denote the number of solutions in \mathbb{F}_q^n of the equation (1.2), and $d = \gcd(n-2, (q-1)/2)$. Recently the present author [1] obtained the explicit formulas for N_q in the cases when d = 1 and d = 2. Note that in the case when d = 1, N_q is independent of c.

In this paper we determine explicitly N_q if d is a special divisor of q-1. Our main results are the following two theorems. **Theorem 1.1.** Suppose that d > 1 and there is a positive integer l such that $2d \mid (p^l + 1)$ with l chosen minimal. Then

$$N_{q} = q^{n-1} + \frac{1}{2} \left(1 + (-1)^{n} \right) (-1)^{m} q^{(n-2)/2} (q-1) + (-1)^{m+1} (q-1)^{n-m} \sum_{\substack{k=0\\2|k}}^{2m-n} {\binom{2m-n}{k}} q^{k/2} + (-1)^{((s/2l)-1)(n-1)} 2^{n-1} q^{(n-1)/2} T,$$

where

$$T = \begin{cases} d-1 & \text{if } m = n \text{ and } c \text{ is a dth power in } \mathbb{F}_q^*, \\ -1 & \text{if } m = n \text{ and } c \text{ is not a dth power in } \mathbb{F}_q^*, \\ 0 & \text{if } m < n. \end{cases}$$

Theorem 1.2. Suppose that $2 \mid n, m = n/2, 2d \nmid (n-2)$ and there is a positive integer l such that $d \mid (p^l + 1)$. Then

$$N_q = q^{n-1} + (-1)^{n/2} q^{(n-2)/2} (q-1) + (-1)^{(n-2)/2} (q-1)^{n/2}.$$

2. Preliminary lemmas

Let ψ be a nontrivial multiplicative character on \mathbb{F}_q . We define sum $T(\psi)$ corresponding to character ψ as

$$T(\psi) = \frac{1}{q-1} \sum_{x_1, \dots, x_n \in \mathbb{F}_q} \psi(x_1^2 + \dots + x_m^2 + gx_{m+1}^2 + \dots + gx_n^2) \bar{\psi}(x_1 \cdots x_n).$$

(we extend ψ to all of \mathbb{F}_q by setting $\psi(0) = 0$). The Gauss sum corresponding to ψ is defined as

$$G(\psi) = \sum_{y \in \mathbb{F}_q^*} \psi(y) \exp(2\pi i \operatorname{Tr}(y)/p),$$

where $\operatorname{Tr}(y) = y + y^p + y^{p^2} + \dots + y^{p^{s-1}}$ is the trace of y from \mathbb{F}_q to \mathbb{F}_p . In the following lemma we have an expression for N_q in terms of sums $T(\psi).$

Lemma 2.1. We have

$$\begin{split} N_{q} &= q^{n-1} + \frac{1}{2} \left(1 + (-1)^{n} \right) (-1)^{m + \lfloor n(q-1)/4 \rfloor} q^{(n-2)/2} (q-1) \\ &+ (-1)^{m+1} \left[(-1)^{(q-1)/2} q - 1 \right]^{n-m} \sum_{\substack{k=0\\2|k}}^{2m-n} (-1)^{k(q-1)/4} \binom{2m-n}{k} q^{k/2} \\ &+ \sum_{\substack{\psi^{d} = \varepsilon\\\psi \neq \varepsilon}} \bar{\psi}(c) T(\psi), \end{split}$$

where $\lfloor n(q-1)/4 \rfloor$ is the greatest integer less or equal to n(q-1)/4 and \sum means that the summation is taken over all nontrivial characters ψ $\psi^{d} = \varepsilon$ $\psi \neq \varepsilon$

on \mathbb{F}_q of order dividing d.

Proof. See [1, Lemma 1].

Let η denote the quadratic character on \mathbb{F}_q $(\eta(x) = +1, -1, 0$ according x is a square, a non-square or zero in \mathbb{F}_q). In the next lemma we give the expression for sum $T(\psi)$ in terms of Gauss sums.

