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On a generalization of the

Selection Theorem of Mahler

par Gilbert MURAZ et Jean-Louis VERGER-GAUGRY

Résumé. On montre que l’ensemble UDr des ensembles de points
de Rn, n ≥ 1, qui ont la propriété que leur distance interpoint min-
imale est plus grande qu’une constante strictement positive r > 0
donnée est muni d’une métrique pour lequel il est compact et tel
que la métrique de Hausdorff sur le sous-ensemble UDr,f ⊂ UDr

des ensembles de points finis est compatible avec la restriction
de cette topologie à UDr,f . Nous montrons que ses ensembles
de Delaunay (Delone) de constantes données dans Rn, n ≥ 1,
sont compacts. Trois (classes de) métriques, dont l’une de na-
ture cristallographique, nécessitant un point base dans l’espace
ambiant, sont données avec leurs propriétés, pour lesquelles nous
montrons qu’elles sont topologiquement équivalentes. On prouve
que le processus d’enlèvement de points est uniformément continu
à l’infini. Nous montrons que ce Théorème de compacité implique
le Théorème classique de Sélection de Mahler. Nous discutons la
généralisation de ce résultat à des espaces ambiants autres que
Rn. L’espace UDr est l’espace des empilements de sphères égales
de rayon r/2.

Abstract. The set UDr of point sets of Rn, n ≥ 1, having the
property that their minimal interpoint distance is greater than a
given strictly positive constant r > 0 is shown to be equippable
by a metric for which it is a compact topological space and such
that the Hausdorff metric on the subset UDr,f ⊂ UDr of the finite
point sets is compatible with the restriction of this topology to
UDr,f . We show that its subsets of Delone sets of given constants
in Rn, n ≥ 1, are compact. Three (classes of) metrics, whose one
of crystallographic nature, requiring a base point in the ambient
space, are given with their corresponding properties, for which
we show topological equivalence. The point-removal process is
proved to be uniformly continuous at infinity. We prove that this
compactness Theorem implies the classical Selection Theorem of
Mahler. We discuss generalizations of this result to ambient spaces
other than Rn. The space UDr is the space of equal sphere pack-
ings of radius r/2.
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1. Introduction

In 1946 Mahler [Ma] obtained important results on star bodies and their
critical lattices in Rn using the following fundamental result called now
Mahler’s Selection Theorem or Mahler’s compactness Theorem.

Theorem 1.1. Let (Lr) be a sequence of lattices of Rn such that, for all r:
(i) ‖x‖ ≥ c for all x ∈ Lr, x 6= 0, with c a strictly positive constant

independent of r,
(ii) the Lebesgue measure |Lr| of the fundamental region of Lr satisfies

|Lr| ≤M with M a constant < +∞ independent of r.
Then one can extract from the sequence (Lr) a subsequence (Lr′) that con-
verges to a lattice L of Rn such that |L| = limr′→+∞ |Lr′ |.

This Theorem is very efficient in many problems of Geometry of Numbers
[Ca], [GL] and is as important as the Ascoli-Arzela Theorem in Analysis.
The desirability of extending the main Theorems of Geometry of numbers,
whose Mahler’s compactness Theorem, to general algebraic number fields
and more was emphasized by Mahler in a seminar at Princeton [RSD].
Several authors revisited this Theorem, giving generalizations and analogs
for other ambient spaces than Rn: Chabauty [Ch] with subgroups in locally
compact abelian groups, Mumford [Mu] in semi-simple Lie groups without
compact factors and moduli spaces of compact Riemann surfaces of given
genus, Macbeath and Swierczkowski [MS] in locally compact and σ-compact
topological groups (abelian or not) which are compactly generated, McFeat
[Mf] in adele spaces of number fields, Rogers and Swinnerton-Dyer [RSD]
in algebraic number fields. Groemer [Groe] gave an elegant proof of this
Theorem by showing that it is a consequence of the Selection Theorem
of Blaschke [Ca], by noticing the bicontinuous one-to-one correspondence
between lattices and their Voronoi domains.

The way that Chabauty [Ch] proved Theorem 1.1 is extremely instruc-
tive. A careful attention to his “elementary” proof reveals the very impor-
tant following fact that the Z-additive structure of the lattices Lr is not
necessary to obtain the convergence of a subsequence. From this essen-
tial remark, Chabauty proposed in [Ch] a possible extension of Mahler’s
compactness Theorem to locally compact abelian groups as ambient spaces
with a suitable topology, method which was improved by Mumford [Mu].
Furthermore it opens the way to deal with sequences of non-periodic point
sets, that is without any additional algebraic structure, instead of only
lattices or subgroups, suggesting that Mahler’s Selection Theorem should
exist in more general situations.

In the present note we develop a new version of Theorem 1.1 adapted
to point sets (i.e. not only lattice or subgroup point sets) in an “ambient
space”. This can be formulated as follows. We will be interested in sets of
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point sets, say UD(H, δ)r, of a metric space (H, δ), which is the “ambient
space”, where δ is a metric on H, which have the property that the mini-
mal interpoint distance is greater than or equal to a given strictly positive
constant, say r. Point sets of H having this property are said uniformly
discrete sets of constant r. Denote by UD(H, δ)r,f the subset of UD(H, δ)r

formed by the finite point sets. Concerning assertion (i) in Theorem 1.1,
the fundamental question is now the following:

Question 1.1. For which metric spaces (H, δ) can the set UD(H, δ)r be
endowed with a topology such that it is compact and that the Hausdorff
metric ∆ on UD(H, δ)r,f is compatible with the restriction of this topology
to UD(H, δ)r,f and for which values of r ?

In the objective of generalizing assertion (ii) of Theorem 1.1, let us recall
the (Besicovitch) concept of relative denseness [MVG]: a subset Λ of (H, δ)
is said relatively dense (for δ) in H if there exists R > 0 such that for all
z ∈ H there exists λ ∈ Λ such that δ(z, λ) ≤ R. We will say that Λ is
relatively dense of constant R if R is chosen minimal for that property.
Then, assuming H satisfies Question 1.1 for some r > 0, we can formulate
the second question as follows:

Question 1.2. For which metric spaces (H, δ) is the subset X(H, δ)r,R

of UD(H, δ)r of the relatively dense subsets of H of given constant R > 0
compact, and for which values of R ?

By definition, a subset Λ of (H, δ) is a Delone set if there exist r > 0
and R > 0 such that it is uniformly discrete of constant ≥ r and relatively
dense of constant R > 0. In this case we say that Λ is a Delone set of
constants (r,R) (see [MVG] for possible values of R/r when H = Rn).
For instance, a lattice in (Rn, ‖ · ‖) is already a Delone set, where ‖ · ‖
is the standard euclidean metric. Note that Question 1.2 makes sense for
any ambient space (H, δ) for which Delone sets are infinite, as (Rn, ‖ · ‖).
Indeed, if H is such that its Delone sets are all finite, then Question 1.2
can be answered by the classical properties of the Hausdorff metric on the
space of compact subsets of H (see Section 6). The main Theorem of this
note is the following (proved in Section 4). It provides answers to Question
1.1 and Question 1.2 when H = Rn and δ = ‖ · ‖. For short, in this case,
let us denote by UDr, resp. UDr,f , the set UD(Rn, δ)r, resp. UD(Rn, δ)r,f ,
and by Xr,R the set X(Rn, δ)r,R.

Theorem 1.2. For all r > 0, the set UDr can be endowed with a metric
d such that the topological space (UDr, d) is compact and such that the
Hausdorff metric on UDr,f is compatible with the restriction of the topology
of (UDr, d) to UDr,f . For all R > 0, the subspace Xr,R of (UDr, d) of the
Delone sets of constants (r,R) is closed.
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Note that UDr is exactly the space of (equal) sphere packings of radius
r/2 of Rn [Ca], [Ro].

In Section 2 a construction of d is given from an averaging sequence of
compact sets (Kk)k≥1 of Rn and the corresponding Hausdorff metric on
UD(Kk, ‖ · ‖)r,f , k ≥ 1.

Two other constructions of equivalent metrics are given in Section 3; the
first one (Subsection 3.1) is inspired by a metric put on the space of Delone
sets, which is used in tiling dynamical systems arising from Delone sets
(see Radin and Wolff [RW], Robinson [Ro], Solomyak [So], Gouéré [Go],
Baake and Lenz [BL]); this metric is here adapted to uniformly discrete
sets. The second one (Subsection 3.2) is obtained by point-counting sys-
tems normalized by suitable distances: this idea was first formulated by
Dworkin in [Dw] (for Delone sets) though given there without any proof
by the author. In this last case, since its construction is far away from
the Hausdorff metric, we show in final that it implies compatibility with
the Hausdorff metric on UDr,f (Corollary 3.2). The construction of this
last metric may seem overly complicated at first sight, but it is of crytal-
lographic nature, with purposes in Geometry of Numbers, while the two
other metrics arise from Analysis. The third metric is adapted to study
local clusters of spheres in dense sphere packings, whose geometrical clas-
sification reveals to be essential, as in Hales’s works on Kepler Conjecture
[Ha], [La] (see Remark in §3.3). These three metrics require a base point
in the ambient space Rn, which will be conveniently taken common and
equal to 0. They give a way to create new metrics on UDr, for instance
invariant by translations and crystallographic operations adapted to study
local and global properties of aperiodic sphere packings [MVG], [MVG1].
In Subsection 3.3 we show that these metrics are topologically equivalent.
This topological equivalence is deeply related to the uniform continuity of
the removal process of points of a UD-set at infinity (Proposition 3.10 and
Proposition A.1 in the Appendix).

In Section 5 we show that Theorem 1.2 implies Mahler’s Selection The-
orem 1.1 and comment in Section 6 on the space H to provide positive an-
swers to Question 1.1 and Question 1.2. In particular we extend a theorem
of Macbeath and Swierczkowski [MS] to the metric case (see Theorem 6.1).

The Appendix contains a proof of the uniform continuity, for the third
metric, of the removal process of points of an arbitrary UD-set Λ at infinity
(Proposition A.1), given in a self-contained and detailed way in Step 2. The
computations in Step 1, relative to the case Λ = Zn, useful in Step 2, are
treated in the same way as in Step 2, therefore in a detailed way, to help
the reader.

In the sequel we assume r = 1, the general case being identical, and
denote UD1 by UD , resp. X1,R by XR, and by UDf the space of finite
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uniformly discrete sets of Rn of constant 1. Elements of UD are called
UD-sets: they are, either the subset of Rn which contains no point, i.e.
the empty set, denoted by ∅, or one-point subsets {x} of Rn, with x ∈ Rn,
or discrete point subsets Λ of Rn which contain at least two points such
that ‖x − y‖ ≥ 1 as soon as x, y ∈ Λ, with x 6= y. UD-sets of Rn, except
the empty set ∅, may have very different R-spans, with affine dimensions
ranging from 0 to n. We denote by B(c, ε) the closed ball of Rn of center

c and radius ε ≥ 0, by
◦
B(c, ε) its interior, by diam(A) (resp. RA) the

diameter (resp. the circumscribed radius := supa∈A ‖a‖ ) of a nonempty
subset A of Rn, and by dist(A,B) the distance inf{‖a− b‖ | a ∈ A, b ∈ B}
between two nonempty subsets A and B of Rn.

