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Abstract β-expansions and ultimately periodic

representations

par Michel RIGO et Wolfgang STEINER

Résumé. Pour les systèmes de numération abstraits construits
sur des langages réguliers exponentiels (comme par exemple, ceux
provenant des substitutions), nous montrons que l’ensemble des
nombres réels possédant une représentation ultimement périodique
est Q(β) lorsque la valeur propre dominante β > 1 de l’automate
acceptant le langage est un nombre de Pisot. De plus, si β n’est
ni un nombre de Pisot, ni un nombre de Salem, alors il existe
des points de Q(β) n’ayant aucune représentation ultimement
périodique.

Abstract. For abstract numeration systems built on exponen-
tial regular languages (including those coming from substitutions),
we show that the set of real numbers having an ultimately periodic
representation is Q(β) if the dominating eigenvalue β > 1 of the
automaton accepting the language is a Pisot number. Moreover,
if β is neither a Pisot nor a Salem number, then there exist points
in Q(β) which do not have any ultimately periodic representation.

1. Introduction

In [7], abstract numeration systems on regular languages have been in-
troduced. They generalize in a natural way a large variety of classical
positional systems like the q-ary system or the Fibonacci system: each
nonnegative integer n is represented by the nth word of an ordered infinite
regular language L. For instance, considering the natural ordering of the
digits, the genealogical enumeration of the words belonging to the language
L = {0}∪{1, . . . , q−1}{0, . . . , q−1}∗ (resp. L = {0, 1}∪{10}{10, 0}∗{λ, 1})
leads back to the q-ary (resp. the Fibonacci) system. Later on, this setting
has been extended to allow the representation of real numbers as well as of
integers.

Various notions appearing in number theory, in formal languages theory
or in the analysis of algorithms depend on how numbers are represented.

The second author was supported by the Austrian Science Foundation FWF, grant S8302-
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So these abstract systems have led to new nontrivial applications. To cite
just a few: the characterization of the so-called recognizable sets of inte-
gers, the investigation of the dynamical and topological properties of the
“odometers” or the study of the asymptotic behavior of the corresponding
“sum-of-digits” function.

As we will see, it turns out that this way of representing real numbers is
a quite natural generalization of Rényi’s β-expansions [11]. More precisely,
the primitive automata lead to the representations of real numbers based
on substitutions introduced by Dumont and Thomas [3]. The nonprimitive
automata provide new numeration systems.

Real numbers having an ultimately periodic representation deserve a
special attention. Indeed, for the q-ary system, these numbers are exactly
the rational numbers. More generally, the set of ultimately periodic
representations is dense in the set of all the admissible representations and
therefore this rises number-theoretic questions like the approximation of
real numbers by numbers having ultimately periodic expansions.

On the one hand, for Rényi’s classical β-expansions it is well-known that
the set of real numbers with ultimately periodic representation is Q(β)
whenever β is a Pisot number [1, 12]. On the other hand, for abstract
numeration systems, the algebraic structure of this set was unknown. A
first attempt to solve this problem is done in [9] where it is shown that a real
number has an ultimately periodic representation if it is the fixed point of
the composition of some affine functions depending only on the automaton
of the abstract system. Even if this latter result gives some insights about
those generalized β-expansions, the algebraic structure of the set was still
to determine.

To any regular language, is associated in a canonical way its minimal
automaton and consequently some adjacency matrix. We can therefore
speak of the eigenvalues of an automaton, the corresponding adjacency
matrix being considered. The present paper studies abstract numeration
systems having the following property: the dominating eigenvalue β > 1
of the minimal (trimmed) automaton of the regular language on which the
system is built, is a Pisot number. Thus we settle the problem of describing
the set of real numbers with ultimately periodic representation by obtaining
an analogue of a theorem found independently by Bertrand [1] and Schmidt
[12]. Note that our result restricted to classical β-expansions gives back a
new short and intuitive proof for this case. Moreover, we show that if β is
neither a Pisot nor a Salem number then there exists at least one point in
Q(β) which does not have any ultimately periodic representation.

This paper is organized as follows. In Section 2, we recall all the neces-
sary material about abstract numeration systems. In Section 3, we state
precisely the results which are proved in Section 4. Finally, Section 5 is
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devoted to some examples which we hope could provide a better under-
standing of the key algorithm involved in the proof of our main result.

2. Preliminaries

Let (Σ, <) be a finite and totally ordered alphabet. We denote by Σ∗

the free monoid generated by Σ for the concatenation product. The neutral
element is λ and the length of a word w ∈ Σ∗ is denoted |w|. Recall that
if u and v are two words over (Σ, <), then u is genealogically less than v if
either |u| < |v| or |u| = |v| and there exist p, u′, v′ ∈ Σ∗, s, t ∈ Σ such that
u = psu′, v = ptv′ and s < t. In this case, we write u <gen v or simply
u < v. In the literature, one also finds the term military ordering. This
ordering is naturally extended to the set Σω of all the infinite words over
Σ by the lexicographical ordering.