Lemma 2.2. Let ψ be a character of order δ on \mathbb{F}_q , where $\delta > 1$ and $\delta \mid d$. Let λ be a character on \mathbb{F}_q chosen so that $\lambda^2 = \psi$ and

ord
$$\lambda = \begin{cases} \delta & if \ 2 \nmid \delta, \\ 2\delta & if \ 2 \mid \delta. \end{cases}$$

Then

$$T(\psi) = \frac{1}{2q} \lambda(g^{n-m}) G(\psi) \left(G(\bar{\lambda})^2 - G(\bar{\lambda}\eta)^2 \right)^{n-m} \times \left[\left(G(\bar{\lambda}) + G(\bar{\lambda}\eta) \right)^{2m-n} + (-1)^{n+((n-2)/\delta)} \left(G(\bar{\lambda}) - G(\bar{\lambda}\eta) \right)^{2m-n} \right].$$
Proof. See [1, Lemma 2].

Proof. See [1, Lemma 2].

The following lemma determines explicitly the values of certain Gauss sums.

Lemma 2.3. Let ψ be a multiplicative character of order $\delta > 1$ on \mathbb{F}_q . Suppose that there is a positive integer l such that $\delta \mid (p^l + 1)$ and $2l \mid s$. Then

$$G(\psi) = (-1)^{(s/2l) - 1 + (s/2l) \cdot ((p^l + 1)/\delta)} \sqrt{q}.$$

Proof. It is analogous to that of [3, Theorem 11.6.3].

Now we use Lemmas 2.2 and 2.3 to evaluate the sum $T(\psi)$ in a special case.

Ioulia BAOULINA

Lemma 2.4. Let ψ be a character of order δ on \mathbb{F}_q , where $\delta > 1$ and $\delta \mid d$. Suppose that there is a positive integer l such that $2\delta \mid (p^l + 1)$ and $2l \mid s$. Then

$$T(\psi) = \begin{cases} (-1)^{((s/2l)-1)(n-1)}2^{n-1}q^{(n-1)/2} & \text{if } m = n, \\ 0 & \text{if } m < n. \end{cases}$$

Proof. Let λ be a character with the same conditions as in Lemma 2.2. If δ is odd then the order of $\overline{\lambda}$ is equal δ and the order of $\overline{\lambda}\eta$ is equal 2δ . Since $2\delta \mid (p^l + 1)$ and $2l \mid s$, by Lemma 2.3, it follows that

(2.1)
$$G(\bar{\lambda}) = (-1)^{(s/2l)-1} \sqrt{q}$$

and

(2.2)
$$G(\bar{\lambda}\eta) = (-1)^{(s/2l) - 1 + (s/2l) \cdot ((p^l + 1)/2\delta)} \sqrt{q}.$$

If δ is even then $\bar{\lambda}$ and $\bar{\lambda}\eta$ are the characters of order 2δ . Then similar reasoning yields

(2.3)
$$G(\bar{\lambda}) = G(\bar{\lambda}\eta) = (-1)^{(s/2l) - 1 + (s/2l) \cdot ((p^l + 1)/2\delta)} \sqrt{q}.$$

In any case $G(\bar{\lambda})^2 = G(\bar{\lambda}\eta)^2$. Therefore, by Lemma 2.2, $T(\psi) = 0$ for m < n.

Now suppose that m = n. Since $(p^l + 1)/\delta$ is even, it follows that

(2.4)
$$G(\psi) = (-1)^{(s/2l)-1} \sqrt{q}$$

If δ is odd then $n+((n-2)/\delta)$ is even, and from (2.1), (2.2), (2.4) and Lemma 2.2 we obtain

$$T(\psi) = \frac{1}{2q} (-1)^{(s/2l)-1} \sqrt{q} \cdot (-1)^{((s/2l)-1)n} q^{n/2} \\ \times \left[\left(1 + (-1)^{(s/2l) \cdot ((p^l+1)/2\delta)} \right)^n + \left(1 - (-1)^{(s/2l) \cdot ((p^l+1)/2\delta)} \right)^n \right] \\ = (-1)^{((s/2l)-1)(n-1)} 2^{n-1} q^{(n-1)/2},$$

and therefore lemma is established in this case.