2. Construction of a metric from the Hausdorff metric

Denote by ∆ the Hausdorff metric on the space of nonempty closed sub-
sets of Rn and by the same symbol its restriction to the space of nonempty
closed subsets of any nonempty compact subset of Rn:

(2.1) ∆(F,G) := inf {ρ ≥ 0 | F ⊂ G+B(0, ρ) and G ⊂ F +B(0, ρ)}.
Let (Kk)k≥1 be an averaging sequence of compacts sets of Rn which contains
the base point pbase := 0: K1 ⊃ {pbase = 0} and for all k ≥ 1,Kk ⊂ Kk+1,
with the property ∪k≥1Kk = Rn. For all k ≥ 1 and all Λ,Λ′ ∈ UD which
are not simultaneously empty, we put

(2.2) dk(Λ,Λ′) := ∆(Λ ∩Kk,Λ′ ∩Kk).

If Λ ∩Kk or Λ′ ∩Kk is empty, then dk(Λ,Λ′) takes the value +∞. On the
contrary, since we use the convention that for all c ∈ Rn and all ε ≥ 0 the
UD-set ∅+B(c, ε) equals the emptyset ∅, we have:

(2.3) dk(∅, ∅) = 0 for all k ≥ 0.

Then we define the mapping d on UD × UD, valued in [0, 1], associated
with (Kk)k≥1, by

(2.4) d(Λ,Λ′) :=
∑
k≥1

2−k dk(Λ,Λ′)
1 + dk(Λ,Λ′)

for all Λ,Λ′ ∈ UD

(with dk(Λ,Λ′)/(1 + dk(Λ,Λ′)) = 1 when dk(Λ,Λ′) = +∞).

Proposition 2.1. The mapping d is a metric on UD. The Hausdorff
metric on UDf is compatible with the restriction of the topology of (UD, d)
to UDf .

Proof. Obvious by (2.3), and by construction for the compatibility with ∆.
�



242 Gilbert Muraz, Jean-Louis Verger-Gaugry

Remark. If (K ′
k)k≥1 is another averaging sequence of compact sets of

Rn such that K ′
1 contains the base point 0, the metric d′ associated with

(K ′
k)k≥1 is topologically equivalent to the above metric d constructed from

(Kk)k≥1: indeed, if (Fn)n is a sequence of UD-sets which converges to
a UD-set F for the metric d′, i.e. d′(Fn, F ) → 0, n → ∞, then, for
all k ≥ 1, (Fn ∩ K ′

k)n is a Cauchy sequence in (UD(K ′
k, ‖ · ‖)1,∆). If

jk is the greatest integer l such that Kl ⊂ K ′
k, then (Fn ∩ Kjk

)n is a
Cauchy sequence in (UD(Kjk

, ‖ · ‖)1,∆) which converges to F ∩Kjk
. Since

∪k≥1F ∩K ′
k = ∪k≥1F ∩Kjk

= ∪k≥1F ∩Kk = F , for all k ≥ 1, djk
(Fn, F )

tends to 0 when n tends to infinity. We deduce limn→+∞ d(Fn, F ) = 0
by (2.4) and Lebesgue dominated convergence theorem. Therefore, to ob-
tain a distance d with properties easy to describe, it suffices to consider an
averaging sequence of balls centered at the base point 0 of Rn: for instance,
Kk = B(0, Rk), k ≥ 1, with (Rk)k≥1 a strictly increasing sequence satisfying
limk→+∞Rk = +∞.

Let us note that if 2−k is replaced by ak in (2.4) where 0 ≤ ak and∑
k≥1 ak < +∞, we obtain another metric which is also topologically equi-

valent to d. All these possibilities constitute the class of metrics of d.
A discrete subset Λ of Rn is said locally finite if Λ ∩ B(c, ε) is finite for

all c ∈ Rn and all ε > 0. The distance d can be extended to the space of
locally finite subsets of Rn. Denote by Dl f (Rn, ‖ · ‖) this space. Note that
∅ ∈ ∪r>0 UDr and that ∪r>0 UDr is contained in Dl f (Rn, ‖ · ‖).

Proposition 2.2. The mapping d associated with an averaging sequence
of compact sets (Kk)k≥1 of Rn is a metric on the space Dl f (Rn, ‖ · ‖) of
locally finite discrete subsets of Rn. The Hausdorff metric on ∪r>0 UDr,f

is compatible with the restriction of the topology of (Dl f (Rn, ‖ · ‖), d) to
∪r>0 UDr,f .

Proof. Same construction and arguments as in Proposition 2.1. �

3. Equivalent metrics

3.1. From tiling dynamical systems. Let Rmin > 0 be defined by the
following property: XR = ∅ if R < Rmin. It is the smallest possible Delone
constant of any Delone set (with minimal interpoint distance ≥ 1) in Rn,
and depends only upon n [MVG]. It is linked to packings of equal spheres of
radius 1/2 in Rn exhibiting spherical holes whose radius is always smaller
than or equal to Rmin and therefore to densest sphere packings [MVG],
[CS]. Let λ ≥ 2R2

min and pbase = 0 the base point of Rn. Then, for all
Λ,Λ′ ∈ UD denote:
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(3.1) Ω(Λ,Λ′) :=
{
α > 0 | Λ ∩B(pbase,

λ

α
) ⊂ Λ′ +B(0, α)

and Λ′ ∩B(pbase,
λ

α
) ⊂ Λ +B(0, α)

}
and define

(3.2) δ1(Λ,Λ′) := min
{

1,
inf Ω(Λ,Λ′)

Rmin

}
.

Observe that, if α ∈ Ω(Λ,Λ′), then [α,+∞) ⊂ Ω(Λ,Λ′). We have:
δ1(∅, ∅) = 0 and, for all Λ 6= ∅, δ1(Λ, ∅) = min{1, λ

Rmin dist({0},Λ)}.

Proposition 3.1. The mapping δ1 is a metric on UD. The Hausdorff
metric on UDf is compatible with the restriction of the topology of (UD, δ1)
to UDf .

Proof. It is obviously symmetrical. If Λ = Λ′, then δ1(Λ,Λ′) = 0. Let us
show the converse. Assume δ1(Λ,Λ′) = 0. If Λ or Λ′ is the empty set, then
it is easy to show that both are equal to ∅. Assume now that Λ 6= ∅,Λ′ 6= ∅
and that Λ strictly contains Λ ∩ Λ′. Then there exists x ∈ Λ, x 6∈ Λ′ such
that dist({x},Λ′) > 0. Since Ω(Λ,Λ′) equals (0,+∞) by assumption, it
contains in particular 1

2 dist({x},Λ) > 0 and also λ/(2‖x‖) > 0 if x 6= 0.
Take β := 1

2 min{dist({x},Λ′), λ/‖x‖} when x 6= 0, and β := 1
2 dist({0},Λ′)

when x = 0. Then we would have: x ∈ Λ ∩ B(0, λ
β ) but x 6∈ Λ′ + B(0, β).

Contradiction. Therefore, Λ = Λ ∩ Λ′, equivalently Λ ⊂ Λ′. In a similar
way, by symmetry, we obtain Λ′ ⊂ Λ, hence the equality Λ = Λ′.

Let us show the triangle inequality:

δ1(Λ,Λ′′) ≤ δ1(Λ,Λ′) + δ1(Λ′,Λ′′).

If δ1(Λ,Λ′) = 1 or if δ1(Λ′,Λ′′) = 1, then it is satisfied. Assume now
δ1(Λ,Λ′) < 1 and δ1(Λ′,Λ′′) < 1. Let a ∈ Ω(Λ,Λ′) and b ∈ Ω(Λ′,Λ′′). Then
a < Rmin and b < Rmin. Let e = a+ b. Then

Λ ∩B(0,
λ

e
) ⊂ Λ ∩B(0,

λ

a
) ⊂ Λ′ +B(0, a).

This implies:

Λ ∩B(0,
λ

e
) ⊂ Λ′ ∩B(0,

λ

e
+ a) +B(0, a).

But a+λ
e ≤

λ
b : indeed, since be ≤ 2R2

min, we have: λ
b−

λ
e−a = a

be(λ−be) ≥ 0.
Hence,

Λ∩B(0,
λ

e
) ⊂ Λ′∩B(0,

λ

b
)+B(0, a) ⊂ Λ′′+B(0, b)+B(0, a) = Λ′′+B(0, e).
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Therefore e ∈ Ω(Λ,Λ′′), that is Ω(Λ,Λ′′) ⊃ Ω(Λ,Λ′) + Ω(Λ′,Λ′′). This
implies the triangle inequality.

To prove the compatibility of the Hausdorff metric ∆ on UDf with the
topology arising from δ1, it suffices to show, given Λ,Λ′ ∈ UDf such that
δ1(Λ,Λ′) is small enough, that the following equality holds:

(3.3) δ1(Λ,Λ′) =
∆(Λ,Λ′)
Rmin

.

Indeed, if δ1(Λ,Λ′) is small enough, then there exists T ∈ Ω(Λ,Λ′) such
that Λ = Λ ∩B(0, λ

T ) and Λ′ = Λ′ ∩B(0, λ
T ). Thus

inf Ω(Λ,Λ′) = inf{ρ ≥ 0 | Λ ⊂ Λ′ +B(0, ρ)

and
Λ′ ⊂ Λ +B(0, ρ)} = ∆(Λ,Λ′).

We deduce (3.3). �

Proposition 3.2. The mapping δ1 is a metric on the space Dl f (Rn, ‖ · ‖)
of locally finite discrete subsets of Rn. The Hausdorff metric on ∪r>0UDr,f

is compatible with the restriction of the topology of (Dl f (Rn, ‖ · ‖), δ1) to
∪r>0 UDr,f .

Proof. Same construction as in Proposition 3.1. �

Remark. After Blichfeldt (see [MVG]) we have: Rmin ≥
√

2
2

√
n

n+1 , hence

λ ≥ n
n+1 . Given Λ ∈ XR, with R ≥ Rmin, denote by Λ(dh) the uniformly

discrete set of Rn constituted by the deepest holes of Λ [CS]. Consider
the class of metrics δ1 constructed as above when λ ≥ 2R2

min varies. The
normalization factor R−1

min in the definition of δ1 comes from the fact that,
for all Λ ∈ XR with R ≥ Rmin, we have: δ1(Λ,Λ(dh)) = 1 for all λ large
enough.

3.2. From point-counting systems with equal spheres. Contrarily
to d and δ1 the metric δ2 constructed here on UD has no natural extension
to Dl f (Rn, ‖·‖). But it possesses nice properties (Subsection 3.2.2) like the
point pairing property (Proposition 3.6).

3.2.1. Construction. Let E = {(D,E) | D countable point set in Rn, E
countable point set in (0, 1

2)} and f : Rn → [0, 1] a continuous function with
compact support in B(0, 1) which satisfies f(0) = 1 and f(t) ≤ 1/2+‖λ−t/2‖

1/2+‖λ‖
for all t ∈ B(0, 1) and λ ∈ Rn (for technical reasons which will appear
below; it is a weak hypothesis; take for instance f(t) = 1 − ‖t‖ on B(0, 1)
and f(t) = 0 elsewhere). Recall that a pseudo-metric δ on a space satisfies
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all the axioms of a distance except that δ(u, v) = 0 does not necessarily
imply u = v.