Let L be an infinite regular language over (Σ, <). The words of L can
be enumerated by increasing genealogical ordering leading to a one-to-one
correspondence between N and L. We say that S = (L,Σ, <) is an abstract
numeration system. If w is the nth word of the genealogically ordered lan-
guage L for some n ∈ N (positions inside L are counted from 0), then we
write val(w) = n and we say that w is the representation of n or that n is the
numerical value of w (the abstract numeration system S being understood).
This way of representing nonnegative integers has been first introduced in
[7] and generalizes classical numeration systems like the positional systems
built over linear recurrent sequences of integers whose characteristic poly-
nomial is the minimal polynomial of a Pisot number [2].

Under some natural assumptions on L, not only integers but also real
numbers can be represented using infinite words [8]. We briefly present
notation used throughout this paper. The minimal automaton of L is
ML = (Q, q0,Σ, τ, F ) where Q is the set of states, q0 ∈ Q the initial
state, τ : Q × Σ → Q the transition function and F ⊆ Q the set of final
states. The function τ is naturally extended to Q× Σ∗ by τ(q, λ) = q and
τ(q, sw) = τ(τ(q, s), w) where q ∈ Q, s ∈ Σ and w ∈ Σ∗. We refer the
reader to [4] for more about automata theory. For q ∈ Q and n ∈ N, we
denote by uq(n) the number of words of length n accepted from q in ML,
i.e.,

uq(n) = #{w ∈ Σn | τ(q, w) ∈ F}

and by vq(n) the number of words of length at most n accepted from q,
vq(n) =

∑n
i=0 uq(i). Observe in particular that uq0(n) = #(L ∩ Σn) is the

growth function of L.
In this paper, we assume that L has the following properties (again we

refer to [8] for details). There exist β > 1 and P ∈ R[x] such that for all
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states q ∈ Q, there exist some nonnegative real number aq such that

lim
n→∞

uq(n)
P (n)βn

= aq.

Moreover, w.l.o.g., we assume that aq0 = 1− 1
β (indeed, if aq0 differs from

1− 1
β then we replace the polynomial P with aq0

1− 1
β

P ). Clearly β > 1 is the

dominant eigenvalue of the automaton ML. (In order to relate β to the
growth of L, ML is assumed to be trim, i.e., it is accessible and coaccessible,
and in particular τ could possibly be a partial function). We denote by χβ

the minimal polynomial of β,

χβ(x) = xd − b1x
d−1 − b2x

d−2 − · · · − bd−1x− bd ∈ Z[x].

The set L∞ is defined as the set of infinite words which are limit of
the converging sequences of words in L (we use the usual infinite product
topology on Σω). If (pj)j≥0 ∈ LN converges to an infinite word w ∈ L∞
then it is well-known that the limit

lim
j→∞

val(pj)
vq0(|pj |)

exists. Its value will be denoted val∞(w) and we say that w is a representa-
tion of val∞(w) or conversely that val∞(w) is the numerical value of w. In
this setting, we are able to represent all the numbers lying in the interval
[1/β, 1]. Moreover, the representation of a real number x ∈ [1/β, 1] is not
necessarily unique; we denote by rep(x) the set of words in L∞ representing
x, i.e.,

rep(x) = {w ∈ L∞ | val∞(w) = x}.
Note that this situation even occurs for classical numeration systems. For
instance in base ten, rep(2/10) = {.2(0)ω, .1(9)ω}. Denote by W` the set of
words of length ` which are prefix of an infinite number of words in L —
they are prefix of at least one element in L∞. If u ∈ W`, then we denote

Xu := {w ∈ L∞ | ∃v ∈ Σω : w = uv}.

If |t| = 1, i.e., if t is a letter in W1 then the set of real numbers having a
representation starting with t is

(2.1) val∞(Xt) =

 1
β

+
∑

z<t,z∈W1

aτ(q0,z)

β
,
1
β

+
∑

z≤t,z∈W1

aτ(q0,z)

β

 =: It

which is an interval of length aτ(q0,t)/β. Note that

uq(n) =
∑
t∈Σ

uτ(q,t)(n− 1)
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(where the sum runs over those t for which τ(q, t) exists) and therefore

(2.2) aq =
∑
t∈Σ,

(q,t)∈dom τ

aτ(q,t)

β
.

