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Character sums and products of factorials

modulo p

par Moubariz Z. GARAEV et Florian LUCA

Résumé. Dans cet article, on utilise des estimations de sommes
de charactères pour étudier les produits de factorielles modulo p.

Abstract. In this paper, we apply character sum estimates to
study products of factorials modulo p.

1. Introduction

In [8], A. Sárközy proved the following Theorem:

Theorem 1.1. Let p be a prime number, u, v, S, T be integers with
1 ≤ u, v ≤ p − 1, 1 ≤ T ≤ p. Furthermore, let C1, C2, . . . , Cu and
D1, D2, . . . , Dv be integers with

(1.1) Ci 6≡ Cj (mod p), for 1 ≤ i < j ≤ u,

and

(1.2) Di 6≡ Dj (mod p), for 1 ≤ i < j ≤ v.

For any integer n, let f(n) denote the number of solutions of

(1.3) Cx ·Dy ≡ n (mod p), 1 ≤ x ≤ u, 1 ≤ y ≤ v.

Then,

(1.4)
∣∣∣ S+T∑

n=S+1

f(n)− uvT

p

∣∣∣ < 2(puv)1/2 log(p).

Our first result in this paper is a modification of the above Theorem
1.1. In what follows, we use r ≥ 1 for a positive integer. We also use the
Vinogradov symbols � and � and the Landau symbols O and o with their
usual meanings.

Theorem 1.2. Let p be a prime number, u, v, S, T be integers with
1 ≤ u, v ≤ p − 1, 1 ≤ T ≤ p. Furthermore, let C1, C2, . . . , Cu and
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D1, D2, . . . , Dv be integers satisfying (1.1) and (1.2) above. If f(n) is
the function defined at (1.3) above, we then have
(1.5)

S+T∑
n=S+1

f(n) =
uvT

p− 1
+ Or

u + v + (uv)1/2T

(
p1/4

T

)1/r

p1/4r2
log p

 .

For example, when p is large and T is close to p1/4, then letting first
ε > 0 be any fixed small positive real number, and then choosing r such
that p1/4r2

log p < pε, we see that the right hand side of (1.5) is of order of
magnitude Oε(u+v +p1/4+ε√uv), which is better than the right hand side
of expression (1.4).

We also provide one application to our Theorem 1.2. In [7], Luca and
Stănică put, for every non-negative integers s ≥ t and prime number p,

(1.6) Ps,t(p) :=

{
t∏

i=1

mi! (mod p)
∣∣∣ ∑

i=1

mi = s

}
,

and asked for optimal choices for the parameters t and s versus p, such that
Ps,t(p) covers all the non-zero residue classes modulo p. Theorem 1 in [7]
asserts the following:

Theorem 1.3. Let ε > 0 be arbitrary. There exists a computable positive
constant p0(ε) such that whenever p > p0(ε), then Ps,t(p) ⊇ ZZ∗p for all t

and s such that t > pε and s− t > p1/2+ε.

We use our Theorem 1.2 to improve the above Theorem 1.3 as follows:

Theorem 1.4. Let ε > 0 be arbitrary. There exists a computable positive
constant p0(ε) such that whenever p > p0(ε), then Ps,t(p) ⊇ Z∗

p for all t

and s such that t > pε and s− t > p1/4+ε.

More information on products of factorials modulo p can be found in the
recent papers [1, 3, 4, 5].
Acknowledgements We thank the anonymous refereee for useful com-
ments. Work by both authors was partially supported by Grant SEP-
CONACyT 37259-E.

2. The Proofs

The Proof of Theorem 1.2. The proof is based on Karatsuba’s method from
[6]. In what follows, χ stands for an arbitrary character modulo p, and χ0
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stands for the principal character. Clearly,

S+T∑
n=S+1

f(n) =
1

p− 1

∑
χ

∑
1≤x≤u

∑
1≤y≤v

S+T∑
n=S+1

χ(CxDy)χ(n) + O(u + v)

= S0 + S1 + O(u + v),(2.1)

where

S0 :=
1

p− 1

∑
1≤x≤u

∑
1≤y≤v

S+T∑
n=S+1

χ0(CxDy)χ0(n),(2.2)

and

S1 :=
1

p− 1

∑
χ6=χ0

∑
1≤x≤u

∑
1≤y≤v

S+T∑
n=S+1

χ(CxDy)χ(n).(2.3)

