Binary quadratic forms and Eichler orders

par Montserrat ALSINA

RÉsumé. Pour tout ordre d'Eichler $\mathcal{O}(D, N)$ de niveau N dans une algèbre de quaternions indéfinie de discriminant D, il existe un groupe Fuchsien $\Gamma(D, N) \subseteq \operatorname{SL}(2, \mathbb{R})$ et une courbe de Shimura $X(D, N)$. Nous associons à $\mathcal{O}(D, N)$ un ensemble $\mathcal{H}(\mathcal{O}(D, N))$ de formes quadratiques binaires ayant des coefficients semi-entiers quadratiques et developpons une classification des formes quadratiques primitives de $\mathcal{H}(\mathcal{O}(D, N))$ pour rapport à $\Gamma(D, N)$. En particulier nous retrouvons la classification des formes quadratiques primitives et entières de $\mathrm{SL}(2, \mathbb{Z})$. Un domaine fondamental explicite pour $\Gamma(D, N)$ permet de caractériser les $\Gamma(D, N)$ formes réduites.

Abstract. For any Eichler order $\mathcal{O}(D, N)$ of level N in an indefinite quaternion algebra of discriminant D there is a Fuchsian group $\Gamma(D, N) \subseteq \mathrm{SL}(2, \mathbb{R})$ and a Shimura curve $X(D, N)$. We associate to $\mathcal{O}(D, N)$ a set $\mathcal{H}(\mathcal{O}(D, N))$ of binary quadratic forms which have semi-integer quadratic coefficients, and we develop a classification theory, with respect to $\Gamma(D, N)$, for primitive forms contained in $\mathcal{H}(\mathcal{O}(D, N))$. In particular, the classification theory of primitive integral binary quadratic forms by $\operatorname{SL}(2, \mathbb{Z})$ is recovered. Explicit fundamental domains for $\Gamma(D, N)$ allow the characterization of the $\Gamma(D, N)$-reduced forms.

1. Preliminars

Let $H=\left(\frac{a, b}{\mathbb{Q}}\right)$ be the quaternion \mathbb{Q}-algebra of basis $\{1, i, j, i j\}$, satisfying $i^{2}=a, j^{2}=b, j i=-i j, a, b \in \mathbb{Q}^{*}$. Assume H is an indefinite quaternion algebra, that is, $H \otimes_{\mathbb{Q}} \mathbb{R} \simeq \mathrm{M}(2, \mathbb{R})$. Then the discriminant D_{H} of H is the product of an even number of different primes $D_{H}=p_{1} \cdots p_{2 r} \geq 1$ and we can assume $a>0$. Actually, a discriminant D determines a quaternion algebra H such that $D_{H}=D$ up to isomorphism. Let us denote by $\mathrm{n}(\omega)$ the reduced norm of $\omega \in H$.

Fix any embedding $\Phi: H \hookrightarrow \mathrm{M}(2, \mathbb{R})$. For simplicity we can keep in mind the embedding given at the following lemma.

[^0]Lemma 1.1. Let $H=\left(\frac{a, b}{\mathbb{Q}}\right)$ be an indefinite quaternion algebra with $a>0$. An embedding $\Phi: H \hookrightarrow \mathrm{M}(2, \mathbb{R})$ is obtained by:

$$
\Phi(x+y i+z j+t i j)=\left(\begin{array}{cc}
x+y \sqrt{a} & z+t \sqrt{a} \\
b(z-t \sqrt{a}) & x-y \sqrt{a}
\end{array}\right)
$$

Given $N \geq 1, \operatorname{gcd}(D, N)=1$, let us consider an Eichler order of level N, that is a \mathbb{Z}-module of rank 4 , subring of H, intersection of two maximal orders. By Eichler's results it is unique up to conjugation and we denote it by $\mathcal{O}(D, N)$.

Consider $\Gamma(D, N):=\Phi\left(\left\{\omega \in \mathcal{O}(D, N)^{*} \mid \mathrm{n}(\omega)>0\right\}\right) \subseteq \mathrm{SL}(2, \mathbb{R})$ a group of quaternion transformations. This group acts on the upper complex half plane $\mathcal{H}=\{x+\iota y \in \mathbb{C} \mid y>0\}$. We denote by $X(D, N)$ the canonical model of the Shimura curve defined by the quotient $\Gamma(D, N) \backslash \mathcal{H}$, cf. [Shi67], [AAB01].