When looking at the real numbers represented by a word which has a prefix
in W2 starting with the letter t, the interval It is then divided into smaller
intervals: one interval for each letter s such that ts ∈ W2. This procedure
of dividing intervals is repeated and one can obtain the numerical value of
an infinite word w = (wj)j≥1 ∈ L∞ as

(2.3) val∞(w) =
1
β

+
∞∑

j=1

∑
q∈Q

aqεq,jβ
−j

with

(2.4) εq,j := #{s < wj | τ(q0, w1 · · ·wj−1s) = q}.
A detailed proof of this formula can be found in [8, Corollary 7] (where the
notation is slightly different and aq0 is assumed to be 1).

The longer the known prefix of a representation of a real number is, the
more accurate the approximation of this number is. Precisely, if u is a word
of length ` ≥ 1 then it can be shown that val∞(Xu) is equal to

(2.5)

 1
β

+
∑

z<u,z∈W`

aτ(q0,z)

β`
,
1
β

+
∑

z≤u,z∈W`

aτ(q0,z)

β`

 =: Iu

since, for u = u1 · · ·u` ∈ W`, we have∑
z<u,z∈W`

aτ(q0,z)

β`
=

∑̀
j=1

∑
t<uj ,

u1···uj−1t∈Wj

aτ(q0,u1···uj−1t)

βj
.

Finally, if M ⊆ Σω we denote by uper(M) the set of words in M which
are ultimately periodic. This means that w ∈ uper(M) if and only if there
exist u, v ∈ Σ∗, v 6= λ such that w = u(v)ω.

As usual, we denote by Q(β) the smallest field containing Q and β.
Since β is algebraic and of degree d, we have Q(β) = Q[β] and every
element of Q(β) can be decomposed as x =

∑d
i=1 xiβ

−i with xi ∈ Q. We
write x = .x1 . . . xd. We assume that the reader is familiar with classical
β-expansions, see for instance [6, 10, 11]. Note that we always refer to
the β-expansions computed through the greedy algorithm. Recall that the
greedy β-expansion of a number is the maximal one for the lexicographical
order. In this way, if β is a Pisot number, then the usual β-expansions can
be seen as a special case of the more abstract representations considered
here (see [9, Section 9]).
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We denote by Lβ the set of infinite words which are the β-expansions
of the real numbers in [0, 1), therefore uper(Lβ) is the set of real numbers
with ultimately periodic β-expansion.

3. Results

In this paper, we will show the following results.

Proposition 3.1. Let S = (L,Σ, <) be an abstract numeration system
satisfying the assumptions given in Section 2. For every w ∈ uper(L∞), we
have

val∞(w) ∈ Q(β) ∩ [1/β, 1].

The converse holds when β is a Pisot number.

Theorem 3.1. Let S = (L,Σ, <) be an abstract numeration system
satisfying the assumptions given in Section 2. If β is a Pisot number,
then every x ∈ Q(β) ∩ [1/β, 1] is the numerical value of some ultimately
periodic word w, i.e.,

rep(x) ∩ uper(L∞) 6= ∅ for all x ∈ Q(β) ∩ [1/β, 1].

In particular, the lexicographically maximal word w ∈ rep(x) is ultimately
periodic.

Proposition 3.2. Let S = (L,Σ, <) be an abstract numeration system
satisfying the assumptions given in Section 2. If β is neither a Pisot nor
a Salem number, then we have some x in Q(β) ∩ [1/β, 1] with rep(x) ∩
uper(L∞) = ∅.

For classical β-numeration systems, we have the following.

Corollary 3.1 (Bertrand [1], Schmidt [12]). If β > 1 is a Pisot number,
then

uper(Lβ) = Q(β) ∩ [0, 1).
If β is neither a Pisot nor a Salem number, then

Q(β) ∩ [0, 1) 6⊆ uper(Lβ).

Remark. In Corollary 3.1, the interval is different from [ 1
β , 1], in order

to state the result in the usual way. Indeed, the β-expansion of x ∈
[β−m−1, β−m) for some m ≥ 1 is obtained by placing m zeroes in front
of the expansion of βmx (and the β-expansion of 0 is .0ω).

Similarly, we can represent each number x ∈ R+ in our system by shifting
the representations of [1/β, 1]. For instance, we can define

val′∞(w1 · · ·wm.wm+1wm+2 · · · ) := βm val∞(w1w2 · · · )
and

val′∞(.0mw1w2 · · · ) := β−m val∞(w1w2 · · · ),
where, in case 0 is a letter of the alphabet, 0 must not be accepted from q0.
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4. Proofs of the results

We will need a small lemma.

Lemma 4.1. We have aq ∈ Q(β) for all q ∈ Q.