With each element (D,E) ∈ E and (variable) origin α of the affine eu-
clidean space Rn we associate a real-valued function dα,(D,E) on UD×UD in
the following way. Let B(D,E) = {Bm} denote the countable set of all possi-

ble finite collections Bm =
{ ◦
B(c(m)

1 , ε
(m)
1 ),

◦
B(c(m)

2 , ε
(m)
2 ), . . . ,

◦
B(c(m)

im
, ε

(m)
im

)
}

(with im the number of elements #Bm of Bm) of open balls such that
c
(m)
q ∈ D and ε

(m)
q ∈ E for all q ∈ {1, 2, . . . , im}, and such that for all m

and any pair of balls in Bm of respective centers c(m)
q and c

(m)
k , we have

‖c(m)
q − c

(m)
k ‖ ≥ 1. Since any UD-set Λ is countable, we denote by Λi its

i-th element. Then we define the following function, with Λ,Λ′ ∈ UD, and
base point pbase = 0:

dα,(D,E)(Λ,Λ
′)

(3.4)

:= sup
Bm∈B(D,E)

|φBm(Λ)− φBm(Λ′)|
(1/2 + ‖α−pbase‖+ ‖α−c(m)

1 ‖+ ‖α−c(m)
2 ‖+ · · ·+‖α−c(m)

im
‖)

where the real-valued function φBm is given by

φBm(Λ) :=
∑

◦
B(c,ε)∈Bm

∑
i

εf
(Λi − c

ε

)
.

By convention we put φBm(∅) = 0 for all Bm ∈ B(D,E) and all (D,E) ∈ E .

It is clear that, for all m and Λ ∈ UD, inside each ball
◦
B(c, ε) ∈ Bm, there is

at most one point of Λ and therefore the summation
∑

i εf
(

Λi−c
ε

)
is reduced

to at most one non-zero term. Therefore the sum φBm(Λ) is finite.

Lemma 3.1. For all (α, (D,E)) in Rn × E, dα,(D,E) is a pseudo-metric
valued in [0, 1].

Proof. Let α ∈ Rn and (D,E) ∈ E . It is easy to check that dα,(D,E) is a
pseudo-metric on UD. Let us show it is valued in [0, 1]. Let us consider
Bm ∈ B(D,E) for which the centers of its constitutive balls are denoted by
c1, c2, . . . , cim . Then we have

im
2
≤ 1/2 + ‖α‖+ ‖α− c1‖+ ‖α− c2‖+ · · ·+ ‖α− cim‖.

Indeed, if there exists j ∈ {1, 2, . . . , im} such that ‖cj − α‖ ≤ 1
2 , then for

all k 6= j, ‖ck − α‖ ≥ 1
2 . Hence

1
2

+ ‖α‖+ ‖α− c1‖+ ‖α− c2‖+ · · ·+ ‖α− cim‖ ≥
1
2

+ ‖α‖+
im − 1

2
≥ im

2
.
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If ‖ck − α‖ ≥ 1
2 for all k ∈ {1, 2, . . . , im}, then

1
2

+ ‖α‖+ ‖α− c1‖+ ‖α− c2‖+ · · ·+ ‖α− cim‖ ≥
1
2

+ ‖α‖+
im
2
≥ im

2
.

On the other hand, since the radii of the balls
◦
B(cj , εj) ∈ Bm are less than

1
2 by construction, we have 0 ≤ φBm(Λ) ≤ im

2 for all UD-set Λ. Therefore
|φBm(Λ)− φBm(Λ′)| ≤ 1

2 + ‖α‖+ ‖α− c1‖+ ‖α− c2‖+ · · ·+ ‖α− cim‖, for
all Bm ∈ B(D,E) and all UD-sets Λ,Λ′. We deduce the claim. �

The uniform topology on UD given by the pseudo-metrics dα,(D,E) is
generated by the open sets {Λ ∈ UD | dα,(D,E)(u,Λ) < ε}, u ∈ UD (Weil
[We]). In order to get rid of a peculiar choice of the (variable) origin α and
of the element (D,E) of E , the supremum over all choices (α, (D,E)) in
Rn × E is taken.

Proposition 3.3. The supremum δ2 := supα∈Rn,(D,E)∈E dα,(D,E) is a
metric on UD, valued in [0, 1].

Proof. The supremum of the family of pseudo-metrics dα,(D,E) is a pseudo-
metric which takes its values in [0, 1]. We have to show that δ2 is a metric.
Assume Λ,Λ′ are UD-sets which are not empty such that δ2(Λ,Λ′) = 0
and let us show that Λ = Λ′. We will show that Λ 6⊂ Λ′ and Λ′ 6⊂ Λ
are impossible. Assume that Λ 6= Λ′ and that Λ 6⊂ Λ′. Then there exists
λ ∈ Λ such that λ 6∈ Λ′. Denote ε := 1

2 min{1
2 ,min{‖λ − u‖ | u ∈ Λ′}}.

We have ε > 0 since Λ′ is a UD-set. The ball
◦
B(λ, ε) contains no point

of Λ′ and only the point λ of Λ. Take α = λ, D = {λ}, E = {ε}. We
have dλ,(D,E)(Λ,Λ′) = ε

1/2+‖λ‖ > 0. Hence δ2(Λ,Λ′) would be strictly
positive. Contradiction. Therefore Λ ⊂ Λ′. Then, exchanging Λ and Λ′,
we have Λ′ ⊂ Λ. We deduce the equality Λ = Λ′. If we assume that one of
the UD-sets Λ or Λ′ is the empty set, we see that the above proof is still
valid. �

3.2.2. Properties.

Proposition 3.4. For all A,B,C ∈ UD such that A ∪ B ∈ UD and all
(D,E) ∈ E and Bm ∈ B(D,E), the following assertions hold:

(i) φBm(A ∪B) + φBm(A ∩B) = φBm(A) + φBm(B);
(ii) δ2(A ∪B,C) ≤ δ2(A,C) + δ2(B,A ∩B);
(iii) δ2(A ∩B,C) ≤ δ2(A,C) + δ2(B,A ∪B).

In particular:
(iv) δ2(A ∪B, ∅) ≤ δ2(A, ∅) + δ2(B, ∅) as soon as A ∩B = ∅;
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(v) δ2(A∪B,A∩B) ≤ min{δ2(A,A∩B) + δ2(B,A∩B), δ2(A,A∪B) +
δ2(B,A ∪B)};

(vi) if B is reduced to one point, say {λ}, such that λ 6∈ A, we have:
δ2(A ∪ {λ}, C) ≤ min{δ2(A,C) + δ2({λ}, ∅), δ2({λ}, C) + δ2(A, ∅)}.

Proof. Assertion (i) can easily be checked from the definition of φBm . As-
sertion (ii) is a consequence of (i) and of the inequality

|φBm(A ∪B)− φBm(C)| = |φBm(A) + φBm(B)− φBm(A ∩B)− φBm(C)|
≤ |φBm(A)− φBm(C)|+ |φBm(B)− φBm(A ∩B)|.

Assertion (iii) follows from (ii) by exchanging “∪” and “∩”. Assertions (iv)
to (vi) can be deduced from (i), (ii) and (iii). �

Assertions (iv) and (vi) in Proposition 3.4 show the special role played
by the “empty set” element ∅ in the set-theoretic processes of “point addi-
tion” and “point removal”. The uniform continuity of the “point removal
process” at infinity of the points of a UD-set is proved in Section 3.3 and
in the Appendix.

Proposition 3.5. The following equalities hold:
(i) δ2({λ}, ∅) = 1

1+2‖λ‖ , for all λ ∈ Rn (remarkably this value does not
depend upon f(x)),

(ii) δ2(Λ− {λ},Λ) = 1
1+2‖λ‖ for all non-empty UD-set Λ and all λ ∈ Λ.

Proof. (i) First, let us show that δ2({λ}, ∅) ≤ 1
1+2‖λ‖ . By definition we have

δ2({λ}, ∅)

= sup
α∈Rn

(D,E)∈E

sup
Bm∈B(D,E)

φBm(Λ)(
1
2 + ‖α‖+ ‖α−c(m)

1 ‖+ ‖α−c(m)
2 ‖+ · · ·+‖α−c(m)

jm
‖
) .

Whatever (D,E) ∈ E , Bm ∈ B(D,E), a maximum of one ball of Bm may

contain λ. Denote by
◦
B(c, ε) this variable generic ball and put c = c

(m)
1 .

The other balls of Bm have a zero contribution to the numerator φBm(Λ)
in the expression of δ2({λ}, ∅). The denominator is such that: 1

2 + ‖α‖ +
‖α − c

(m)
1 ‖ + ‖α − c

(m)
2 ‖ + · · · + ‖α − c

(m)
jm

‖ ≥ 1
2 + ‖α‖ + ‖α − c‖. But

1
2 + ‖α‖+ ‖α− c‖ ≥ 1

2 + ‖c‖, this minimum being reached on the segment
[0, c]. Therefore, by definition of the function f , we have

dα,(D,E)({λ}, ∅) ≤
εf(λ−c

ε )
1
2 + ‖c‖

≤ ε
1
2 + ‖λ‖

≤ 1/2
1/2 + ‖λ‖

=
1

1 + 2‖λ‖
.

Conversely, if we take α = λ, D = {λ} and E a dense subset in (0, 1
2),

we see that δ2({λ}, ∅) ≥ dα=λ,(D={λ},E)({λ}, ∅) = 1/2
1/2+‖λ‖ . We deduce the

equality and assertion (i);
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(ii) The proof is similar as in (i) since Λ and Λ− {λ} differ by only one
element λ which belongs to at most one ball in a collection Bm for any
(D,E) ∈ E and any Bm ∈ B(D,E). The details are left to the reader. �

Corollary 3.1. For all UD-set Λ 6= ∅ and all λ ∈ Λ, the inequality holds:

|δ2(Λ, ∅)− δ2(Λ− {λ}, ∅)| ≤ 1
1 + 2‖λ‖

.

Proof. From Proposition 3.4 (ii), we deduce δ2(Λ, ∅) ≤ δ2(Λ − {λ}, ∅) +
δ2({λ}, ∅). From (iii) in Proposition 3.4, we obtain

δ2(Λ− {λ}, ∅) ≤ δ2(Λ, ∅) + δ2(Λ− {λ},Λ)

but δ2({λ}, ∅) = δ2(Λ − {λ},Λ) = 1
1+2‖λ‖ by Proposition 3.5. We deduce

the claim. �

Proposition 3.6 (Point pairing property). Let Λ,Λ′ be two UD-sets as-
sumed to be nonempty. Let l = dist({0},Λ) < +∞ and ε ∈ (0, 1

1+2l ).
Assume that δ2(Λ,Λ′) < ε. Then, for all λ ∈ Λ such that ‖λ‖ < 1−ε

2ε ,
(i) there exists a unique λ′ ∈ Λ′ such that ‖λ′ − λ‖ < 1

2 ,
(ii) this pairing (λ, λ′) satisfies the inequality: ‖λ′ − λ‖ ≤ (1

2 + ‖λ‖)ε.