For any $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{GL}(2, \mathbb{R})$ we denote by $\mathcal{P}(\gamma)$ the set of fixed points in \mathbb{C} of the transformation defined by $\gamma(z)=\frac{a z+b}{c z+d}$.

Let us denote by $\mathcal{E}(H, F)$ the set of embeddings of a quadratic field F into the quaternion algebra H. Assume there is an embedding $\varphi \in \mathcal{E}(H, F)$. Then, all the quaternion transformations in $\Phi\left(\varphi\left(F^{*}\right)\right) \subset \mathrm{GL}(2, \mathbb{R})$ have the same set of fixed points, which we denote by $\mathcal{P}(\varphi)$. In the case that F is an imaginary quadratic field it yields to complex multiplication points, since $\mathcal{P}(\varphi) \cap \mathcal{H}$ is just a point, $z(\varphi)$.

Now, we take in account the arithmetic of the orders. Let us consider the set of optimal embeddings of quadratic orders Λ into quaternion orders \mathcal{O},

$$
\mathcal{E}^{*}(\mathcal{O}, \Lambda):=\{\varphi \mid \varphi: \Lambda \hookrightarrow \mathcal{O}, \varphi(F) \cap \mathcal{O}=\varphi(\Lambda)\}
$$

Any group $G \leq \operatorname{Nor}(\mathcal{O})$ acts on $\mathcal{E}^{*}(\mathcal{O}, \Lambda)$, and we can consider the quotient $\mathcal{E}^{*}(\mathcal{O}, \Lambda) / G$. Put $\nu(\mathcal{O}, \Lambda ; G):=\sharp \mathcal{E}^{*}(\mathcal{O}, \Lambda) / G$. We will also use the notation $\nu(D, N, d, m ; G)$ for an Eichler order $\mathcal{O}(D, N) \subseteq H$ of level N and the quadratic order of conductor m in $F=\mathbb{Q}(\sqrt{d})$, which we denote $\Lambda(d, m)$.

Since further class numbers in this paper will be related to this one, we include next theorem (cf. [Eic55]). It provides the well-known relation between the class numbers of local and global embeddings, and collects the formulas for the class number of local embeddings given in [Ogg83] and [Vig80] in the case $G=\mathcal{O}^{*}$. Consider ψ_{p} the multiplicative function given by $\psi_{p}\left(p^{k}\right)=p^{k}\left(1+\frac{1}{p}\right), \psi_{p}(a)=1$ if $p \nmid a$. Put $h(d, m)$ the ideal class number of the quadratic order $\Lambda(d, m)$.

Theorem 1.2. Let $\mathcal{O}=\mathcal{O}(D, N)$ be an Eichler order of level N in an indefinite quaternion \mathbb{Q}-algebra H of discriminant D. Let $\Lambda(d, m)$ be the quadratic order of conductor m in $\mathbb{Q}(\sqrt{d})$. Assume that $\mathcal{E}(H, \mathbb{Q}(\sqrt{d})) \neq \emptyset$
and $\operatorname{gcd}(m, D)=1$. Then,

$$
\nu\left(D, N, d, m ; \mathcal{O}^{*}\right)=h(d, m) \prod_{p \mid D N} \nu_{p}\left(D, N, d, m ; \mathcal{O}^{*}\right) .
$$

The local class numbers of embeddings $\nu_{p}\left(D, N, d, m ; \mathcal{O}^{*}\right)$, for the primes $p \mid D N$, are given by
(i) If $p \mid D$, then $\nu_{p}\left(D, N, d, m ; \mathcal{O}^{*}\right)=1-\left(\frac{D_{F}}{p}\right)$.
(ii) If $p \| N$, then $\nu_{p}\left(D, N, d, m ; \mathcal{O}^{*}\right)$ is equal to $1+\left(\frac{D_{F}}{p}\right)$ if $p \nmid m$, and equal to 2 if $p \mid m$.
(iii) Assume $N=p^{r} u_{1}$, with $p \nmid u_{1}, r \geq 2$. Put $m=p^{k} u_{2}, p \nmid u_{2}$.
(a) If $r \geq 2 k+2$, then $\nu_{p}\left(D, N, d, m ; \mathcal{O}^{*}\right)$ is equal to $2 \psi_{p}(m)$ if $\left(\frac{D_{F}}{p}\right)=1$, and equal to 0 otherwise.
(b) If $r=2 k+1$, then $\nu_{p}\left(D, N, d, m ; \mathcal{O}^{*}\right)$ is equal to $2 \psi_{p}(m)$ if $\left(\frac{D_{F}}{p}\right)=1$, equal to p^{k} if $\left(\frac{D_{F}}{p}\right)=0$, and equal to 0 if $\left(\frac{D_{F}}{p}\right)=$
(c) If $r=2 k$, then $\nu_{p}\left(D, N, d, m ; \mathcal{O}^{*}\right)=p^{k-1}\left(p+1+\left(\frac{D_{F}}{p}\right)\right)$.
(d) If $r \leq 2 k-1$, then $\nu_{p}\left(D, N, d, m ; \mathcal{O}^{*}\right)$ is equal to $p^{k / 2}+p^{k / 2-1}$ if k is even, and equal to $2 p^{k-1 / 2}$ if k is odd.