Proof. Applying (2.2) for all q ∈ Q provides a system of linear equations for
the aq’s. It is easily seen that the solutions of this system are exactly the
eigenvectors of the automatonML to the eigenvalue β. If the eigenspace for
β has dimension 1, then the solution is entirely determined by aq0 = 1− 1

β

and has clearly elements in Q(β).
If the eigenspace has larger dimension, then observe that the number of

paths from q to q′ of length n, mq,q′(n), is the element (q, q′) of An, where
A denotes the adjacency matrix of the automaton. Hence mq,q′(n) satisfies
a linear recurrence with characteristic polynomial equal to that of A and
is therefore of the form mq,q′(n) = Pq,q′(n)βn + · · · for some polynomial
Pq,q′ ∈ Q(β)[x] (indeed, since mq,q′(n) ∈ Z, one can easily show using some
reasoning about generating functions that Pq,q′ ∈ Q(β)[x]). We clearly have

aq = lim
n→∞

∑
q′∈F mq,q′(n)
P (n)βn

= lim
n→∞

(
1− 1

β

) ∑
q′∈F Pq,q′(n) + · · ·∑
q′∈F Pq0,q′(n) + · · ·

,

where the other terms can be neglected even if we have other eigenvalues of
modulus β because we have assumed that this limit exists. Hence we have
aq ∈ Q(β). �

Proof of Proposition 3.1. Let w = (wj)j≥1 ∈ uper(L∞). By (2.3), we have

val∞(w) =
1
β

+
∞∑

j=1

∑
q∈Q

aqεq,jβ
−j

with ultimately periodic sequences (εq,j)j≥1 and, with Lemma 4.1, the first
statement is proved. More details on the periodicity of (εq,j)j≥1 are given
in [9]. �

Proof of Theorem 3.1. The sketch of the proof is the following.

(A) We show that representing a real number in an abstract system can
be viewed as a generalization of the classical β-transformation.

(B) We derive an algorithm to compute the representation of a given real
number.

(C) Using this algorithm, we obtain the expected result. Note that we
use the fact that β is a Pisot number only in this last part. The first
two parts are independent of the algebraic properties of β.

(A) Let x ∈ Q(β) ∩ [1/β, 1] and w = (wj)j≥1 be the lexicographically
maximal word in rep(x).
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For q ∈ Q and t ∈ Σ, set

αq(t) :=
∑
q′∈Q

(
aq′ ·#{s < t | τ(q, s) = q′}

)
Then from (2.3), (2.4) and the definition of the αq(t)’s and εq,j ’s, we have

(4.1) val∞(w) = (1 + αq0(w1))β−1 +
∞∑

j=2

ατ(q0,w1···wj−1)(wj)β−j .

Remark. Let us make a small digression about the classical β-numeration
systems. If the β-expansion of 1 is finite or ultimately periodic (which in
particular is true when β is a Pisot number) then the β-shift is sofic. The
set of factors appearing in Lβ is a regular language and the deterministic
finite automaton Mβ recognizing this language has a very special form and
is depicted in Figure 1:

Let t1 · · · tm or t1 · · · tm−p(tm−p+1 · · · tm)ω be the expansion of 1. Then
the set of states of Mβ is {1, . . . ,m}, 1 is the initial state, all states are
final and the alphabet of digits is Σ = {0, . . . , bβc}. For every j, 1 ≤ j ≤ m,
we have tj edges j → 1 labelled by 0, . . . , tj − 1 and, for j < m, one edge
j → j + 1 labelled by tj . If the expansion of 1 is ultimately periodic, then we
have an additional edge m → m− p + 1 labelled by tm. (See for instance
[5].)

t

t
0,...,t

1 2

m

m−1

0,...,t  −1

1 2

0,...,t  −1
tt

−1

t

m−pt

1

2
m−p−1

m

0,...,t            −1m−p+1

m−p+1t

m−p−10,...,t          −1

m−p

m−pm +1

Figure 1. The automaton Mβ in the ultimately periodic case.

Since, for abstract systems, leading zeroes may change the value of the
words in the language (indeed for the genealogical ordering v < 0nv and
therefore these two words lead to different numerical values), we need an
automaton M′

β which differs slightly from Mβ by adding a state q0 which
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is dedicated to be the initial state of this new automaton and forbids the
reading of an initial zero. More precisely, we add t1 − 1 edges q0 → 1
labelled by 1, . . . , t1 − 1 and one edge q0 → 2 labelled by t1. (See [9] and
Example 5.)

For the automaton M′
β , we have εq,j = 0 for all q 6= 1 and a1 = 1. So

(4.1) has the form

x = (1 + ε1,1)β−1 +
∞∑

j=2

ε1,jβ
−j .

The digits ε1,j are obtained by the β-transformation

Tβ : [0, 1) → [0, 1) : y 7→ βy − bβyc.

We have ε1,j = bβT j−1
β (x− β−1)c for all j ≥ 1.