Proof. (i) Let us assume that for all λ′ ∈ Λ′, λ ∈ Λ, such that ‖λ‖ < 1−ε
2ε

the inequality ‖λ′−λ‖ ≥ 1
2 holds. This will lead to a contradiction. Assume

the existence of an element λ ∈ Λ such that ‖λ‖ < 1−ε
2ε and take D = {λ}

and let E be a countable dense subset in (0, 1
2). Each Bm in B(D,E) is a set

constituted by only one element: the ball (say)
◦
B(λ, em) with em ∈ E. We

deduce that φBm(Λ) = em and φBm(Λ′) = 0. Hence

dλ,(D,E)(Λ,Λ
′) = sup

m

em
1/2 + ‖λ‖

=
1/2

1/2 + ‖λ‖
≤ δ2(Λ,Λ′).

But ε < 1
1+2‖λ‖ is equivalent to ‖λ‖ < 1−ε

2ε . Since we have assumed
δ2(Λ,Λ′) < ε, we should obtain ε < dλ,(D,E)(Λ,Λ′) ≤ δ2(Λ,Λ′) < ε. Con-
tradiction. The uniqueness of λ′ comes from the fact that Λ′ is a UD-set
allowing only one element λ′ close to λ. (ii) Let us assume that λ 6= λ′ for
all λ ∈ Λ such that ‖λ‖ < 1−ε

2ε , with λ′ ∈ Λ′ that satisfies ‖λ′−λ‖ < 1
2 (if the

equality λ = λ′ holds, there is nothing to prove). Then, for all λ ∈ Λ such
that ‖λ‖ < 1−ε

2ε , let us take α = λ as base point, D = {λ} and E a dense sub-

set in (0, ‖λ−λ′‖] ⊂ (0, 1
2). Then φBm(Λ)−φBm(Λ′) = em

(
1− f

(
λ′−λ
em

))
.

The restriction of the function z → z(1 − f(λ′−λ
z )) to (0, ‖λ − λ′‖] is the

identity function and is bounded above by ‖λ′ − λ‖. Therefore,

dλ,(D,E)(Λ,Λ
′) = sup

Bm

|φBm(Λ)− φBm(Λ′)|
1/2 + ‖λ‖

=
‖λ′ − λ‖
1/2 + ‖λ‖

.
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Since dλ,(D,E)(Λ,Λ′) ≤ δ2(Λ,Λ′) < ε, we obtain ‖λ′ − λ‖ ≤ (1
2 + ‖λ‖)ε. �

In other terms, each time two UD-sets Λ,Λ′ are sufficiently close to each
other for the metric δ2, every element of Λ lying in a large ball centered
at the origin (base point) in Rn, is automatically associated with a unique
element of Λ′ which is close to it within distance less than 1

2 . Such pairings
of elements occur over larger and larger distances from the origin when Λ′

tends to Λ. From (ii) the proximity in the pairings (λ, λ′) is much better
for the elements λ ∈ Λ which are the closest to the base point.

Proposition 3.7. Let ε ∈ (0, 1) and Λ ∈ UD,Λ 6= ∅. Then

δ2(Λ, ∅) < ε⇒ Λ ⊂ Rn \B
(
0,

1− ε

2ε

)
.

Proof. Let us assume the existence of λ ∈ Λ such that ‖λ‖ ≤ 1−ε
2ε and

let us show that this hypothesis implies that the assertion δ2(Λ, ∅) < ε is
wrong. Take D = {λ} and E a dense subset in (0, 1

2). Each Bm in B(D,E)

is a set constituted by only one ball: say the ball
◦
B(λ, em) with em ∈ E.

We deduce that φBm(Λ) = em. Since φBm(∅) = 0, the following inequality
holds:

dλ,(D,E)(Λ, ∅) = sup
m

em
1/2 + ‖λ‖

=
1/2

1/2 + ‖λ‖
≤ δ2(Λ, ∅).

But ε ≤ 1
1+2‖λ‖ is equivalent to ‖λ‖ ≤ 1−ε

2ε . Hence, ε ≤ dλ,(D,E)(Λ, ∅). We
deduce δ2(Λ, ∅) ≥ ε as claimed. �

From Proposition 3.6 and Proposition 3.7 we deduce

Corollary 3.2. For all t > 0 the Hausdorff metric ∆ on UD (B(0, t), ‖ · ‖)
is compatible with the restriction of the topology of (UD, δ2) to the space
UD
(
B(0, t), ‖ · ‖

)
f

= UD (B(0, t), ‖ · ‖).

The converse of Proposition 3.7 is much harder (see Appendix).

3.3. Topological equivalence and point-removal. The “point-removal
process” of a subcollection of points of a UD-set is particularly easy to
describe with d and δ2. For all Λ ∈ UD and R > 0, denote by ΛR the new

UD-set Λ ∩
◦
B(0, R).

Proposition 3.8. Let δ = d or δ2. Let Λ,Λ′ ∈ UD and C be an arbitrary
subset of Λ ∩ Λ′. Then δ(Λ,Λ′) = δ(Λ \ C,Λ′ \ C). In particular, for all
R > 0,

δ(Λ,Λ′) = δ(Λ \ (Λ ∩ Λ′),Λ′ \ (Λ ∩ Λ′)) and δ(Λ \ ΛR, ∅) = δ(ΛR,Λ).

Proof. These results follow readily from the definitions of d and δ2. �
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Remark. The distance (for δ2) between two dense (equal) sphere pack-
ings (radius 1

2) differing only by a small cluster of spheres lying about the
point z is exactly the distance between these two clusters, say C1 and C2.
Thus it is very easy to see that it is a ratio (from (3.4) in Section 3.2.1)
roughly given by m

1/2+‖z‖ f(C1, C2), when ‖z‖ is large enough, where m is the
(common) number of spheres of C1 (or C2) and f(C1, C2) a function which
depends upon the relative positions of the spheres inside C1 and C2. Such
simple expressions are easy to handle, can be made more precise and can
be differentiated to study optimal positioning of clusters in dense sphere
packings [MVG1].

Let us show that the metrics d, δ1, δ2 are topologically equivalent on UD.

Proposition 3.9. For any averaging sequence (Ki)i≥1 of compact sets of
Rn which contains the base point 0, the metric d associated with it is such
that:

(i) d and δ1 are topologically equivalent,
(ii) d and δ2 are topologically equivalent.

Proof. It suffices to show that the identity map is bicontinuous in each case.
(i) (UD, δ1)

id→ (UD, d) is continuous: let ε > 0 be small enough and
assume Λ,Λ′ ∈ UD with Λ 6= ∅. Let η ∈ (0, 1). Let k be the great-
est integer such that Kk ⊂ B(0, λ

Rminη ). The map η → 2−k takes the
value 0 at zero and is continuous at zero. Then there exists η0 such that
η ≤ η0 ⇒ 2−k ≤ ε/2. Now, if δ1(Λ,Λ′) < η, then Rminη ∈ Ω(Λ,Λ′) and
∆(Λ ∩B(0, λ

Rminη ),Λ′ ∩B(0, λ
Rminη )) ≤ Rminη. We deduce:

d(Λ,Λ′) ≤
k∑

i=1

2−iRminη +
∑

i≥k+1

2−i ≤ Rminη + 2−k.

Hence, for all η < min{ ε
2Rmin

, η0} the inequality δ1(Λ,Λ′) < η implies
d(Λ,Λ′) < ε/2 + ε/2 = ε, hence the claim. Assume now Λ = ∅. Given
ε > 0 small enough, by the definition of d, there exists R > 0 such that
d(∅,Λ′) < ε for all Λ′ ⊂ Rn \ B(0, R). Take η = λ

RRmin
. Then the in-

equality δ1(∅,Λ′) < η implies Rminη ∈ Ω(∅,Λ′), hence Λ′ ∩ B(0, λ
Rminη ) =

Λ′ ∩ B(0, R) = ∅. We deduce: δ1(∅,Λ′) < η ⇒ d(∅,Λ′) < ε, hence the
continuity at ∅.

(UD, d) id→ (UD, δ1) is continuous: let ε > 0 be small enough and assume
Λ 6= ∅. By Proposition 2.2 there exists η such that:
d(Λ ∩B(0, λ

Rminε),Λ
′ ∩B(0, λ

Rminε)) < η

⇒ ∆(Λ ∩B(0, λ
Rminε),Λ

′ ∩B(0, λ
Rminε)) < Rminε.

Since
d(Λ ∩B(0,

λ

Rminε
),Λ′ ∩B(0,

λ

Rminε
)) ≤ d(Λ,Λ′)
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and that

∆(Λ ∩B(0,
λ

Rminε
),Λ′ ∩B(0,

λ

Rminε
)) ≤ Rminε

is equivalent to δ1(Λ,Λ′) < ε, we have: d(Λ,Λ′) < η ⇒ δ1(Λ,Λ′) < ε, hence
the claim. Assume now Λ = ∅. Let ε > 0. Let j the smallest integer such
that B(0, λ

Rminε) ⊂ Kj . We have d(∅,Λ′) = 2−u+1 where u is the smallest
integer such that Λ′∩Ku 6= ∅, so that Λ′∩Ki = ∅ for i = 1, 2, . . . , u−1. Then
we choose η ∈ (0, 1) small enough such that d(∅,Λ′) = 2−u+1 < η < 2−u+2

with u > j. Hence Λ′ ∩Kj = ∅. Then Λ′ ⊂ Rn \ B(0, λ
Rminε). We deduce

δ1(∅,Λ′) < ε and the continuity at ∅.
(ii) (UD, δ2)

id→ (UD, d) is continuous: let us first assume that the con-
dition

∑
i≥1 2−iRKi < +∞ holds. Let ε > 0 be small enough. Let

η ∈ (0, 1) and assume δ2(Λ,Λ′) < η where Λ 6= ∅. Define k = k(η) by
the conditions: Kk ⊂ B

(
0, 1−η

2η

)
and Kk+1 6⊂ B

(
0, 1−η

2η

)
. Since the map

η → 2−k takes the value 0 at zero and is continuous at zero, there exists
η0 such that η ≤ η0 ⇒ 2−k ≤ ε/2. On the other hand, for all i such
that Ki ⊂ B

(
0, 1−η

2η

)
, ∆(Λ ∩ Ki,Λ′ ∩ Ki) = di(Λ,Λ′) ≤

(
1
2 +RKi

)
η by

Proposition 3.6. Then

d(Λ,Λ′) ≤
k∑

i=1

2−i
(1

2
+RKi

)
η +

∑
i≥k+1

2−i ≤
(1

2
+
∑
i≥1

2−iRKi

)
η + 2−k.