Clearly,

(2.4) S0 :=
Tuv

p− 1
+ O

(
uv

p− 1
+

Tu

p− 1
+

Tv

p− 1

)
=

Tuv

p− 1
+ O(u + v),

while

S1 ≤
1

p− 1

∑
χ6=χ0

∣∣∣ ∑
1≤x≤u

χ(Cx)
∣∣∣∣∣∣ ∑

1≤y≤v

χ(Dy)
∣∣∣∣∣∣ ∑

S+1≤n≤S+T

χ(n)
∣∣∣

≤ 1
p− 1

maxχ6=χ0

∣∣∣ ∑
S+1≤n≤S+T

χ(n)
∣∣∣



×
∑
χ

∣∣∣ ∑
1≤x≤u

χ(Cx)
∣∣∣∣∣∣ ∑

1≤y≤v

χ(Dy)
∣∣∣.(2.5)

By the Cauchy-Schwartz inequality, we have∑
χ

∣∣∣ ∑
1≤x≤u

χ(Cx)
∣∣∣∣∣∣ ∑

1≤y≤v

χ(Dy)
∣∣∣

≤

∑
χ

∣∣∣ ∑
1≤x≤u

χ(Cx)
∣∣∣2
1/2∑

χ

∣∣∣ ∑
1≤y≤v

χ(Dy)
∣∣∣2
1/2

.(2.6)
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Note that∑
χ

∣∣∣ ∑
1≤y≤v

χ(Dy)
∣∣∣2 =

∑
χ

′∑
1≤x≤u
1≤x′≤u

χ(Cx)χ(C ′
x)

=
′∑

1≤x≤u
1≤x′≤u

∑
χ

χ(CxC−1
x′ ) ≤ (p− 1)u,(2.7)

where in the above estimate (2.7) we used
∑′ for the sum only over those

summation terms which are not zero, as well as the fact that∑
χ

χ(a) = p− 1 if a ≡ 1 (mod p)

and is zero otherwise, together with the fact that Cx 6≡ Cx′ (mod p) if
x 6= x′ are in {1, . . . , u}. Inserting (2.7) and its analogue for the set of
numbers {Cx | 1 ≤ x ≤ u} replaced by the set of numbers {Dy | 1 ≤ y ≤ v}
into (2.6), we get

(2.8)
∑
χ

∣∣∣ ∑
1≤x≤u

χ(Cx)
∣∣∣∣∣∣ ∑

1≤y≤v

χ(Dy)
∣∣∣ ≤ (p− 1)

√
uv.

Thus, from (2.5) and (2.8), we have

(2.9) S1 ≤
√

uv

maxχ6=χ0

∣∣∣ ∑
S+1≤n≤S+T

χ(n)
∣∣∣

 ,

and the fact that

(2.10) maxχ6=χ0

∣∣∣ ∑
S+1≤n≤S+T

χ(n)
∣∣∣
� T

(
p1/4

T

)1/r

p1/4r2
log p,

is just Burgess’s character sum estimate from [2]. Inequality (1.5) now
follows from (2.1), (2.4), (2.9) and (2.10). ut

The Proof of Theorem 1.4. We follow the method of proof of Theorem
1 in [7]. The idea there was to find a suitable list of positive integers
x1, x2, . . . , xt consisting of many small numbers, and each one of them
repeated a suitable number of times, such that we can modify the element

(2.11) F :=
t∏

i=1

xi!
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in enough ways so that to ensure that we can obtain all the congruence
classes in ZZ∗p. The basic operation by which we can modify the element F

shown at (2.11) is given by

(M) Assume that i1 < i2 < · · · < ij and l1 < l2 < · · · < lj are two disjoints
subsets of indices in {1, 2, . . . , t}. Then,(

j∏
s=1

(xls + 1)

)(
j∏

s=1

xis

)−1

F = x1!× · · · × (xl1 + 1)!× . . .

· · · × (xi1 − 1)!× · · · × xt!