2. Classification theory of binary forms associated to quaternions

Given $\alpha=\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) \in \mathrm{M}(2, \mathbb{R})$, we put $f_{\alpha}(x, y):=c x^{2}+(d-a) x y-b y^{2}$. It is called the binary quadratic form associated to α.

For a binary quadratic form $f(x, y):=A x^{2}+B x y+C y^{2}=(A, B, C)$, we consider the associated matrix $A(f)=\left(\begin{array}{cc}A & B / 2 \\ B / 2 & C\end{array}\right)$, and the determinants $\operatorname{det}_{1}(f)=\operatorname{det} A(f)$ and $\operatorname{det}_{2}(f)=2^{2} \operatorname{det} A(f)=-\left(B^{2}-4 A C\right)$. Denote by $\mathcal{P}(f)$ the set of solutions in \mathbb{C} of $A z^{2}+B z+C=0$. If f is (positive or negative) definite, then $\mathcal{P}(f) \cap \mathcal{H}$ is just a point which we denote by $\tau(f)$.

The proof of the following lemma is straightforward.
Lemma 2.1. Let $\alpha \in \mathrm{M}(2, \mathbb{R})$.
(i) For all $\lambda, \mu \in \mathbb{Q}$, we have $f_{\lambda \alpha}=\lambda f_{\alpha}$ and $f_{\alpha+\mu \mathrm{Id}}=f_{\alpha}$; in particular, $\mathcal{P}\left(f_{\lambda \alpha+\mu \mathrm{Id}}\right)=\mathcal{P}\left(f_{\alpha}\right)$.
(ii) $z \in \mathbb{C}$ is a fixed point of α if and only if $z \in \mathcal{P}\left(f_{\alpha}\right)$, that is, $\mathcal{P}\left(f_{\alpha}\right)=$ $\mathcal{P}(\alpha)$.
(iii) Let $\gamma \in \operatorname{GL}(2, \mathbb{R})$. Then $A\left(f_{\gamma^{-1} \alpha \gamma}\right)=\left(\operatorname{det} \gamma^{-1}\right) \gamma^{t} A\left(f_{\alpha}\right) \gamma$; in particular, if $\gamma \in \operatorname{SL}(2, \mathbb{R}), z \in \mathcal{P}\left(f_{\alpha}\right)$ if and only if $\gamma^{-1}(z) \in \mathcal{P}\left(f_{\gamma^{-1} \alpha \gamma}\right)$.
Definition 2.2. For a quaternion $\omega \in H^{*}$, we define the binary quadratic form associated to ω as the binary quadratic form $f_{\Phi(\omega)}$.

Given a quaternion algebra H denote by H_{0} the pure quaternions. By using lemma 2.1 it is enough to consider the binary forms associated to pure quaternions:

$$
\mathcal{H}(a, b)=\left\{f_{\Phi(\omega)}: \omega \in H_{0}\right\}, \quad \mathcal{H}(\mathcal{O})=\left\{f_{\Phi(\omega)}: \omega \in \mathcal{O} \cap H_{0}\right\} .
$$

Definition 2.3. Let \mathcal{O} be an order in a quaternion algebra H. We define the denominator $m_{\mathcal{O}}$ of \mathcal{O} as the minimal positive integer such that $m_{\mathcal{O}} \cdot \mathcal{O} \subseteq$ $\mathbb{Z}[1, i, j, i j]$. Then the ideal $\left(m_{\mathcal{O}}\right)$ is the conductor of \mathcal{O} in $\mathbb{Z}[1, i, j, i j]$.