There exists η1 such that η ≤ η1 ⇒
(

1
2 +

∑
i≥1 2−iR(Ki

)
η ≤ ε/2. Then,

for η ≤ min{η0, η1}, we have d(Λ,Λ′) ≤ ε/2 + ε/2 = ε. This proves the
continuity at all Λ 6= ∅. Continuity at ∅ arises readily from the definition
of d and Proposition 3.7. Using the Remark in Section 2, we wee that the
condition

∑
i≥1 2−iRKi < +∞ can be removed. Thus we obtain the claim

in full generality.
(UD, d) id→ (UD, δ2) is continuous: let ε > 0 be small enough and assume

Λ 6= ∅. By Proposition A.1 there exists R such that

δ2(Λ,ΛR) = δ2(Λ \ ΛR, ∅) ≤ ε/3 and δ2(Λ′,Λ′R) = δ2(Λ′ \ Λ′R, ∅) ≤ ε/3.

By Corollary 3.2 there exists η0 such that

∆(ΛR,Λ′R) < η0 ⇒ δ2(ΛR,Λ′R) < ε/3.

Let j ≥ 1 be the smallest integer such that B(0, R) ⊂ Kj . Let us take
η ∈ (0, 2−j) such that η

2−j−η
< η0 ⇐⇒ η < η02−j

1+η0
. Then,

d(Λ,Λ′) =
∑
i≥1

2−idi(Λ,Λ′)
1 + di(Λ,Λ′)

< η ⇒ 2−idi(Λ,Λ′)
1 + di(Λ,Λ′)

< η for all i = 1, 2, . . . , j.
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We deduce ∆(ΛR,Λ′R) ≤ dj(Λ,Λ′) = ∆(Λ ∩ Kj ,Λ′ ∩ Kj) < η
2−i−η

< η0.
Thus

δ2(Λ,Λ′) ≤ δ2(Λ,ΛR) + δ2(ΛR,Λ′R) + δ2(Λ′R,Λ
′) ≤ ε/3 + ε/3 + ε/3 = ε.

We deduce the claim for Λ 6= ∅. Assume now Λ = ∅. Let ε > 0 be small
enough. By Proposition A.1 there exists R such that Λ′ ⊂ Rn \ B(0, R)
implies δ2(Λ′, ∅) ≤ ε. Let j be the smallest integer such that Λ′ ∩Kj 6= ∅.
Then Λ′ ∩ Kj−1 = ∅ and B(0, R) ⊂ Kj−1. Since d(∅,Λ′) =

∑
i≥j 2−i =

2−j+1 (with Λ′ 6= ∅) we take η such that 2−j+1 < η < 2−j+2, for instance
η = 3.2−j . Then d(∅,Λ′) < η ⇒ δ2(Λ′, ∅) ≤ ε, hence the continuity at ∅. �

The following proposition is fundamental. It shows the uniform continu-
ity of the point-removal process at infinity.

Proposition 3.10. Let Λ ∈ UD. Denote by δ either d or δ1. Then

lim
R→∞

δ(Λ,ΛR) = lim
R→∞

δ(Λ \ ΛR, ∅) = 0.

Moreover the convergence is uniform in the following sense:

∀ε∈(0, 1),∃R > 0 such that: Λ ⊂ Rn \B(0, R) ⇒ δ(Λ, ∅) < ε.

Proof. If Λ is finite, the limit is obviously zero. Assume Λ infinite. The
claim is obvious when δ = d or δ = δ1 by definition of d and δ1. �

Remark. A direct (and self-contained) proof of Proposition 3.10 with
δ = δ2 can be found in the Appendix (Proposition A.1).

Corollary 3.3. The subset UDf is dense in UD.

4. Proof of Theorem 1.2

Let (Kk)k≥1 be an averaging sequence of compact sets which contains
the base point 0 and d the metric associated with it. Let us embedd UD in
the product space

UD ⊂
∏
k≥1

UD
(
Kk, ‖ · ‖

)
1

= W,

each UD(Kk, ‖·‖)1 being a compact metric space with the Hausdorff metric
∆, equivalently with d, δ1 or δ2 by Proposition 2.1, resp. Proposition 3.1,
or resp. Corollary 3.2. Thus the space W is naturally a compact space by
Tychonov’s Theorem, and it is clear that UD is closed inside. Indeed, the
image can be identified with the families (Vk) ∈ UD(Kk, ‖ · ‖)1 such that
Vk ∩Kk−1 = Vk−1. This is a special case of a projective limit. Therefore it
is compact.

For all R > 0 the subspace XR of the Delone sets of constant R is closed
in (UD, d), since the relative denseness conditions are closed. Nevertheless,
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let us prove directly this result using δ2. Let Λ∈UD \XR. We will show
that it is contained in an open subset disjoint from XR that will prove that
XR is closed. Since Λ 6∈ XR, there exists z ∈ Rn such that ‖z−λ‖ > R
for all λ ∈ Λ. Let l = dist({z},Λ) > R. Denote Λ−z := {λ−z | λ∈Λ}
the translated set. For ε > 0 small enough and all Γ in the open δ2-ball
{Ω ∈ UD | δ2(Ω,Λ− z) < ε}, all the elements γ of Γ satisfy the inequality:
‖γ‖ ≥ R + l−R

2 > R by the point pairing property (Proposition 3.6); all
these point sets Γ are outside XR. Since the translation by z is bicontinuous
the UD-set Λ is contained in the open subset z+{Ω ∈ UD | δ2(Ω,Λ−z) < ε}
which is disjoint of XR.

5. Theorem 1.2 implies Theorem 1.1

Let Ln be the space of lattices in Rn, identified with the locally compact
homogeneous space GL(n,R)/GL(n,Z) [GL], [Ca] (Recall that a lattice in
Rn is a discrete Z-module of maximal rank of Rn, equivalently a discrete
subgroup of the group of translations of Rn with compact fundamental
region). The following proposition is a key result for proving Theorem 1.1
from Theorem 1.2, using δ2 for the proof and invoking Proposition 3.9 for
the other metrics.

Proposition 5.1. The restriction of the metric δ2, resp. d or δ1, to
Ln ∩ UD ⊂ UD is compatible with the topology on Ln ∩ UD induced by
the quotient topology of Ln = GL(n,R)/GL(n,Z).

Proof. This proposition is a reformulation of the following proposition. �

Proposition 5.2. Let L ∈ Ln ∩ UD. Denote by {e1, e2, . . . , en} a basis
of L. Then

(i) for all ε > 0 small enough there exists η > 0 such that any Z-module
L′ ∈ UD contained in the open ball {Λ ∈ UD | δ2(L,Λ) < η} is of
rank n and admits a basis {e′1, e′2, . . . , e′n} which satisfies the property:
maxi=1,2,...,n ‖ei − e′i‖ < ε;

(ii) ∀η ∈ (0, 1),∃ ε > 0 such that any lattice L′ ∈ UD of Rn admitting a
basis {e′1, e′2, . . . , e′n} which satisfies maxi=1,2,...,n ‖ei− e′i‖ < ε is such
that δ2(L,L′) < η.

Proof. (i) First let us chose ε0 > 0 small enough such that any n-tuple
{a1, a2, . . . , an} of points of Rn with ai ∈ B(ei, ε0), i = 1, 2, . . . , n, is such
that the vectors {Oa1, Oa2, . . . , Oan} are Z-linearly independant (as usual
we identify the point ai with the vector Oai, i = 1, 2, . . . , n). For instance,
let us take ε0 = 1

3 mini=1,2,...,n {dist ({ei},Vecti)}, if Vecti, i = 1, 2, . . . , n, is
the R-span generated by the vectors Oe1, Oe2, . . . , Oei−1, Oei+1, . . . , Oen.
Let ε ∈ (0, ε0).
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Assume that Λ is a UD-set such that δ2(L,Λ) < η with η small enough.
By Proposition 3.6 a pairing between the points of L and Λ occurs over
a certain distance, which is 1−η

2η , from the origin. Let us take η1 small
enough in order to have 1−η1

2η1
≥ maxi=1,2,...,n ‖ei‖. From Proposition 3.6

the condition 0 < η < η1 implies the existence of n points e′1, e
′
2, . . . , e

′
n in

Λ, the respective close-neighbours of the points e1, e2, . . . , en of L, which
satisfy ‖e′i − ei‖ ≤ (1

2 + ‖ei‖)η for i = 1, 2, . . . , n. Take η < η1 such that
(1
2 + maxi=1,2,...,n ‖ei‖)η < ε. Since ε < ε0, the vectors Oe′1, Oe

′
2, . . . , Oe

′
n

are Z-linearly independant. This means that if Λ ∈ UD is a Z-module
of Rn (necessarily discrete) which satisfies δ2(L,Λ) < η , Λ is necessarily
of rank n and contains the lattice

∑n
i=1 Ze′i. Let us show that there is

equality. Denote by V ′ =
{∑n

i=1 θie
′
i | 0 ≤ θi < 1 for all i = 1, 2, . . . , n

}
.

The adherence V ′ of V ′ contains only the points
∑n

i=1 jie
′
i of Λ , with ji = 0

or 1, by the property of the pairing (Proposition 3.6). Therefore the free
system {Oe′1, Oe′2, . . . , Oe′n} is a basis of Λ.

(ii) Conversely, let 0 < η < 1 and L′ ∈ UD ∩ Ln. For all R > 0
the inequality δ2(L,L′) ≤ δ2(L,LR) + δ2(LR, L

′
R) + δ2(L′R, L

′) holds. By
Proposition A.1 let us take R large enough such that δ2(L,LR) < η/3 and
δ2(L′, L′R) < η/3. Let us now show that, if L′ admits a basis {e′1, e′2, . . . , e′n}
which satisfies maxi=1,2,...,n ‖ei− e′i‖ < ε, then ε can be taken small enough
to have δ2(LR, L

′
R) < η/3 ( R kept fixed). Indeed, LR and L′R are finite

UD-sets. Denote N := #LR. For all α ∈ Rn, all (D,E) ∈ E and all
Bm ∈ B(D,E), by continuity of the function f , the mapping

(x1, x2, . . . , xN ) → φBm({x1, x2, . . . , xN}) :=
∑

◦
B(c,ω)∈Bm

N∑
i=1

ωf
(xi − c

ω

)
is continuous on B(0, R)N for the standard product topology. Therefore all
the mappings dα,(D,E)(LR, ·) :

(x1, x2, . . . , xN ) → sup
Bm

|φBm(LR)− φBm({x1, x2, . . . , xN})|
(1
2+‖α‖+‖α−cj1‖+‖α−cj2‖+ · · ·+‖α−cjN ‖)

are continuous on B(0, R)N . The map

(x1, x2, . . . , xN ) → d(LR, {x1, x2, . . . , xN})

is then continuous on B(0, R)N . Take for {x1, x2, . . . , xN} the point set L′R.
Consequently the quantity δ2(LR, L

′
R) is strictly less than η/3 as soon as ε

is small enough. Finally δ2(L,L′) < 3η/3 = η and we deduce the claim. �

Recall that if L is a lattice in Rn and A a basis of L, then |det(A)| is
called the determinant of L; we will denote it by |L|. It is the volume of its
fundamental region.
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Proposition 5.3. The subspace {L ∈ UD∩Ln | 0 < |L| ≤M} ⊂ Ln∩UD
is compact for all M > 0.

