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On two-parametric family of quartic Thue

equations

par Borka JADRIJEVIĆ

Résumé. Nous montrons que pour tous les entiers m et n, il n’y
a pas de solution non triviale de l’équation de Thue

x4 − 2mnx3y + 2
(
m2 − n2 + 1

)
x2y2 + 2mnxy3 + y4 = 1,

satisfaisant la condition supplémentaire pgcd(xy,mn) = 1.

Abstract. We show that for all integers m and n there are no
non-trivial solutions of Thue equation

x4 − 2mnx3y + 2
(
m2 − n2 + 1

)
x2y2 + 2mnxy3 + y4 = 1,

satisfying the additional condition gcd(xy,mn) = 1.

1. Introduction

One of the most famous Diophantine equation is equation

(1.1) F (x, y) = t,

where F ∈ Z [X, Y ] is a homogeneous irreducible polynomial of degree
≥ 3 and t 6= 0 a fixed integer. Equation (1.1) is called a Thue equation
in honour of A. Thue, who proved in 1909 [20], that equation (1.1) has
only finitely many integral solutions (x, y) . Thue’s proof was non-effective.
In 1968, Baker [1] showed, using estimates for linear forms in logarithms
of algebraic numbers, that Thue equation can be solved effectively. The
result of Baker implies that all solution of equation (1.1) can be found
in finitely many steps, at least by direct enumeration. Baker’s work were
improved and generalized by many authors and general powerful methods
have been developed for the explicit solution of Thue equations (see [5, 17,
23]), following from Baker’s work. In 1990, Thomas [19] investigated for
the first time a parametrized family of Thue equations. Since then, several
families have been studied (see [10] for references). In particular, quartic
families have been considered in [6, 7, 10, 11, 12, 13, 15, 16, 18, 21, 24, 25].

In [12], we considered the two-parametric family of quartic Thue equa-
tions

(1.2) x4 − 2mnx3y + 2
(
m2 − n2 + 1

)
x2y2 + 2mnxy3 + y4 = 1,
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where parameters m and n are integers. Using the method of Tzanakis,
given in [22], it was shown that solving equation (1.2) reduces to solving
the system of Pellian equations

V 2 −
(
m2 + 2

)
U2 = −2,(1.3)

Z2 −
(
n2 − 2

)
U2 = 2,(1.4)

for n 6= 0,±1. The main result obtained in [12] can be stated as follows: If
|m| and |n| are sufficiently large and have sufficiently large common divisor,
then the system has only the trivial solutions (V,Z, U) = (±m,±n,±1),
which implies that the original Thue equation also has only the trivial
solutions (x, y) = (±1, 0) , (0,±1) . In [12], it was also shown that system
(1.3) and (1.4) for all m ≥ 0 and n ≥ 2 possesses at most 7 solutions in
positive integers (V,Z, U) .

The main goal of the present paper is to show that Thue equation (1.2)
can be solved for all integers m and n if we impose the additional condi-
tion gcd(xy,mn) = 1 for the solutions (x, y). This condition arises from the
analyse of the connection between equation (1.2) and system (1.3) and (1.4).
This leads us to consider three special cases: m = n, m = 2n, n = 2m.
These cases are completely solved by applying a theorem of Bennett
[4, Theorem 3.2] on simultaneous approximations of algebraic numbers.
In all cases we obtain only trivial solutions, except for m = 1, n = 2. The
case m = 2n can be considered as a special case of the Thue equation

(1.5) x4 − 4cx3y + (6c + 2)x2y2 + 4cxy3 + y4 = 1,

which was completely solved in [7].
The main result of present paper is the following theorem.

Theorem 1.1. There are no solutions of (1.2) satisfying the additional
conditions gcd(xy,mn) = 1 and xy 6= 0.

Let us note that, because of homogeneity and symmetry of equation
(1.2), it is enough to consider the cases when m and n are nonnegative and
find only all positive solutions. More precisely, (x, y) = (a, b) is a solution
of equation (1.2) then (x, y) = (−a,−b) , (b,−a) , (−b, a) are solutions too.
Thus, we will suppose, without loss of generality, that m ≥ 0 and n ≥ 0
are integers and consider equation of the form (1.2) .