Properties for these binary forms are collected in the following proposition, easy to be verified.
Proposition 2.4. Consider an indefinite quaternion algebra $H=\left(\frac{a, b}{\mathbb{Q}}\right)$, and an order $\mathcal{O} \subseteq H$. Fix the embedding Φ as in lemma 1.1. Then:
(i) There is a bijective mapping $H_{0} \rightarrow \mathcal{H}(a, b)$ defined by $\omega \mapsto f_{\Phi(\omega)}$. Moreover $\operatorname{det}_{1}\left(f_{\Phi(\omega)}\right)=\mathrm{n}(\omega)$.
(ii) $\mathcal{H}(a, b)=\left\{\left(b\left(\lambda_{2}+\lambda_{3} \sqrt{a}\right), \lambda_{1} \sqrt{a},-\lambda_{2}+\lambda_{3} \sqrt{a}\right) \mid \lambda_{1}, \lambda_{2}, \lambda_{3} \in \mathbb{Q}\right\}$

$$
=\left\{\left(b \beta^{\prime}, \alpha,-\beta\right) \mid \alpha, \beta \in \mathbb{Q}(\sqrt{a}), \operatorname{tr}(\alpha)=0\right\} .
$$

(iii) the binary quadratic forms of $\mathcal{H}(\mathcal{O})$ have coefficients in $\mathbb{Z}\left[\frac{1}{m_{\mathcal{O}}}, \sqrt{a}\right]$

Given a quaternion order \mathcal{O} and a quadratic order Λ, put

$$
\mathcal{H}(\mathcal{O}, \Lambda):=\left\{f \in \mathcal{H}(\mathcal{O}): \operatorname{det}_{1}(f)=-D_{\Lambda}\right\} .
$$

Remark that an imaginary quadratic order yields to consider definite binary quadratic forms, and a real quadratic order yields to indefinite binary forms.

Given $\omega \in \mathcal{O} \cap H_{0}$, consider $F_{\omega}=\mathbb{Q}(\sqrt{d}), d=-\mathrm{n}(\omega)$. Then $\varphi_{\omega}(\sqrt{d})=\omega$ defines an embedding $\varphi_{\omega} \in \mathcal{E}\left(H, F_{\omega}\right)$. By considering $\Lambda_{\omega}:=\varphi_{\omega}^{-1}(\mathcal{O}) \cap$ F_{ω}, we have $\varphi_{\omega} \in \mathcal{E}^{*}\left(\mathcal{O}, \Lambda_{\omega}\right)$. Therefore, by construction, it is clear that $\mathcal{P}\left(f_{\Phi(\omega)}\right)=\mathcal{P}(\Phi(\omega))=\mathcal{P}\left(\varphi_{\omega}\right)$. In particular, if we deal with quaternions of positive norm, we obtain definite binary forms, imaginary quadratic fields and a unique solution $\tau\left(f_{\Phi(\omega)}\right)=z\left(\varphi_{\omega}\right) \in \mathcal{H}$. The points corresponding to these binary quadratic forms are in fact the complex multiplication points.

Theorem 4.53 in [AB04] states a bijective mapping \mathfrak{f} from the set $\mathcal{E}(\mathcal{O}, \Lambda)$ of embeddings of a quadratic order Λ into a quaternion order \mathcal{O} onto the set $\mathcal{H}(\mathbb{Z}+2 \mathcal{O}, \Lambda)$ of binary quadratic forms associated to the orders $\mathbb{Z}+2 \mathcal{O}$ and Λ. By using optimal embeddings, a definition of primitivity for the forms in $\mathcal{H}(\mathbb{Z}+2 \mathcal{O}, \Lambda)$ was introduced. We denote by $\mathcal{H}^{*}(\mathbb{Z}+2 \mathcal{O}, \Lambda)$ the corresponding subset of (\mathcal{O}, Λ)-primitive binary forms. Then equivalence of embeddings yields to equivalence of forms.
Corollary 2.5. Given orders \mathcal{O} and Λ as above, for any $G \subseteq \mathcal{O}^{*}$ consider $\Phi(G) \subseteq \mathrm{GL}(2, \mathbb{R})$. There is a bijective mapping between $\mathcal{E}^{*}(\mathcal{O}, \Lambda) / G$ and $\mathcal{H}^{*}(\mathbb{Z}+2 \mathcal{O}, \Lambda) / \Phi(G)$.