If δ is even then n is even, and (2.3), (2.4) and Lemma 2.2 imply

$$T(\psi) = \frac{1}{2q} (-1)^{(s/2l)-1} \sqrt{q} \cdot (-1)^{((s/2l)-1+(s/2l)\cdot((p^l+1)/2\delta))n} 2^n q^{n/2}$$
$$= (-1)^{((s/2l)-1)(n-1)} 2^{n-1} q^{(n-1)/2}.$$

This completes the proof of Lemma 2.4.

3. Proof of the theorems

Proof of Theorem 1.1. Since $2d \mid (p^l + 1)$ and $2d \mid (q - 1)$, it follows that $2l \mid s$ and $q \equiv 1 \pmod{8}$. Appealing to Lemmas 2.1 and 2.4, we deduce that

(3.1)
$$N_{q} = q^{n-1} + \frac{1}{2} (1 + (-1)^{n})(-1)^{m} q^{(n-2)/2} (q-1) + (-1)^{m+1} (q-1)^{n-m} \sum_{\substack{k=0\\2|k}}^{2m-n} {\binom{2m-n}{k}} q^{k/2} + (-1)^{((s/2l)-1)(n-1)} 2^{n-1} q^{(n-1)/2} T,$$

where

$$T = \left\{ \begin{array}{ll} \displaystyle \sum_{\substack{\psi^d = \varepsilon \\ \psi \neq \varepsilon \\ 0 \end{array}} \bar{\psi}(c) \quad \text{if } m = n, \\ \psi \neq \varepsilon \\ 0 \qquad \text{if } m < n. \end{array} \right.$$

Thus, from (3.1) and the well-known relation

$$\sum_{\substack{\psi^d = \varepsilon \\ \psi \neq \varepsilon}} \bar{\psi}(c) = \begin{cases} d-1 & \text{if } c \text{ is a } d\text{th power in } \mathbb{F}_q^*, \\ -1 & \text{if } c \text{ is not a } d\text{th power in } \mathbb{F}_q^*, \end{cases}$$

Theorem 1.1 follows.

Proof of Theorem 1.2. Since $d \mid (n-2), 2d \nmid (n-2)$ and $2 \mid n$, it follows that $2 \mid d$. Therefore $q \equiv 1 \pmod{4}$ and, by Lemma 2.1,

$$N_q = q^{n-1} + (-1)^{n/2} q^{(n-2)/2} (q-1) + (-1)^{(n-2)/2} (q-1)^{n/2} + \sum_{\substack{\psi^d = \varepsilon \\ \psi \neq \varepsilon}} \bar{\psi}(c) T(\psi).$$

Let ψ be a character of order δ on \mathbb{F}_q , where $\delta > 1$ and $\delta \mid d$. If $2\delta \mid d$ then there is a positive integer l such that $2\delta \mid (p^l + 1)$ and $2l \mid s$. Thus, by Lemma 2.4, $T(\psi) = 0$. If $2\delta \nmid d$ then d/δ and (n-2)/d are odd. Therefore $(n-2)/\delta$ is odd and, by Lemma 2.2, $T(\psi) = 0$, as desired. \Box

Ioulia BAOULINA

References

- [1] I. BAOULINA, On the Problem of Explicit Evaluation of the Number of Solutions of the Equation $a_1x_1^2 + \cdots + a_nx_n^2 = bx_1 \cdots x_n$ in a Finite Field. In Current Trends in Number Theory, Edited by S. D. Adhikari, S. A. Katre and B. Ramakrishnan, Hindustan Book Agency, New Delhi, 2002, 27–37.
- [2] A. BARAGAR, The Markoff Equation and Equations of Hurwitz. Ph. D. Thesis, Brown University, 1991.
- [3] B. C. BERNDT, R. J. EVANS, K. S. WILLIAMS, Gauss and Jacobi Sums. Wiley-Interscience, New York, 1998.
- [4] L. CARLITZ, Certain special equations in a finite field. Monatsh. Math. 58 (1954), 5-12.

Ioulia BAOULINA The Institute of Mathematical Sciences CIT Campus, Taramani Chennai 600113, India *E-mail*: jbaulina@mail.ru, baoulina@imsc.res.in