2. The system of Pellian equations

We will apply the method of Tzanakis introduced in [22] and used in
[7, 8, 12]. Tzanakis showed that solving quartic Thue equations of the form

(2.1) f(x, y) = t

f(x, y) = a0x
4 + 4a1x

3y + 6a2x
2y2 + 4a3xy3 + a4y

4 ∈ Z [x, y] , a0 > 0,
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whose corresponding quartic field K is totally real, Galois and non-cyclic,
reduces to solving a system of Pellian equations having one common un-
known.

If we apply this method to the quartic Thue equation (1.2) we find (see
[12, Section 4]) that if n ≥ 2, then solving (1.2) reduces to solving the
system of Pellian equations (1.3) and (1.4) with one common unknown,
where

U =
G1

2
= x2 + y2,

V =
G2

2
= mx2 + 2nxy −my2,(2.2)

Z =
G3

2
= −nx2 + 2mxy + ny2.(2.3)

All solutions of equation (1.3) for m > 0 in positive integers are given by

v + u
√

m2 + 2 =
(
m +

√
m2 + 2

) (
m2 + 1 + m

√
m2 + 2

)k
,

where k ∈ Z and k ≥ 0 or by u = Uk and v = Vk, where the sequences (Uk)
and (Vk) are defined by the recurrences

U0 = 1, U1 = 2m2 + 1, Uk+2 = 2
(
m2 + 1

)
Uk+1 − Uk, k ≥ 0;(2.4)

V0 = m, V1 = m
(
2m2 + 3

)
, Vk+2 = 2

(
m2 + 1

)
Vk+1 − Vk, k ≥ 0.(2.5)

All solutions of equation (1.4) in positive integers are given by

z + t
√

n2 − 2 =
(
n +

√
n2 − 2

) (
n2 − 1 + n

√
n2 − 2

)l

where l ∈ Z and l ≥ 0 or by t = Tl and z = Zl, where the sequences (Tl)
and (Zl) are defined by the recurrences

T0 = 1, T1 = 2n2 − 1, Tl+2 = 2
(
n2 − 1

)
Tl+1 − Tl, l ≥ 0;(2.6)

Z0 = n, Z1 = n
(
2n2 − 3

)
, Zl+2 = 2

(
n2 − 1

)
Zl+1 − Zl, l ≥ 0.(2.7)

In this way we reformulated the system of Pellian equations (1.3) and
(1.4) to the Diophantine equation of the form

Uk = Tl

in integers k, l ≥ 0. In order to prove that for some parameters m > 0 and
n ≥ 2 we have only trivial solutions of (1.2), it suffices to show that Uk = Tl

implies k = l = 0.
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3. Some special cases

Equation (1.2) has only trivial solutions for n = 0, 1 (see [12, Proposition
1, i)]). For m = 0, we have

(3.1) x4 + 2(1− n2)x2y2 + y4 = 1.

If the sequence (nk) is defined by

(3.2) n0 = 1, n1 = 3, nk+2 = 6nk+1 − nk, k ≥ 0,

then, for n = nk and k ≥ 1, all non-trivial solutions of equation (3.1) are
given by

(x, y) =
(
±1,±

√
2 (n2 − 1)

)
and

(
±

√
2 (n2 − 1),±1

)
.

For all other values of n we have only the trivial solutions (x, y) = (±1, 0) ,
(0,±1) by [12, Proposition 1, ii)] (see also [14] and [26]).

Now, consider three special cases: m = n, m = 2n, n = 2m.
Case 1. m = n.
If m = n = c ≥ 1, then (1.2) has the form

(3.3) x4 − 2c2x3y + 2x2y2 + 2c2xy3 + y4 = 1.

For c ≥ 2, then solving (1.2) reduces to solving the system of Pellian equa-
tions

c2V 2
1 −

(
c2 + 2

)
U2 = −2,

c2Z2
1 −

(
c2 − 2

)
U2 = 2,

where

U = x2 + y2,

V1 =
1
c
V = x2 + 2xy − y2,

Z1 =
1
c
Z = −x2 + 2xy + y2.

Case 2. m = 2n.
If m = 2c, n = c ≥ 1, then (1.2) has the form

(3.4) x4 − 4c2x3y + 2
(
3c2 + 1

)
x2y2 + 4c2xy3 + y4 = 1.