Fix $\mathcal{O}=\mathcal{O}(D, N), \Lambda=\Lambda(d, m)$ and $G=\mathcal{O}^{*}$. We use the notation $\mathrm{h}(D, N, d, m):=\sharp \mathcal{H}^{*}(\mathbb{Z}+2 \mathcal{O}(D, N), \Lambda(d, m)) / \Gamma_{\mathcal{O}^{*}}$. Thus, $\mathrm{h}(D, N, d, m)=$ $\nu\left(D, N, d, m ; \mathcal{O}^{*}\right)$, which can be computed explicitly by Eichler results (cf. theorem 1.2).

3. Generalized reduced binary forms

Fix an Eichler order $\mathcal{O}(D, N)$ in an indefinite quaternion algebra H. Consider the associated group $\Gamma(D, N)$ and the Shimura curve $X(D, N)$.

For a quadratic order $\Lambda(d, m)$, consider the set $\mathcal{H}^{*}(\mathbb{Z}+2 \mathcal{O}(2 p, N), \Lambda)$ of binary quadratic forms. As above, for a definite binary quadratic form $f=A x^{2}+B x y+C y^{2}$, denote by $\tau(f)$ the solution of $A z^{2}+B z+C=0$ in \mathcal{H}.

Definition 3.1. Fix a fundamental domain $\mathcal{D}(D, N)$ for $\Gamma(D, N)$ in \mathcal{H}. Make a choice about the boundary in such a way that every point in \mathcal{H} is equivalent to a unique point of $\mathcal{D}(D, N)$. A binary form $f \in$ $\mathcal{H}^{*}(\mathbb{Z}+2 \mathcal{O}(D, N), \Lambda)$ is called $\Gamma(D, N)$-reduced form if $\tau(f) \in \mathcal{D}(D, N)$.

Theorem 3.2. The number of positive definite $\Gamma(D, N)$-reduced forms in $\mathcal{H}^{*}(\mathbb{Z}+2 \mathcal{O}(D, N), \Lambda(d, m))$ is finite and equal to $h(D, N, d, m)$.

Proof. We can assume $d<0$, in order $\mathcal{H}^{*}(\mathbb{Z}+2 \mathcal{O}(D, N), \Lambda(d, m))$ consists on definite binary forms. By lemma 2.1 (iii), we have that $\Gamma(D, N)$-equivalence of forms yields to $\Gamma(D, N)$-equivalence of points. Note that $\tau(f)=\tau(-f)$, but f is not $\Gamma(D, N)$-equivalent to $-f$. Thus, in each class of $\Gamma(D, N)$-equivalence of forms there is a unique reduced binary form.

Consider $G=\left\{\omega \in \mathcal{O}^{*} \mid \mathrm{n}(\omega)>0\right\}$ in order to get $\Phi(G)=\Gamma(D, N)$. The group G has index 2 in \mathcal{O}^{*} and the number of classes of $\Gamma(D, N)$-equivalence in $\mathcal{H}^{*}(\mathbb{Z}+2 \mathcal{O}(D, N), \Lambda(d, m))$ is $2 \mathrm{~h}(D, N, d, m)$. In that set, positive and negative definite forms were included, thus the number of classes of positive definite forms is exactly $\mathrm{h}(D, N, d, m)$.

4. Non-ramified and small ramified cases

Definition 4.1. Let H be a quaternion algebra of discriminant D. We say that H is nonramified if $D=1$, that is $H \simeq \mathrm{M}(2, \mathbb{Q})$. We say H is small ramified if $D=p q$; in this case, we say it is of type A if $D=2 p, p \equiv 3$ $\bmod 4$, and we say it is of type B if $D_{H}=p q, q \equiv 1 \bmod 4$ and $\left(\frac{p}{q}\right)=-1$. It makes sense because of the following statement.

Proposition 4.2. For $H=\left(\frac{p, q}{\mathbb{Q}}\right)$, p, q primes, exactly one of the following statements holds:
(i) H is nonramified.
(ii) H is small ramified of type A.
(iii) H is small ramified of type B.