Proof. By Proposition 5.1 and since (UD, d) is a compact topological space,
we have just to show that {L ∈ UD ∩ Ln | 0 < |L| ≤ M} is closed. Since
the operations x+ y and xy are continuous, the determinant function | · | is
continuous on Ln. Hence {L ∈ UD∩Ln | |L| > M} = | · |−1((M,+∞)) is an
open set as reciprocal image of the open interval (M,+∞) by the continuous
application |·|. By taking its complementary subspace in UD∩Ln we deduce
the claim. �

Let us now prove Theorem 1.1. Let us consider a sequence of lattices
(Lr) of Rn such that: (i) ‖x‖ ≥ 1 for all x ∈ Lr, x 6= 0, (ii) the determinant
|Lr| of Lr satisfies |Lr| ≤ M with M a constant < +∞ independent of r.
Then Lr ∈ {L ∈ UD ∩ Ln | 0 < |L| ≤ M}, for all r, which is compact by
Proposition 5.3. Then, by the Bolzano-Weierstrass property, one can ex-
tract from the sequence (Lr) a subsequence (Lr′) that converges to a lattice
L of Rn. By continuity of the determinant function | · | and Proposition
5.1, we obtain: |L| = limr′→+∞ |Lr′ |. This concludes the proof.

6. Arbitrary metric spaces

The topological space (UD(Rn, ‖ · ‖)1, d) is a Polish space [B], but its
topology is not classical. It is routine to compare it with the topologies
reviewed by Kelley [Ke] and Michael [Mi] on spaces of nonempty closed
subsets of Rn and to conclude that it is none of them (see also §4 in [BL],
and [Bo]). The metric space ∪r>0 UD(Rn, ‖ · ‖)r,f is dense in Dl f (Rn, ‖ · ‖).
The metric space ∪r>0 UD(Rn, ‖ ·‖)r, endowed with d or δ1, is not compact
and is much bigger than the space of lattices of Rn. For instance, if n = 1,
it contains all the Meyer sets Zβ of β-integers (integers in base β) where β
is a Pisot number or a Parry number [GVG] (see [Mo], [MVG] for a modern
language on Meyer sets and Delone sets).

Let (H, δ) be a metric space.

Proposition 6.1. If diam(H) = +∞, then H only contains infinite Delone
sets.

Proof. Assume that Λ = {λ1, λ2, . . . , λI}, 1 ≤ I < +∞, is a finite Delone
set in H of constants (r,R) and let us show the contradiction. Since, for
all z ∈ H, there exists λi ∈ Λ such that λi ∈ z+B(0, R), then z ∈ B(λi, R)
and we would have H ⊂ ∪I

i=1B(λi, R) which is of diameter less than 2RI.
Thus we would have diam(H) ≤ 2RI < +∞. Contradiction. �

If H is compact, then diam(H) < +∞ and all the Delone sets of H
are finite. For all r > diam(H), the uniformly discrete subsets of H of
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constant r are empty. When r ≤ diam(H) a uniformly discrete subset of
H of constant r is either the empty set ∅ or is finite. Thus the set-theoretic
equality holds:⋃

0<r≤diam(H)

UD(H, δ)r \ {∅} =
⋃

0<R,
0<r≤diam(H)

X(H, δ)r,R.

This space endowed with the Hausdorff metric ∆ is a compact space and
∅ is an isolated point. This provides positive answers to Question 1.1 and
Question 1.2 with d = ∆ since, for all 0 < r ≤ diam(H) and R > 0,
UD(H, δ)r is closed in ∪0<r≤diam(H) UD(H, δ)r, and X(H, δ)r,R is closed in
∪0<R,0<r≤diam(H)X(H, δ)r,R.

The following Theorem is an improvment of Macbeath and Swierczkow-
ski’s Theorem [MS] in the context of (“ambient”) metric spaces, providing
positive answers to Question 1.1 and Question 1.2.

Theorem 6.1. Let (H, δ) be a σ-compact and locally compact metric space
for which diam(H) is infinite. Then, for all r > 0, UD(H, δ)r can be
endowed with a metric d such that the topological space (UD(H, δ)r, d) is
compact and such that the Hausdorff metric on UD(H, δ)r,f is compatible
with the restriction of the topology of (UD(H, δ)r, d) to UD(H, δ)r,f . For
all R > 0, its subspace of the Delone sets of constants (r,R) is closed.

Proof. The metric d is the one constructed in Section 2 but now on H
instead of Rn. From Section 4 we deduce the compactness of UD(H, δ)r for
all r > 0. Indeed, the proof in Section 4 is valid for all “ambient” metric
spaces which are σ-compact and locally compact. �

Appendix A

This Appendix gives a proof of Proposition A.1. Proposition A.1 is re-
lated to the rest of the paper by the fact that it implies the topological
equivalence between d, δ1 and δ2 on UD (see proof of Proposition 3.9) and
is used in the proof of Proposition 5.2. Though fairly long, the present
computations are not necessary for many applications concerning the topo-
logical space UD.

Proposition A.1. Let Λ ∈ UD. Then

lim
R→∞

δ2(Λ,ΛR) = lim
R→∞

δ2(Λ \ ΛR, ∅) = 0.

Moreover the convergence is uniform in the following sense:

∀ε ∈ (0, 1), ∃ R > 0 such that: Λ ⊂ Rn \B(0, R) ⇒ δ2(Λ, ∅) < ε.
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Proof. We assume that Λ is infinite in the sequel since, when Λ is finite, the
limit is obviously zero. To prove this result we use Stolarsky’s inequality
[St] (recalled in Proposition A.2 without proof) which provides an (uniform)
upper bound of δ2(Λ,ΛR). Then we explicitely compute this (uniform)
upper bound by means of representations of integers as sums of squares (of
integers) (see Grosswald [Gr] for a survey) (Steps 1 and 2). This type of
computation provides uniform convergence.

Proposition A.2 (Stolarsky [St]). Let u, v rational integers such that
u ≥ v ≥ 1. Let {x1, x2, . . . , xu} be a finite set of u points of Rn and
{y1, y2, . . . , yv} be another finite set of v points of Rn, n ≥ 2. Let us define
h(u, v) = 1 if u = v, h(u, v) = u−1

v if u > v. Then

(A.1)
∑

1≤i<j≤u

‖xi − xj‖+
∑

1≤i<j≤v

‖yi − yj‖ ≤ h(u, v)
u∑

i=1

v∑
j=1

‖xi − yj‖

where the constant h(u, v) is best possible.

Let us apply Proposition A.2. Take v = 1 and u = im + 1 ≥ 2 with
x1 = 0 and ‖xi‖ ≥ R for all i = 2, 3, . . . , u; then put y1 = α ∈ Rn arbitrary.
The inequality (A.1) gives

im+1∑
j=2

‖xj‖+
∑

2≤i<j≤im+1

‖xi − xj‖ ≤ h(im + 1, 1)
(
‖α‖+

im+1∑
i=2

‖α− xi‖
)
.

Consequently, setting ci−1 = xi for all i = 2, 3, . . . , im + 1 for keeping the
notations as close as possible to the definition of dα,(D,E) (see (3.4)), the
following inequality holds:
(A.2)

im

1/2 + ‖α‖+
∑im

i=1 ‖α−ci‖
≤ im

1
2 + 1

im

(∑im
j=1 ‖cj‖+

∑
1≤i<j≤im

‖ci−cj‖
) .

The supremum of the right-hand side expression, over all possible config-
urations of balls in B(D,E) and (D,E) ∈ E such that their centres ci satisfy
‖ci‖ ≥ R, is greater than 2δ2(Λ \ ΛR, ∅) (see Proposition 3.3 for the defi-
nition of δ2 ). We will show that it goes to zero when R tends to infinity.
For this, we will compute explicitely a lower bound of

η(R, im) :=
1

2im
+

1
i2m

im∑
j=1

‖cj‖+
1
i2m

∑
1≤i<j≤im

‖ci − cj‖

as a function of R and im, where η(R, im) is the inverse of the right-hand
side term in the inequality (A.2). In order to simplify the notations, we
will study the quantity η(R,m), what amounts merely to replace m by im
in the rest of the proof for coming back to the inequality (A.2).
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We will proceed as follows, in three steps. The first step (Step 1) will
consist in making this computation explicit when the points ci are on the
lattice Zn with n ≥ 5. In other terms, we will prove:

lim
R→+∞

δ2(Zn,Zn
R) = 0 for all n ≥ 5.

The second step (Step 2) will describe how to provide a lower bound of
ηΛ(R,m) (see its definition in Step 2) from η(R,m) when the points ci are
in a UD-set Λ ⊂ Rn which is not Zn with still n ≥ 5 for which the dimension
of the R-span of Λ is n or less than n. In other terms, we will prove:

lim
R→+∞

δ2(Λ,ΛR) = 0 for all Λ ∈ UD and n ≥ 5.

The final Step 3 will conclude when n ∈ {1, 2, 3, 4} making use of descent
arguments to lower dimensions. In other terms, we will prove:

lim
R→+∞

δ2(Λ,ΛR) = 0 for all Λ ∈ UD and n ≤ 4.

Step 1.– Let us recall the assumptions: R >
√

2 (for technical reasons)
and ci ∈ Zn, ‖ci‖ ≥ R, for all i = 1, 2, . . . ,m with i 6= j ⇒ ci 6= cj . In
order to find a lower bound of η(R,m), we will compute a lower bound of
m−2

∑
1≤i<j≤m ‖ci − cj‖ (A.5) and a lower bound of m−2

∑m
j=1 ‖cj‖ (A.6)

as a function of R and m. These two bounds will be shown to be dependent
(by (A.7) and (A.8)). The sum of these two lower bounds will present a
minimum and the main difficulty will consist in showing that this minimum
tends to infinity when R tends to infinity.

Let us compute a lower bound of m−2
∑

1≤i<j≤m ‖ci − cj‖. Let s be a
positive integer and consider the equation s =

∑n
i=1 c

2
q,i with cq,i ∈ Z for all

i = 1, 2, . . . , n. Any n-tuple (cq,1, cq,2, . . . , cq,n) which satisfies this equation
is called a solution of this equation. This solution represents the vector
cq = t(cq,1, cq,2, . . . , cq,n) in Zn of norm s1/2. Given s, denote by rn(s) the
number of solutions of the above equation; it is the number of elements
of Zn which lie on the sphere S(0,

√
s) of centre the origin and radius

√
s.

Obviously rn(0) = 1, rn(1) = 2n. Now, for any integer m > 1, there exists
a unique integer k such that

(A.3) rn(0)+rn(1)+· · ·+rn(k) < m ≤ rn(0)+rn(1)+· · ·+rn(k)+rn(k+1)

with rn(k)rn(k + 1) 6= 0. We know (Grosswald [Gr], Chapters 9, 12 and
13) the behaviour of rn(s) when n ≥ 5: there exists two strictly posi-
tive constants K̂1(n) and K̂2(n) such that rn(s) = ρn(s) + O

(
sn/4

)
with

K̂1(n)sn/2−1 ≤ ρn(s) ≤ K̂2(n)sn/2−1 for any integer s > 0. Therefore, there
exists two strictly positive constants K1,K2, which depend upon n, such
that K2 ≥ 1 and K1s

n/2−1 ≤ rn(s) ≤ K2s
n/2−1 for any integer s > 0. By
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saturating all the spheres S(c1,
√
l) ∩ Zn for l = 0, 1, 2, . . . , k we deduce

m∑
j=2

‖cj − c1‖ ≥
rn(0)+rn(1)+···+rn(k)+1∑

j=2

‖cj − c1‖ ≥
k∑

l=0

rn(l)
√
l.