= F ′ ∈ Ps,t(p).(2.12)

Using (2.12) with xl1 = · · · = xlj = 1, eliminating the initial number F ,
and taking inverses in (2.12) above, it suffices to prove the following claim

Claim 2.1. For any non-negative integers s ≥ t satisfying the hypothesis
of Theorem 1.4, there exist positive integers x1, x2, . . . , xt summing up
to s, such that every nonzero residue class modulo p can be represented by
a number of the form

(2.13)
j∏

r=1

(xir

2

)
,

where the subset of indices {i1, i2, . . . , ij} of {1, 2, . . . , t} in (2.13) can be
any subset such that there exists another subset of j indices {l1, l2, . . . , lj}
disjoint from {i1, i2, . . . , ij} for which xlr = 1 for all r = 1, 2, . . . , j.

As in the proof of Theorem 1 in [7], we fix ε > 0, and a positive integer

k with
1
k

< ε <
2
k
. From now on, all positive constants c1, c2, . . . , which

will appear will be computable and will depend only on k. Since p is
assumed to be large, we suppose that p > 13. We show that if p is large
enough with respect to k, we can then construct a good sublist of numbers
x1, x2, . . . , xt in the following manner:

(1) We first take and repeat exactly two times each of the prime numbers
xi up to p1/k.

(2) We then adjoin some even numbers xj , each one of them smaller than
p1/4+1/k but such that the totality of those (counted with multiplici-
ties) does not exceed c1 log log p.
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(3) The numbers of the form (2.13), where the xi’s are from the lists 1
and 2 and the maximum length j of a product in (2.13) is not more
than 2k + 2c1 log log p cover the entire ZZ∗p.

It is clear that if we can prove the existence of a list satisfying 1–3 above,
then we are done. Indeed, we may first adjoin at the sublist consisting of
the numbers appearing at 1 and 2 above a number of about 2k+2c1 log log p

values of xi all of them equal to 1. The totality of all these numbers (the
ones from 1, 2 and these new values of xi all equal to 1) counted with their
multiplicities, so far, is certainly not more than

(2.14) c2
p1/k

log p
+ 2k + 4c1 log log p < pε − 1 < t− 1,

while their sum is at most

c3
p2/k

log p
+ 2k + 2c1 log log p + 2c1p

1/4+1/k log log p < p1/4+ε − 1

< s− t− 1,(2.15)

for large p. At this step, we may finally complete the above list with
several other values of the xi equal to 1 until we get a list with precisely
t−1 numbers, which is possible by inequality (2.14) above, and set the last
number of the list to be equal to

xt := s−
t−1∑
i=1

xi,

which is still positive by inequality (2.15) above.

To prove the existence of a sublist with properties 1–3 above, we proceed
as in the proof of Theorem 1 in [7]. We start with the set

(2.16) A := {n | n < p1/k and n is prime}.

The numbers from A will form the sublist mentioned at 1 above but, so
far, we take each one of them exactly once. Let

(2.17) B1 :=
{n1

2
· n2

2
· · · · · nk

2

∣∣∣ ni ∈ A, ni 6= nj for 1 ≤ i 6= j ≤ k
}

.

We first notice that each value of n ∈ A appears at most k times in an
arbitrary product in B1. We now show that b1 := #B1 is large. Indeed,
the set B1 will certainly contain all the numbers of the form

(2.18)
p1

2
· p2

2
· · · · · pk

2
= 2−k · p1 · p2 · · · · · pk,
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where pi is an arbitrary prime subject to the condition

(2.19) pi ∈

(
p1/k

2i
,

p1/k

2i−1

)
for i = 1, 2, . . . , k.

Notice that the residue classes modulo p of the elements of the form (2.18),
where the primes pi satisfy conditions (2.19), are all distinct. Indeed, the
point is that if two of the numbers of the form (2.18) coincide modulo
p, then, after cancelling the factor of 2−k, we get two residue classes of
integers which coincide modulo p. Now each one of these two integers is
smaller than p, therefore if they coincide modulo p, then they must be, in
fact, equal. Now the fact that they are all distinct follows from the fact
that their prime divisors pi satisfy condition (2.19). Applying the Prime
Number Theorem to estimate from below the number of primes in each one
of the intervals appearing in formula (2.19), we get

(2.20) b1 > c4
p

logk p
>

p

logk+1 p
,

whenever p > c5. We now construct recursively a (finite) increasing se-
quence of subsets Bm for m ≥ 1 in the following way:

Assume that Bm has been constructed and set bm := #Bm. Assume
that bm < p − 1 (that is, Bm is not the entire ZZ∗p already). We then have
the following trichotomy:

(i) If bm ≥ p/2, we then set Bm+1 := Bm ·Bm, and notice that Bm+1 =
ZZ∗p and we can no longer continue.