We are going to specialize above results for reduced binary forms for each one of these cases.
4.1. Nonramified case. Consider $H=\mathrm{M}(2, \mathbb{Q})$ and take the Eichler order

$$
\mathcal{O}_{0}(1, N):=\left\{\left.\left(\begin{array}{cc}
a & b \\
c N & d
\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{Z}\right\} .
$$

Then $\Gamma(1, N)=\Gamma_{0}(N)$ and the curve $X(1, N)$ is the modular curve $X_{0}(N)$.
To unify results with the ramified case, it is also interesting to work with the Eichler order $\mathcal{O}(1, N):=\mathbb{Z}\left[1, \frac{j+i j}{2}, N \frac{(-j+i j)}{2}, \frac{1-i}{2}\right]$ in the nonramified quaternion algebra $\left(\frac{1,-1}{\mathbb{Q}}\right)$.

Proposition 4.3. Consider the Eichler order $\mathcal{O}=\mathcal{O}_{0}(1, N) \subseteq \mathrm{M}(2, \mathbb{Q})$ and the quadratic order $\Lambda=\Lambda(d, m)$. Then:
(i) $\mathcal{H}^{*}(\mathbb{Z}+2 \mathcal{O}, \Lambda) \simeq\left\{f=(N a, b, c) \mid a, b, c \in \mathbb{Z}, \operatorname{det}_{2}(f)=-D_{\Lambda}\right\}$.
(ii) The (\mathcal{O}, Λ)-primitivity condition is $\operatorname{gcd}(a, b, c)=1$.
(iii) If $d<0$, the number of $\Gamma_{0}(N)$-reduced positive definite primitive binary quadratic forms in $\mathcal{H}^{*}(\mathbb{Z}+2 \mathcal{O}, \Lambda)$ is equal to $h(1, N, d, m)$.

For $N=1$, the well-known theory on reduced integer binary quadratic forms is recovered. In particular, the class number of $\operatorname{SL}(2, \mathbb{Z})$-equivalence is $h(d, m)$.

For $N>1$, a general theory of reduced binary forms is obtained. For N equal to a prime, let us fix the symmetrical fundamental domain

$$
\mathcal{D}(1, N)=\left\{z \in \mathcal{H}| | \operatorname{Re}(z)\left|\leq 1 / 2,\left|z-\frac{k}{N}\right|>\frac{1}{N}, k \in \mathbb{Z}, 0<|k| \leq \frac{N-1}{2}\right\}\right.
$$

given at [AB04]; a detailed construction can be found in [Als00]. Then a positive definite binary form $f=(N a, b, c), a>0$, is $\Gamma_{0}(N)$-reduced if and only if $|b| \leq N a$ and $\left|\tau(f)-\frac{k}{N}\right|>\frac{1}{N}$ for $k \in \mathbb{Z}, 0<|k| \leq \frac{N-1}{2}$. Figure 4.1 shows the 46 points corresponding to reduced binary forms in $\mathcal{H}^{*}\left(\mathbb{Z}+2 \mathcal{O}_{0}(1,23), \Lambda\right)$ for $D_{\Lambda}=7,11,19,23,28,43,56,67,76,83,88,91,92$, which occurs in an special graphical position. In fact these points are exactly the special complex multiplication points of $X(1,23)$, characterized by the existence of elements $\alpha \in \Lambda(d, m)$ of norm $D N$ (cf. [AB04]). The table describes the $n=h(1,23, d, m)$ inequivalent points for each quadratic order $\Lambda(d, m)$.

Note that for these symmetrical domains it is easy to implement an algorithm to decide if a form in this set is reduced or not, by using isometric circles.

Figure 4.1. The points $\tau(f)$ for some f reduced binary forms corresponding to quadratic orders $\Lambda(d, m)$ in a fundamental domain for $X(1,23)$.