For c ≥ 2, then solving (1.2) reduces to solving the system of Pellian equa-
tions

2c2V 2
2 −

(
2c2 + 1

)
U2 = −1

c2Z2
2 −

(
c2 − 2

)
U2 = 2
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where

U = x2 + y2,

V2 =
1
2c

V = x2 + xy − y2,

Z2 =
1
c
Z = −x2 + 4xy + y2.

Case 3. n = 2m.
If n = 2c, m = c ≥ 1, then (1.2) has the form

(3.5) x4 − 4c2x3y + 2
(
1− 3c2

)
x2y2 + 4c2xy3 + y4 = 1.

For c ≥ 1, then solving (1.2) reduces to solving the system of Pellian equa-
tions

c2V 2
3 −

(
c2 + 2

)
U2 = −2,

2c2Z2
3 −

(
2c2 − 1

)
U2 = 1,

where

U = x2 + y2,

V3 =
1
c
V = x2 + 4xy − y2,

Z3 =
1
2c

Z = −x2 + xy + y2.

Equations (3.3), (3.4), (3.5) we solve, in the same manner, as equation
(1.5) in [7]. We find a lower bound for the solutions of the corresponding
system of Pellian equations using the ”congruence method” introduced in
[9]. By comparison of this lower bound with an upper bound obtained
from a theorem of Bennett [4] on simultaneous approximations of algebraic
numbers we find only trivial solutions for c ≥ c0, where c0 = 235 if m =
n = c ≥ 2, c0 = 423 if m = 2c and n = c ≥ 2 or m = 2c and n = c ≥ 2.
For c ≤ c0 we use a theorem a Baker and Wüstholz [3] and a version of
the reduction procedure due to Baker and Davenport [2]. In all cases we
obtain only trivial solutions, except for m = 1, n = 2 where there are also
non-trivial solutions (x, y) = (4, 5), (−4,−5), (5,−4), (−5, 4) .

Therefore, we have

Proposition 3.1. Equation (1.2) has only the trivial solutions (x, y) =
(±1, 0), (0,±1) in the following cases:

i) n ≤ 1;
ii) m = 0 and 2(n2 − 1) is not a perfect square;
iii) m = n ≥ 2;
iv) m = 2n ≥ 2;
v) n = 2m > 2;
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For cases for which there are also non-trivial solutions of equation (1.2)
we have

Proposition 3.2. i) If m = 1 and n = 2 then all non-trivial solutions
are (x, y) = (4, 5), (−4,−5), (5,−4), (−5, 4) ;

ii) If m = 0 and 2(n2−1) is a perfect square then all non-trivial solutions
are (x, y) =

(
±1,±

√
2 (n2 − 1)

)
and

(
±

√
2 (n2 − 1),±1

)
.

4. Proof of the Theorem 1

All solutions of the Pellian equation (1.3) in positive integers for m > 0
are given by (U, V ) = (Uk, Vk), where the sequences (Uk) and (Vk) are de-
fined by the recurrences (2.4) and (2.5) . All solutions of the Pellian equation
(1.4) in positive integers for n ≥ 2 are given by (U,Z) = (Tl, Zl), where
the sequences (Tl) and (Zl) are defined by the recurrences (2.6) and (2.7) .
Recurrences (2.5) and (2.7) imply m |V and n |Z .

Then, from (2.2) and (2.3), we have m | 2nxy and n | 2mxy . If gcd (m,xy)
= 1 and gcd (n, xy) = 1, then m | 2n and n | 2m , which implies m = n or
m = 2n or n = 2m. In all these cases we obtain only trivial solutions,
except for m = 1, n = 2. If m = 1 and n = 2, then, for non-trivial solutions
(x, y) we have gcd (n, xy) = gcd (2,±20) = 2.

It remains to consider the cases when m = 0 and n ≤ 1. For n ≤ 1
equation (1.2) has only the trivial solutions. If m = 0 then for some values
of n there are also non-trivial solutions of equation (1.2)(see Proposition
3.1, ii) and Proposition 3.2, ii)). For those non-trivial solutions we have
gcd (m,xy) = gcd

(
0,±

√
2 (n2 − 1)

)
=

√
2 (n2 − 1) > 2. Therefore, we

have proved Theorem 1.
Acknowledgements: The author would like to thank Professor Andrej
Dujella for helpful suggestions.
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