(ii) If bm < p/2 and there exists an even number a < p1/4+1/k such that
a/2 6∈ Bm ·B−1

m , we then set am := a, add a to the list of the xi’s (as
one of the numbers from sublist 2 above), and we let

(2.21) Bm+1 := Bm ∪ am

2
·Bm.

Notice that

(2.22) bm+1 ≥ 2bm.

(iii) If bm < p/2 and all even numbers a up to p1/4+1/k have the property
that a/2 is already in Bm ·B−1

m , we choose the even number a smaller
than p1/4+1/k for which the number of representations of a/2 of the
form x · y−1 with x, y ∈ Bm is minimal. We then set am := a, add
a to the list of the xi’s (as one of the numbers from sublist 2 above),
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set

(2.23) Bm+1 := Bm ∪ am

2
·Bm,

and notice that

(2.24) bm+1 ≥
4bm

3
.

In (i)–(iii) above we have used the set-theoretic notation, namely that if
U and V are two subsets of ZZ∗p, we have denoted by U · V the set of all
elements of ZZ∗p of the form u · v with u ∈ U and v ∈ V , and by U−1 the set
of all elements of the form u−1 for u ∈ U .

We have to justify that (i)–(iii) above do indeed hold. Notice that (i)
and (ii) are obvious. The only detail we have to justify is that inequality
indeed holds in situation (iii). But for this, we apply our Theorem 1.2
above with u = v = bm, C1, C2, . . . , Cu all the residue classes in Bm and
D1, D2, . . . , Du all the residue classes in B−1

m . We also set S = 0 and T

to be the largest integer smaller than p1/4+1/k/2. Clearly, T > p1/4+1/k/3.
Since we are discussing situation (iii) above, we certainly have f(n) ≥ 1 for
all positive integers n up to T . Let M := min{f(n) | 1 ≤ n ≤ T}, and then
am := 2c, where f(c) = M . Denote bm by b. We apply inequality (1.5)
with r := k to get

M ≤ b2

p− 1
+ Ok

(p1/4

T

)1/k

p1/4k2
log p


=

b2

p− 1
+ Ok

(
p1/4+1/4k2

log p
)

.(2.25)

Let c6 := c6(k) be the constant implied in Ok in (2.25) above. We show
that the inequality

(2.26) c6p
1/4+1/4k2

log p <
b2

4p

holds for p large enough. Indeed, since b = bm ≥ b1 >
p

logk+1 p
(by

inequality (2.20)), it follows that in order for (2.26) to hold, it suffices that

(2.27) 4c6 log2k+3 p < p3/4−1/4k2
,

which is certainly satisfied when p > c7. Thus, inequalities (2.25) and
(2.26) show that inequality

(2.28) M <
b2

p− 1
+

b2

4p
<

4b2

3p
<

2b

3
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holds, where the last inequalities in (2.28) follow because b < p/2 and
p > 13. In particular,

(2.29) bm+1 = #(Bm ∪ cBm) ≥ bm + (bm −M) ≥ 2b− 2b

3
=

4b

3
,

which proves inequality (2.24).

The combination of (2.22), (2.23) and (2.24) shows that

(2.30) bm+1 >

(
4
3

)m

b1 >

(
4
3

)m p

logk+1 p

holds as long as bm < p/2. Now notice that the inequality

(2.31)
(

4
3

)m

>
logk+1 p

2
will happen provided that m > c8 log log p, where one can take c8 :=

k + 1
log(4/3)

, for example, and for such large m inequality (2.30) shows that

bm+1 > p/2. In particular, situations (ii) or (iii) above will not occur for
more than c8 log log p steps after which we arrive at a point where we ap-
ply situation (i) to construct Bm+1 and we are done. Clearly, (i)–(iii) and
the above arguments prove the existence of a sublist of the xi’s satisfying
conditions (1)–(3), which finishes the proof of Theorem 1.4.
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