(d, m)	n	$\tau(f)$
$(-7,1)$	2	$\left\{\tau_{1}=\frac{-19+\sqrt{7} \iota}{46}, \tau_{2}=\frac{19+\sqrt{7} \iota}{46}\right\}$
$(-7,2)$	2	$\left\{\tau_{3}=\frac{-4+\sqrt{7} \iota}{23}, \tau_{4}=\frac{4+\sqrt{7} \iota}{23}\right\}$
$(-11,1)$	2	$\left\{\tau_{5}=\frac{-9+\sqrt{11} \iota}{46}, \tau_{6}=\frac{9+\sqrt{11} \iota}{46}\right\}$
$(-14,1)$	8	$\begin{gathered} \left\{\tau_{7}=\frac{-20+\sqrt{14} \iota}{46}, \tau_{8}=\frac{-26+\sqrt{14} \iota}{69}, \tau_{9}=\frac{-20+\sqrt{14} \iota}{69}, \tau_{10}=\frac{-3+\sqrt{14} \iota}{23}\right. \\ \left.\tau_{11}=\frac{3+\sqrt{14} \iota}{23}, \tau_{12}=\frac{20+\sqrt{14} \iota}{69}, \tau_{13}=\frac{26+\sqrt{14 \iota}}{69}, \tau_{14}=\frac{20+\sqrt{14 \iota}}{46}\right\} \end{gathered}$
$(-19,1)$	2	$\left\{\tau_{15}=\frac{-21+\sqrt{19} \iota}{46}, \tau_{16}=\frac{21+\sqrt{19} \iota}{46}\right\}$
$(-19,2)$	6	$\begin{gathered} \left\{\tau_{17}=\frac{-25+\sqrt{19} \iota}{92}, \tau_{18}=\frac{-21+\sqrt{19} \iota}{92}, \tau_{19}=\frac{-2+\sqrt{19} \iota}{23}\right. \\ \left.\tau_{20}=\frac{2+\sqrt{19} \iota}{23}, \tau_{21}=\frac{21+\sqrt{19} \iota}{92}, \tau_{22}=\frac{25+\sqrt{19} \iota}{92}\right\} \end{gathered}$
$(-22,1)$	4	$\left\{\tau_{23}=\frac{-22+\sqrt{22} \iota}{46}, \tau_{24}=\frac{-1+\sqrt{22} \iota}{23}, \tau_{25}=\frac{1+\sqrt{22} \iota}{23}, \tau_{26}=\frac{22+\sqrt{22} \iota}{46}\right\}$
$(-23,1)$	3	$\left\{\tau_{27}=\frac{-23+\sqrt{23} \iota}{92}, \tau_{28}=\frac{23+\sqrt{23} \iota}{92}, \tau_{29}=\frac{-23+\sqrt{23} \iota}{46} \sim \frac{23+\sqrt{23} \iota}{46}\right\}$
$(-23,2)$	3	$\left\{\tau_{30}=\frac{-23+\sqrt{23} \iota}{69}, \tau_{31}=\frac{\sqrt{23} \iota}{23}, \tau_{32}=\frac{23+\sqrt{23} \iota}{69}\right\}$
$(-43,1)$	2	$\left\{\tau_{33}=\frac{-7+\sqrt{43} \iota}{46}, \tau_{34}=\frac{7+\sqrt{43} \iota}{46}\right\}$
$(-67,1)$	2	$\left\{\tau_{35}=\frac{-5+\sqrt{67} \iota}{46}, \tau_{36}=\frac{5+\sqrt{67} \iota}{46}\right\}$
$(-83,1)$	6	$\begin{gathered} \left\{\tau_{37}=\frac{-49+\sqrt{83} \iota}{138}, \tau_{38}=\frac{-43+\sqrt{83} \iota}{138}, \tau_{39}=\frac{-3+\sqrt{83} \iota}{46}\right. \\ \left.\tau_{40}=\frac{3+\sqrt{83} \iota}{46}, \tau_{41}=\frac{43+\sqrt{83} \iota}{138}, \tau_{42}=\frac{49+\sqrt{83} \iota}{138}\right\} \end{gathered}$
$(-91,1)$	4	$\left\{\tau_{43}=\frac{-47+\sqrt{91} \iota}{230}, \tau_{44}=\frac{-1+\sqrt{91} \iota}{46}, \tau_{45}=\frac{1+\sqrt{91} \iota}{46}, \tau_{46}=\frac{47+\sqrt{91} \iota}{230}\right\}$

4.2. Small ramified case of type A. Let us consider $H_{A}(p):=\left(\frac{p,-1}{\mathbb{Q}}\right)$ and the Eichler order $\mathcal{O}_{A}(2 p, N):=\mathbb{Z}\left[1, i, N j, \frac{1+i+j+i j}{2}\right]$, for $N \left\lvert\, \frac{p-1}{2}\right., N$ square-free. The elements in the group $\Gamma_{A}(2 p, N)$ are $\gamma=\frac{1}{2}\left(\begin{array}{cc}\alpha & \beta \\ -\beta^{\prime} & \alpha^{\prime}\end{array}\right)$ such that $\alpha, \beta \in \mathbb{Z}[\sqrt{p}], \alpha \equiv \beta \equiv \alpha \sqrt{p} \bmod 2, \operatorname{det} \gamma=1, N \left\lvert\,\left(\operatorname{tr}(\beta)-\frac{\beta-\beta^{\prime}}{\sqrt{p}}\right)\right.$. We denote by $X_{A}(2 p, N)$ the Shimura curve of type A defined by $\Gamma_{A}(2 p, N)$.