Now, we go back to the general case. Let ` > 0. If v ∈ W`, the interval
Iv given in (2.5) can be split into intervals Ivt, t ∈ Σ. Clearly, if |I| denotes
the length of I then |Ivt|/|Iv| = aτ(q0,vt)/(βaτ(q0,v)). Roughly speaking,
this is the reason why we will multiply all quantities by β. Therefore if a
real number has a representation beginning with v then it is quite easy to
determine the next letter t in the representation by determining to which
interval Ivt it belongs. To that end, we compare with the aτ(q0,vt)’s, t ∈ Σ,
after multiplication by β. In a more precise way, to obtain a generalization
of the β-transformation, we set

bycq = max{αq(s) | s ∈ Σ, αq(s) ≤ y}

and

TS,q : [0, aq] → [0,max{aq′ | q′ = τ(q, s), s ∈ Σ}] : y 7→ βy − bβycq.

(B) For x ∈ Q(β), we have

x = .x1 . . . xd =
x1

β
+ · · ·+ xd

βd
with xk ∈ Q.

Starting with this expansion of x, we will calculate iteratively the sequence
(wj)j≥1. During those computations we denote by qj the state of ML
obtained at the jth step of the procedure: qj = τ(qj−1, wj). For j = 1, we
start with the initial state q0.



292 Michel Rigo, Wolfgang Steiner

As a first step, we set x
(d)
1 = x1, x

(d−1)
2 = x2, . . . , x

(1)
d = xd. Then let

inductively for j ≥ 1,

(4.2)

x
(d+1)
j = x

(d)
j + zj

x
(d)
j+1 = x

(d−1)
j+1 − zj,1

x
(d−1)
j+2 = x

(d−2)
j+2 − zj,2

...
x

(2)
j+d−1 = x

(1)
j+d−1 − zj,d−1

x
(1)
j+d = −zj,d

with

z1 = bβx− 1cq0 − (x(d)
1 − 1) = .z1,1 · · · z1,d ∈ Q(β),

w1 = max{s ∈ Σ | αq0(s) = x
(d+1)
1 − 1}

and for j ≥ 2

zj = bx(d)
j .x

(d−1)
j+1 · · ·x(1)

j+d−1cqj−1 − x
(d)
j = .zj,1 · · · zj,d ∈ Q(β),

wj = max{s ∈ Σ | αqj−1(s) = x
(d+1)
j }.(4.3)

It is easy to check that

.x
(d)
j+1 · · ·x

(1)
j+d = TS,qj−1(.x

(d)
j · · ·x(1)

j+d−1)

Indeed, as explained earlier, we have first to multiply .x
(d)
j · · ·x(1)

j+d−1

(which determines the position of x in the interval Iw0···wj−1) by β and

therefore we consider x
(d)
j .x

(d−1)
j+1 · · ·x(1)

j+d−1. In order to retrieve the next
letter wj in the representation, this latter quantity has to be compared with
the αqj (t)’s, t ∈ Σ. Since we are looking for the lexicographically maximal
word in rep(x), we consider (4.3).

We clearly have

x = .x
(d)
1 · · ·x(1)

d = .x
(d+1)
1 x

(d)
2 · · ·x(1)

d+1 = · · ·

= .x
(d+1)
1 · · ·x(d+1)

j x
(d)
j+1 · · ·x

(1)
j+d = · · · = .x

(d+1)
1 x

(d+1)
2 · · ·

With

zj =bx(d)
j .x

(d−1)
j+1 · · ·x(1)

j+d−1c − x
(d)
j

+ bx(d)
j .x

(d−1)
j+1 · · ·x(1)

j+d−1cqj−1 − bx
(d)
j .x

(d−1)
j+1 · · ·x(1)

j+d−1c

and
∆q(y) = bycq − byc = .∆q,1(y) · · ·∆q,d(y) ∈ Q(β),
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the zj,i’s are given by

zj,i =
(
bx(d)

j .x
(d−1)
j+1 · · ·x(1)

j+d−1c − x
(d)
j

)
bi + ∆qj−1,i(x

(d)
j .x

(d−1)
j+1 · · ·x(1)

j+d−1)

=
bi

β
x

(d−1)
j+1 + · · ·+ bi

βd−1
x

(1)
j+d−1 − {x

(d)
j .x

(d−1)
j+1 · · ·x(1)

j+d−1}bi

(4.4)

+ ∆qj−1,i(x
(d)
j .x

(d−1)
j+1 · · ·x(1)

j+d−1),

where we have used y = .(yb1) · · · (ybd) in the first line and byc = y − {y}
in the second one.

Remark. In the special case of classical β-numeration systems, we have
bycq = byc, hence ∆q(y) = 0, the zj ’s are rational numbers and zj,i = zjbi.

(C) Thus from (4.2) and (4.4), we get



x
(d)
j+1

x
(d−1)
j+2
...

x
(2)
j+d−1

x
(1)
j+d


=



0 1− b1
β − b1

β2 · · · − b1
βd−1

0 − b2
β 1− b2

β2

. . .
...