Let us consider that m is equal to rn(0) + rn(1) + · · ·+ rn(k) + rn(k + 1).
We now proceed with the other sums

∑m
j=i+1 ‖cj − ci‖, i ≥ 2. For all

i = 1, 2, . . . , rn(k + 1), the difference m− i is greater than rn(0) + rn(1) +
· · ·+ rn(k) and this implies

m∑
j=i+1

‖cj − ci‖ ≥
k∑

l=0

rn(l)
√
l.

Hence
rn(k+1)∑

i=1

m∑
j=i+1

‖cj − ci‖ ≥ rn(k + 1)
( k∑

l=0

rn(l)
√
l
)
.

Since

m−1∑
i=1

m∑
j=i+1

‖cj−ci‖ =
rn(k+1)∑

i=1

m∑
j=i+1

‖cj−ci‖+
rn(k+1)+rn(k)∑
i=rn(k+1)+1

m∑
j=i+1

‖cj−ci‖+

· · ·+
rn(k+1)+rn(k)+...+rn(1)∑

i=rn(k+1)+rn(k)+...+rn(2)+1

m∑
j=i+1

‖cj − ci‖,

by reproducing the same computation term by term, we deduce

m−1∑
i=1

m∑
j=i+1

‖cj − ci‖ ≥ rn(k + 1)
( k∑

l=0

rn(l)
√
l
)

(A.4)

+ rn(k)
(k−1∑

l=0

rn(l)
√
l
)

+ · · ·+ rn(2)rn(1) + 2n

≥
k+1∑
p=1

rn(p)
(p−1∑

l=0

rn(l)
√
l
)

≥ K2
1

k+1∑
p=1

p
n
2
−1
(p−1∑

l=0

l
n−1

2

)
.

Now make use of the following classical inequalities: for all β > 0 and
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integer r ≥ 1, 0 + 1β + 2β + · · ·+ (r− 1)β ≤
∫ r
0 x

βdx = rβ+1

β+1 ≤ 1β + 2β +
· · ·+ (r − 1)β + rβ. We deduce the following inequalities

m−1∑
i=1

m∑
j=i+1

‖cj − ci‖ ≥
2K2

1

n+ 1

k+1∑
p=1

p
n
2
−1(p− 1)

n+1
2

≥ 2K2
1

n+ 1

k+1∑
p=1

(p− 1)
n
2
−1(p− 1)

n+1
2

≥ 2K2
1

(n+ 1)

k+1∑
p=1

(p− 1)n− 1
2

≥ 4K2
1

(n+ 1)(2n+ 1)
kn+1/2

and

m = rn(0) + rn(1) + · · ·+ rn(k) + rn(k + 1) ≤ K2

(
1 +

k+1∑
l=1

l
n
2
−1
)

≤ 2K2

n

[n
2

+ (k + 2)
n
2

]
.

Hence

m−2
m−1∑
i=1

m∑
j=i+1

‖cj − ci‖ ≥
K2

1n
2kn+1/2

K2
2 (n+ 1)(2n+ 1)(k + 2)n

(
1 +

n

2(k + 2)
n
2

)−2

.

Putting K3 := K2
1n22n+2

K2
2 (n+1)(2n+1)3n(n+2

n
2 +1)2

, we deduce

(A.5) m−2
m−1∑
i=1

m∑
j=i+1

‖cj − ci‖ ≥ K3

√
k.

It is easy to check that the above computation is still valid when m lies
strictly between rn(0)+rn(1)+· · ·+rn(k) and rn(0)+rn(1)+· · ·+rn(k+1).
Therefore limm→+∞

1
m2

∑m−1
i=1

∑m
j=i+1 ‖cj−ci‖ = +∞. Let us observe that

this minimal averaged growth to infinity is in “
√
k”, which is extremely slow

as compared to the growth of m to infinity.
Let us now compute a lower bound of the sum m−2

∑m
j=1 ‖cj‖. Take

for R the square root of an integer, say R =
√
t, t ≥ 2. Let us consider

that m is equal to m = rn(0) + rn(1) + · · · + rn(k + 1) and let us write it
as: m = rn(t) + rn(t + 1) + · · · + rn(t + u) + w for a certain u ≥ 0 and
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0 ≤ w < rn(t+ u+ 1). Then
m∑

j=1

‖cj‖ ≥
t+u∑

t

rn(l)
√
l ≥ K1

t+u∑
t

l
n−1

2 .

As above we will make use of the following classical inequalities: for all
positive integers s and r ≥ s+1 and for any real number β > 0, sβ+(s+1)β+
· · ·+(r−1)β ≤

∫ r
s x

βdx = rβ+1−sβ+1

β+1 ≤ (s+1)β +(s+2)β +· · ·+(r−1)β +rβ .
We obtain the following inequalities:

m∑
j=1

‖cj‖ ≥
2K1

n+ 1

[
(t+ u)

n+1
2 − (t− 1)

n+1
2

]
and

2K1

n

[
(t+ u)n/2 − (t− 1)n/2

]
≤ m

≤ rn(t) + rn(t+ 1) + · · ·+ rn(t+ u) + rn(t+ u+ 1)

≤ 2K2

n

[
(t+ u+ 2)n/2 − tn/2

]
.

From them we deduce

1
m

m∑
j=1

‖cj‖ ≥
K1n

√
u

K2(n+ 1)

(
(1 +

t

u
)

n+1
2 −

( t−1
u

)n+1
2

)

·
((

1 +
2 + t

u

)n/2
−
( t
u

)n/2
)−1

.

Dividing the above inequality by m once again and changing t into t − 1
and t into t+ 2 in the corresponding factors gives

1
m2

m∑
j=1

‖cj‖ ≥
K1n

2u
1−n

2

2K2
2 (n+ 1)

((
1 +

(t− 1)
u

)n+1
2 −

( t− 1
u

)n+1
2

)

·

((
1 +

2 + t

u

)n/2

−
(

2 + t

u

)n/2
)−2

so that, using first-order developments in (t − 1)u−1, resp. in (2 + t)u−1,
for u−1 close to zero, we obtain

(A.6)
1
m2

m∑
j=1

‖cj‖ ≥
K1(t− 1)

n−1
2

K2
2

1
u(u+ 2 + t)n−2

.

This lower bound, as a function of u on [1,+∞), goes to zero at infinity.
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Let us now compute a lower bound of the sum m−2
∑m

j=1 ‖cj‖+
m−2

∑
1≤i<j≤m ‖ci − cj‖. The lower bound given by (A.5) is a function

of k and that given by (A.6) a function of u. In order to study their sum,
we will deduce from the above a relation between u and

√
k and replace

√
k

by a lower bound of
√
k in (A.5) which will only depend upon u. From the

above, with m = rn(0) + rn(1) + · · ·+ rn(k + 1), the following inequalities
hold

(A.7)
2K1

n

[
(t+ u)n/2 − (t− 1)n/2

]
≤ m ≤ 2K2

n

[n
2

+ (k + 2)
n
2

]
.

Let h(x) = (t + x)n/2. Then h(u) − h(−1) = (u + 1)h′(ξ) for a certain
ξ ∈ [−1, u]. We deduce h(u) − h(−1) ≥ n

2u(t − 1)
n
2
−1 since the derivative

h′(x) is increasing on the interval [−1, u]. This last inequality and (A.7)
imply

(A.8) u1/n

[(
n

2

(K1

K2
(t− 1)

n
2
−1 − 1

))2/n

−2

]1/2

≤
√
k

for all k ≥ 1, u ≥ 1, t ≥ 2.

Define

(A.9) g(t, u) := C1(t)
1

u(u+ 2 + t)n−2
+ C2(t)u1/n

where
C1(t) = K1K

−2
2 (t− 1)

n−1
2

and

C2(t) = K3

[(
n

2

(K1

K2
(t− 1)

n
2
−1 − 1

))2/n

− 2

]1/2

.

From (A.5) in which
√
k is replaced by the above lower bound and from

(A.6), we deduce

(A.10) η(
√
t,m) ≥ g(t, u).

It is routine to compute the value umin(t) at which the function u→ g(t, u)
is minimal and the value g(t, umin(t)) of its minimum. The equation sat-
isfied by umin(t) is nC1(t)(u + 2 + t)1−n [(n− 1)u+ 2 + t] = C2(t)u1+1/n

and

(A.11) g(t, umin(t)) = C2(t)
[

1
n

umin(t) + 2 + t

(n− 1)umin(t) + 2 + t
+ 1
]

(umin(t))
1/n .

Since obviously umin(t) ≥ 1, 1
n

u+2+t
(n−1)u+2+t + 1 ≥ 1

n(n−1) + 1 for t ≥ 2, u ≥ 1
and limt→+∞C2(t) = +∞, we obtain: limt→+∞ g(t, umin(t)) = +∞. We
deduce that for any integer m of the form rn(0) + rn(1) + · · · + rn(k + 1)
the limit limR→+∞ η(R,m) = +∞ holds. It is easy to check that it is so
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even when m is an arbitrary integer which is not of this form. This implies,
after (A.2), that limR→+∞ δ2(Zn,Zn

R) = 0, for all n ≥ 5.

Step 2.– We will make use of the results of Step 1 and of the following
three Lemmas. The assumption n ≥ 5 holds. Let us fix the notations:
if Γ is a UD-set which contains the origin, then, for all k ∈ N, denote
Γ(k) := {x ∈ Γ |

√
k ≤ ‖x‖ <

√
k + 1}, rΓ(

√
k) the number of elements

of Γ(k) and s(
√
k) := maxΓ∈UD{rΓ(

√
k)} < ∞. Since all the functions

Γ → rΓ(
√
k), k ∈ N, on UD are valued in N, the maximum s(

√
k) is

reached. Since, in particular, rZn(
√
k) = rn(k), for any positive integer k,

the following Lemma is obvious.

Lemma A.1. For any positive integer k the inequality s(
√
k) ≥ rn(k)

holds.

In the following, we will enumerate the elements xi of a UD-set Λ in such
a way that ‖xj‖ ≥ ‖xi‖ as soon as j ≥ i ≥ 1 (with x1 = 0 if Λ contains the
origin). The following Lemmas show that the sequence {s(

√
k) | k ∈ N} is

universal for splitting up any UD-set into layers of points with the objective
of making use of Stolarsky’s inequality (Proposition A.2) in a suitable way.

Lemma A.2. Let Λ be an infinite UD-set which contains the origin. For
all positive integers M,m ∈ N such that

∑M
k=0 s(

√
k) < m ≤

∑M+1
k=0 s(

√
k),

any point xm ∈ Λ indexed by such an integer m satisfies ‖xm‖ ≥
√
M + 1.