...
...

. . . . . . − bd−2

βd−1

...
...

. . . 1− bd−1

βd−1

0 − bd
β · · · · · · − bd

βd−1





x
(d)
j

x
(d−1)
j+1
...

x
(2)
j+d−2

x
(1)
j+d−1



+ {x(d)
j .x

(d−1)
j+1 . . . x

(1)
j+d−1}

b1
...
bd

−


∆qj−1,1(x

(d)
j .x

(d−1)
j+1 · · ·x(1)

j+d−1)
...

∆qj−1,d(x
(d)
j .x

(d−1)
j+1 . . . x

(1)
j+d−1)


i.e., the x

(i)
j ’s satisfy a linear recurrence up to two terms which are bounded

because ∆q(y) takes only finitely many values and
{x(d)

j .x
(d−1)
j+1 . . . x

(1)
j+d−1} < 1.

Denote the above matrix by M . We claim that its eigenvalues are 0 and
the conjugates of β, which we denote by β2, . . . , βd. To prove this, we show
that v1 = (1, 0, . . . , 0)t and

vi = (βd−1
i , b2β

d−2
i + b3β

d−3
i + · · ·+ bd, . . . , bd−1β

d−2
i + bdβ

d−3
i , bdβ

d−2
i )t,

2 ≤ i ≤ d, are right eigenvectors.
For v1, this is obvious. For 2 ≤ i ≤ d, note that the βi’s are roots of

(4.5)
χβ(x)
x− β

= xd−1 + (β − b1)xd−2 + · · ·+ (βd−1 − b1β
d−2 − · · · − bd−1).
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The k-th element of Mvi, 2 ≤ i ≤ d, is given by

(Mvi)k =− bk

((
b2

β
+ · · ·+ bd

βd−1

)
βd−2

i + · · ·+ bd

β

)
+

(
bk+1β

d−2
i + · · ·+ bdβ

k−1
i

)
.

Since 1 = .b1 . . . bd, we have b`
β + · · ·+ bd

βd−`+1 = β`−1 − b1β
`−2 − · · · − b`−1,

2 ≤ ` ≤ d, and

(Mvi)k =− bk

(
(β − b1)βd−2

i + · · ·+ (βd−1 − b1β
d−2 − · · · − bd−1)

)
+ bk+1β

d−2
i + · · ·+ bdβ

k−1
i .

And finally, since βi is a root of (4.5), we have

(Mvi)k = bkβ
d−1
i + bk+1β

d−2
i + · · ·+ bdβ

k−1
i = βi(vi)k

Now, if β is a Pisot number, then the eigenvalues βi have modulus smaller
than some ρ < 1. We clearly have

x
(d)
j+1
...

x
(1)
j+d

 = M j

x
(d)
1
...

x
(1)
d

 +
j∑

k=1

{x(d)
k .x

(d−1)
k+1 . . . x

(1)
k+d−1}M

j−k

b1
...
bd



−
j∑

k=1

M j−k


∆qj−1,1(x

(d)
k .x

(d−1)
k+1 . . . x

(1)
k+d−1)

...
∆qj−1,d(x

(d)
k .x

(d−1)
k+1 . . . x

(1)
k+d−1)

 =
d∑

i=1

γi,jvi

with |γ1,j | ≤ c for j > 1 and some constant c and

|γi,j | ≤ |γi,0||βi|j + ci(|βi|j−1 + · · ·+ 1) < ci
1

1− ρ
+ ε

for 2 ≤ i ≤ d, some constants ci and all j > J(ε). These bounds are
obtained by considering the decomposition as sum of vi’s of the various
vectors appearing in the above formula.

Hence (x(d)
j+1, . . . , x

(1)
j+d) is bounded. By the first line of (4.4), we see that

the zj,i’s are rational numbers and the denominator of zj,i divides the least
common multiple of the denominator of x

(d)
j and that of all ∆q,i(y)’s (which

are only finitely many). So we get inductively that the zj,i’s and the x
(i)
j ’s

with i ≤ d are rational numbers with bounded denominator. Thus we have
only finitely many possibilities for (x(d)

j+1, . . . , x
(1)
j+d, qj−1) and this sequence

is ultimately periodic. Since wj is determined by this vector (see formula
(4.3)), the sequence (wj)j≥1 is ultimately periodic too. �
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Remark. In the statement of Theorem 3.1, the lexicographically maxi-
mal word w ∈ rep(x) is said to be ultimately periodic. Note that we have
more than one representation of x if and only if x is in Iw1···wj−1wj and
Iw1···wj−1s for some j and s < wj . This means that x is the left boundary
of Iw1···wj−1wj and the right boundary of Iw1···wj−1s. It is easy to see that
the lexicographically minimal representation of each boundary point is ul-
timately periodic. Hence the lexicographically minimal word in w ∈ rep(x)
is ultimately periodic too.

If aq 6= 0 for all q ∈ Q, then the lexicographically minimal and maximal
words are the only elements in rep(x). If aq = 0 for some q ∈ Q, then we
may have uncountably many representations of x and some of them can be
aperiodic.

Proof of Proposition 3.2. We use the same notation as in the proof of
Theorem 3.1. Since β is neither Pisot nor Salem, let, w.l.o.g., |β2| > 1.
We have to find some x such that γ2,1 satisfies

|γ2,1| < |γ2,1||β2| − c2,

because this implies |γ2,2| > |γ2,1|, hence |γ2,2| < |γ2,2||β2| − c2 and, induc-
tively,

|γ2,1| < |γ2,2| < |γ2,3| < · · ·
Then the sequence (x(d)

j+1, . . . , x
(1)
j+d) is aperiodic and the sequence (wj)j≥1 as

well. Furthermore, (x(d)
j+1, . . . , x

(1)
j+d) 6= 0 for all j ≥ 0 implies that (wj)j≥1

is the only representation of x. Indeed, by Remark 4, x is the left boundary
point of an interval Iw1···wj for some j ≥ 1 if x has more than one represen-

tation, but this implies .x
(d)
j+1 · · ·x

(1)
j+d = 0 and thus (x(d)

j+1, . . . , x
(1)
j+d) = 0.

To show that an x with sufficiently large γ2,1 exists, we observe first
that, if we change the value of x

(d)
1 , then we only change γ1,1, but not

the other γj,1. Clearly we have for every choice of (x(d−1)
2 , . . . , x

(1)
d ) an

x
(d)
1 ∈ Q such that .x

(d)
1 · · ·x(1)

d ∈ [1/β, 1]. Finally, since the v1, . . . ,vd

(respectively the real and imaginary parts) form a basis of Rd, we have
points (x(d)

1 , . . . , x
(1)
d ) ∈ Qd with arbitrarily large γ2,1. �

5. Examples

In this section, we consider two examples. The first one shows a run
of the algorithm introduced in the proof of Theorem 3.1 for a numeration
system built upon an arbitrary regular language. In the second one, we
just present the Fibonacci system in this general setting.

Example. Consider the alphabet {a < b < c} and the language accepted
by the automaton depicted in Fig. 2. The states are denoted 1, 2 and 3.
The initial state is 1 and the set of final states is {2,3}.
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a,c

b

b

ac
3

21

Figure 2. A trim minimal automaton.

The adjacency matrix of ML is 2 1 0
1 0 1
1 0 0


and we denote by β its dominating eigenvalue which is the real root of
χβ(x) = x3 − 2x2 − x− 1 and a Pisot number (β ' 2.5468). By definition,
we have a1 = 1− 1/β (' 0.6074) and it is easy to see that

a3 =
a1

β
=

1
β
− 1

β2
(' 0.2385),

a2 =
a1 + a3

β
=

1
β
− 1

β3
(' 0.3321).

The interval [1/β, 1] is split into three intervals Ia, Ib and Ic of respective
lengths a1/β, a2/β and a1/β. Let x = 9

5/β − 6
5/β2 − 2

5/β3 (' 0.4975). We
denote by (wj)j≥1 the maximal representation of x. Since

(0.3926 ')
1
β

< x <
1
β

+
a1

β
(' 0.6311),

we have w1 = a and q1 = 1. The interval Ia is divided into Iaa, Iab and Iac

of length respectively a1/β2, a2/β2 and a1/β2. Since

(0.4863 ')
1
β

+
a1

β2
< x <

1
β

+
a1 + a2

β2
(' 0.5375),

we have w2 = b and q2 = 2. Now, Iab = Iaba∪Iabb and these latter intervals
are of length a3/β3 and a1/β3. Here

(0.4863 ')
1
β

+
a1

β2
< x <

1
β

+
a1

β2
+

a3

β3
(' 0.5007),

thus w3 = a and q3 = 3. Since there is only one edge from state 3, we have
Iaba = Iabac, w4 = c and q4 = 1. As a last step, Iabac = Iabaca∪Iabacb∪Iabacc

and the corresponding lengths are a1/β5, a2/β5 and a1/β5 respectively.
Here,

(0.4951 ')
1
β

+
a1

β2
+

a1 + a2

β5
< x <

1
β

+
a1

β2
+

a1 + a2 + a1

β5
(' 0.5007),



Abstract β-expansions and periodic representations 297

so w5 = c and q5 = 1. To show the periodicity of the representation of x,
one has to observe that q1 = q5 and the relative position of x inside Ia is
the same as the position of x inside Iabacc:

x− 1/β

a1/β
=

x− 1/β − a1/β2 − (a1 + a2)/β5

a1/β5

Hence x = val∞(a(bacc)ω).
Now we consider the algorithm and notation of the proof of Theorem 3.1:

d = 3, (b1, b2, b3) = (2, 1, 1), x = .x1x2x3 = .95(−6
5)(−2

5). First, by defini-
tion of the αq(t)’s, we have

α1(a) = 0, α1(b) = a1, α1(c) = a1+a2, α2(a) = 0, α2(b) = a3, α3(c) = 0.