Proof. This fact comes from the way we have enumerated the elements of
Λ. Obviously, any point xm ∈ Λ indexed by such an integer m is such that∑M

k=0 rΛ(
√
k) ≤

∑M
k=0 s(

√
k) < m. By definition of the function rΛ we

obtain the inequality. �

Lemma A.3. Let Λ be an infinite UD-set which contains the origin. There
exists a subset Λ∗ of Λ, with 0 ∈ Λ∗, and a surjective mapping ψΛ : Λ → Zn

such that:

(i) ψΛ(0) = 0, ‖ψΛ(x)‖ ≤ ‖x‖ for all x ∈ Λ;

(ii) for all integers M,m ∈ N such that
∑M

k=0 s(
√
k) < m ≤

∑M+1
k=0 s(

√
k)

the following equalities hold: ‖ψΛ(xm)‖ =
√
M + 1 for xm ∈ Λ \ Λ∗,

‖ψΛ(xm)‖ = 0 for xm ∈ Λ∗;

(iii) the restriction of ψΛ to {0} ∪ Λ \ Λ∗ is a bijection from {0} ∪ Λ \ Λ∗

to Zn;

(iv) when Λ = Zn, then Λ∗ = {0} and ψΛ is the identity map up to a re-
enumeration of the elements of the layer (Zn)(k) of Zn for all k ∈ N.
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Proof. Let us construct the function ψΛ. Denote s(M) :=
∑M

k=0 s(
√
k) for

all M ∈ N. The following s(
√
M + 1)-tuple of points:

(xs(M)+1, xs(M)+2, . . . , xs(M)+rn(M+1), xs(M)+rn(M+1)+1,

xs(M)+rn(M+1)+2, . . . , xs(M+1))

of Λ will be splitted up into two parts. Let

Λ∗(M) = {xs(M)+rn(M+1)+1, xs(M)+rn(M+1)+2, . . . , xs(M+1)}

and Λ∗ = ∪M∈NΛ∗(M). Let us put ψΛ(z) = 0 for all z ∈ Λ∗, and, for
all M ∈ N and for all i = s(M) + 1, s(M) + 2, . . . , s(M) + rn(M + 1), let
us put ψΛ(xi) ∈ S(0,

√
M + 1) ∩ Zn such that the restriction of ψΛ to

Λ \ Λ∗ is injective. In other terms, the first rn(M + 1) points of the above
s(
√
M + 1)-tuple of points are sent injectively by ψΛ to the rn(M + 1)

elements of Zn of norm
√
M + 1 which lie on the sphere S(0,

√
M + 1),

the remaining points xs(M)+rn(M+1)+1, xs(M)+rn(M+1)+2, . . . , xs(M+1) going
to the origin of Zn. There is no uniqueness of such a mapping ψΛ: given Λ∗,
any re-enumeration e of the elements of Zn conserving the norm provides
another suitable mapping e ◦ ψΛ : Λ → Zn. Properties (i) to (iv) of ψΛ are
easy consequences of its definition. �

Let us now consider an infinite UD-set Λ which contains the origin and
let us continue the proof of Proposition A.1 (if Λ does not contain the origin
we modify slightly a few points close to the origin for having this property).
In a similar way as in Step 1 with (A.2), we are looking for a lower bound
of the quantity (with ci, cj ∈ Λ and ‖ci‖ ≥ R, ‖cj‖ ≥ R)

ηΛ(R,m) :=
1

2m
+

1
m2

m∑
j=1

‖cj‖+
1
m2

∑
1≤i<j≤m

‖cj − ci‖

as a function of R and m. Let us observe that the differences cj − ci belong
to the translated UD-sets Λ− ci = {λ− ci | λ ∈ Λ} of Λ which all contain
the origin. Let us now compute a lower bound of m−2

∑
1≤i<j≤m ‖cj − ci‖.

For integers M,m ∈ N that satisfy
M∑

k=0

s(
√
k) < m ≤

M+1∑
k=0

s(
√
k),

we deduce the following inequality:
m∑

j=2

‖cj − c1‖ ≥
m∑

j=2

‖ψΛ−c1(cj)‖ ≥
M∑
l=0

rn(l)
√
l

from Lemmas A.1, A.2 and A.3. We now proceed with the other sums∑m
j=i+1 ‖cj − ci‖, i ≥ 2. Let us assume that m =

∑M+1
q=0 s(

√
q). For all
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i = 1, 2, . . . , s(
√
M), the difference m − i is greater than

∑M
q=0 s(

√
q) and

this implies
m∑

j=i+1

‖cj − ci‖ ≥
m∑

j=i+1

‖ψΛ−ci(cj)‖ ≥
M∑
l=0

rn(l)
√
l.

We deduce the inequality
s(
√

M+1)∑
i=1

m∑
j=i+1

‖cj − ci‖ ≥ s(
√
M + 1)

( M∑
l=0

rn(l)
√
l
)

≥ rn(M + 1)
( M∑

l=0

rn(l)
√
l
)
.

Since for all i, j the inequality ‖cj − ci‖ ≥ ‖ψΛ−ci(cj)‖ holds and that

m−1∑
i=1

m∑
j=i+1

‖cj − ci‖ =
s(
√

M+1)∑
i=1

m∑
j=i+1

‖cj − ci‖

+
s(
√

M+1)+s(
√

M)∑
i=s(

√
M+1)+1

m∑
j=i+1

‖cj − ci‖+ . . .

+
s(
√

M+1)+s(
√

M)+...+s(
√

2)+s(
√

1)∑
i=s(

√
M+1)+s(

√
M)+...+s(

√
2)+1

m∑
j=i+1

‖cj − ci‖,

by reproducing the same computation term by term, we deduce

∑
1≤i<j≤m

‖cj − ci‖ ≥ rn(M + 1)
( M∑

l=0

rn(l)
√
l
)

+ rn(M)
(M−1∑

l=0

rn(l)
√
l
)

+ · · ·+ rn(2)rn(1) + 2n.

This leads to the same inequality as in (A.5), with m =
∑M+1

q=0 s(
√
q),

except that “k” has to be replaced by “M”. Therefore, we obtain

(A.12) m−2
∑

1≤i<j≤m

‖cj − ci‖ ≥ K3

√
M.

Let us now compute a lower bound of m−2
∑m

j=1 ‖cj‖. Take R =
√
t

with t ≥ 2 an integer and consider m =
∑M+1

q=0 s(
√
q). This lower bound

corresponds to a distribution by layers of the points c1, c2, . . . , cm on Λ so
that they are located as close as possible to the sphere S(0, R). Let us write
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m as the following sum: m = s(
√
t) + s(

√
t+ 1) + · · · + s(

√
t+ U) + W

for certain integers U ≥ 0 and 0 < W ≤ s(
√
Tt+ U + 1). Then, by

Lemma A.3,
m∑

j=1

‖cj‖ ≥
m∑

j=1

‖ψΛ(cj)‖ ≥
t+U∑
l=t

rn(l)
√
l.

Hence, by the same type of computation as in Step 1, and by replacing only
“u” by “U”, we deduce

(A.13)
1
m2

m∑
j=1

‖cj‖ ≥
K1(t− 1)

n−1
2

K2
2

1
U(U + 2 + t)n−2

.

In order to compute a lower bound of the sum m−2
∑m

j=1 ‖cj‖ +
m−2

∑
1≤i<j≤m ‖cj − ci‖ as a function of U only from (A.12) and (A.13),

it remains to give explicitely a relation between M and U . This relation
comes from the computation of a lower bound of m which will be a function
of M only and an upper bound of m which will be a function of U only. Let
us compute these bounds. First, since

∑M+1
k=0 rn(k) ≤

∑M+1
k=0 s(

√
k) = m

we deduce, by the same type of computation as in Step 1 (with “U” instead
of “u”),

(A.14)
2K1

n

[
(t+ U)n/2 − (t− 1)n/2

]
≤

M+1∑
q=0

s(
√
q) = m.

Second, if vol(B(0, x)) denotes the volume of the ball B(0, x), by counting
the maximal possible number of points in {x |

√
k ≤ ‖x‖ <

√
k + 1} (in

this annulus any point should be at a distance from another one greater
than unity), we deduce that the term s(

√
k), k ≥ 1, is smaller than(

vol
(
B(0,

√
k + 1 +

1
2
)
)
− vol

(
B(0,

√
k − 1

2
)
))(

vol
(
B(0,

1
2
)
))−1

.

Therefore

m =
M+1∑
k=0

s(
√
k) ≤ 1 + 2n

M+1∑
k=1

[(√
k + 1 +

1
2

)n

−
(√

k − 1
2

)n]
.

By a first-order development of each term, we deduce

m ≤ 1 + n2n
M+1∑
k=1

[√
k + 1−

√
k + 1

] (√
k + 1 +

1
2

)n−1
.

Since
√
k + 1 −

√
k + 1 ≤ 2 we obtain that m is certainly exceeded by

n2n+1
∑M+1

k=1

(√
k + 1+ 1

2

)n−1. Now, for all 1 ≤ k ≤ M + 1, we have



Selection Theorem 267

√
k + 1 + 1

2 ≤
√
k + 3

√
M + 1. We deduce

m ≤ n2n+1
M+1∑
k=1

(
k + 3

√
M + 1

)n−1
2

≤ n2n+2

n+ 1

[
(M + 2 + 3

√
M + 1)

n+1
2 − (1 + 3

√
M + 1)

n+1
2

]
.

Denote l(x) =
(
x+ 1+3

√
M+1

M+1

)n+1
2 and ω = supM≥1

(
supx∈[0,1] l

′(x)
)
. Then

it is easy to check, by factorizing (M + 1)(n+1)/2 and applying a first-order
development to the factors in the right-hand side term of the last inequality
that this term is smaller than n2n+2ω(n+ 1)−1(M + 1)

n+1
2 . Hence

(A.15) m ≤ n2n+2ω(M + 1)
n+1

2 .

From (A.14) and (A.15) (as for (A.7) and (A.8)) we deduce the following
inequality

(A.16) U
1

n+1

[
1
4

(K1

2ω

)2/(n+1)
(t− 1)

n−2
n+1 − 1

]1/2

≤
√
M.

Define

(A.17) gΛ(t, U) :=
C1(t)

U(U + 2 + t)n−2
+ C3(t)U

1
n+1 ,

where C3(t) := K3

[
1
4

(
K1
2ω

) 2
n+1 (t− 1)

n−2
n+1 − 1

]1/2

. Then (as in Step 1)

(A.18) ηΛ(
√
t,m) ≥ gΛ(t, Umin(t)),

for all m =
∑M+1

k=0 s(
√
k), where Umin(t) is the value at which the function

U → gΛ(t, U) is minimal. The proof of limt→+∞ gΛ(t, Umin(t)) = +∞ is
similar as in Step 1, for any integer m. This implies, after (A.2), that
limR→+∞ δ2(Λ,ΛR) = 0 for all UD-set Λ and all n ≥ 5. This convergence is
obviously uniform in the sense stated in Proposition A.1 since the sequence
(s(
√
k))k is universal and optimal for splitting up any UD-set Λ.

Step 3.– If Λ is a UD-set in Rn with n ≤ 4, it can be viewed as a UD-set
in R5. Since Proposition A.1 is true for n = 5 by Step 2, it is also true in
lower dimensions by descent. �
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