As initialization step we set x
(3)
1 = 9

5 , x
(2)
2 = −6

5 , x
(1)
3 = −2

5 and q0 = 1.
For j = 1, we have

z1 = bβx− 1c1 − (x(3)
1 − 1) = α1(a)− 4

5
= −4

5
= .

(
−8

5

) (
−4

5

) (
−4

5

)
because of 0 = α1(a) ≤ βx− 1 < α1(b) = β − 1 and the first step gives

x
(4)
1 =

9
5
− 4

5
= 1, x

(3)
2 = −6

5
+

8
5

=
2
5
, x

(2)
3 = −2

5
+

4
5

=
2
5
, x

(1)
4 =

4
5
,

w1 = a and q1 = τ(1, a) = 1.
For j = 2, we have

z2 = bx(3)
2 .x

(2)
3 x

(1)
4 c1 − x

(3)
2 = α1(b)− 2

5
=

3
5
− 1

β
= .

1
5

3
5

3
5

because of 1 − 1/β = α1(b) ≤ x
(3)
2 .x

(2)
3 x

(1)
4 = 2

5 .25
4
5 < α1(c) = 1 − 1/β3,

hence

x
(4)
2 =

2
5

+
3
5
− 1

β
= a1, x

(3)
3 =

2
5
− 1

5
=

1
5
, x

(2)
4 =

4
5
− 3

5
=

1
5
, x

(1)
5 = −3

5
,

w2 = b and q2 = τ(1, b) = 2.
For j = 3, we have

z3 = bx(3)
3 .x

(2)
4 x

(1)
5 c2 − x

(3)
3 = α2(a)− 1

5
= −1

5
= .

(
−2

5

) (
−1

5

) (
−1

5

)
because of 0 = α2(a) ≤ x

(3)
3 .x

(2)
4 x

(1)
5 = 1

5 .15(−3
5) < α2(b) = 1/β − 1/β3 and

x
(4)
3 =

1
5
− 1

5
= 0, x

(3)
4 =

1
5

+
2
5

=
3
5
, x

(2)
5 = −3

5
+

1
5

= −2
5
, x

(1)
6 =

1
5
,

w3 = a and q3 = τ(2, a) = 3.
For j = 4, we only have the possibility w4 = c, q4 = 1, because of q3 = 3.

Thus z3 = −x
(3)
4 = −3

5 = .(−6
5)(−3

5)(−3
5) and

x
(4)
4 = 0, x

(3)
5 = −2

5
+

6
5

=
4
5
, x

(2)
6 =

1
5

+
3
5

=
4
5
, x

(1)
7 =

3
5
.
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Finally for j = 5, we have

z5 = bx(3)
5 .x

(2)
6 x

(1)
7 c2 − x

(3)
5 = α1(c)− 4

5
=

1
5
− 1

β3
= .

2
5

1
5

(
−4

5

)
because of 1− 1/β3 = α2(c) ≤ x

(3)
5 .x

(2)
6 x

(1)
7 = 4

5 .45
3
5 < βa1 = β − 1 and

x
(4)
5 =

4
5

+
1
5
− 1

β3
= a1+a2, x

(3)
6 =

4
5
− 2

5
=

2
5
, x

(2)
7 =

3
5
− 1

5
=

2
5
, x

(1)
8 =

4
5
,

w5 = c and q5 = τ(1, c) = 1.
Hence we have (x(3)

2 , x
(2)
3 , x

(1)
4 ) = (x(3)

6 , x
(2)
7 , x

(1)
8 ) and q1 = q5. This

clearly implies that the sequence is ultimately periodic, w1w2 · · · = a(bacc)ω

and x = .1(a100(a1 + a2))ω.

Example. Here we consider the classical Fibonacci system. If β is the
golden ratio 1+

√
5

2 , then we get the automaton depicted in Fig. 3. This

11 20

10

0q

M
β

Figure 3. The automaton M′
β.

automaton has two parts: an initial state q0 where the digit 0 is not accepted
and the usual automaton given by the states 1 and 2 where the factor 11
is not accepted. In this setting, aq0 = 1− 1/β = 1/β2 implies

a2 = aq0β =
1
β

a1 = a2β = 1

The reader can check that the usual Rényi’s β-expansion of a real number
x ∈ [1/β, 1) coincides with the representation computed by the algorithm
given in the proof of Theorem 3.1.
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