Proposition 4.4. Consider the Eichler order $\mathcal{O}_{A}(2 p, N)$ and the quadratic order $\Lambda=\Lambda(d, m)$.
(i) The set $\mathcal{H}\left(\mathbb{Z}+2 \mathcal{O}_{A}(2 p, N), \Lambda\right)$ of binary forms is equal to

$$
\begin{aligned}
\{f=(a+b \sqrt{p}, 2 c \sqrt{p}, a-b \sqrt{p}): & a, b, c \in \mathbb{Z}, a \equiv b \equiv c \bmod 2 \\
& \left.N \mid(a+b), \operatorname{det}_{1}(f)=-D_{\Lambda}\right\} .
\end{aligned}
$$

(ii) The $\left(\mathcal{O}_{A}(2 p, N), \Lambda\right)$-primitivity condition for these binary quadratic forms is $\operatorname{gcd}\left(\frac{c+b}{2}, \frac{a+b}{2 N}, b\right)=1$.
(iii) If $d<0$, the number of $\Gamma_{A}(2 p, N)$-reduced positive definite primitive binary forms in $\mathcal{H}^{*}\left(\mathbb{Z}+2 \mathcal{O}_{A}(2 p, N), \Lambda\right)$ is equal to $h(2 p, N, d, m)$.

For example, consider the fundamental domain $\mathcal{D}(6,1)$ for the Shimura curve $X_{A}(6,1)$ in the Poincaré half plane defined by the hyperbolic polygon of vertices $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\}$ at figure 4.2 (cf. [AB04]). The table contains the corresponding reduced binary quadratic forms $f \in$ $\mathcal{H}^{*}\left(\mathbb{Z}+2 \mathcal{O}_{A}(6,1), \Lambda(d, 1)\right)$ and the associated points $\tau(f)$ for $\operatorname{det}_{1}(f)=$ $4,3,24,40$, that is $d=-1,-3,-6,-10$. Since the vertices are elliptic points of order 2 or 3 , they are the associated points to forms of determinant 4 or 3 , respectively. We put $n=h(6,1, d, 1)$ the number of such reduced forms for each determinant.
4.3. Small ramified case of type B. Consider $H_{B}(p, q):=\left(\frac{p, q}{\mathbb{Q}}\right)$ and the Eichler order $\mathcal{O}_{B}(p q, N):=\mathbb{Z}\left[1, N i, \frac{1+j}{2}, \frac{i+i j}{2}\right]$, where $N \left\lvert\, \frac{q-1}{4}\right., N$ square-free and $\operatorname{gcd}(N, p)=1$. Then the group of quaternion transformations is

$$
\begin{array}{r}
\Gamma_{B}(p q, N)=\left\{\gamma=\frac{1}{2}\left(\begin{array}{cc}
\alpha & \beta \\
q \beta^{\prime} & \alpha^{\prime}
\end{array}\right): \alpha, \beta \in \mathbb{Z}[\sqrt{p}], \alpha \equiv \beta \bmod 2,\right. \\
\left.N \left\lvert\, \frac{\alpha-\alpha^{\prime}-\beta+\beta^{\prime}}{2 \sqrt{p}}\right., \operatorname{det} \gamma=1\right\} .
\end{array}
$$

We denote by $X_{B}(p q, N)$ the corresponding Shimura curve of type B.

Figure 4.2. Reduced binary forms in a fundamental domain for $X_{A}(6,1)$.

$\operatorname{det}_{1}(f)$	n	f	$\tau(f)$
3	2	$\begin{aligned} & (3+\sqrt{3}) x^{2}+2 \sqrt{3} x y+(3-\sqrt{3}) y^{2} \\ & (3+\sqrt{3}) x^{2}-2 \sqrt{3} x y+(3-\sqrt{3}) y^{2} \end{aligned}$	$\begin{aligned} & \hline v_{2}=\frac{1-\sqrt{3}}{2}(1-\iota) \\ & v_{4}=\frac{-1+\sqrt{3}}{2}(1-\iota) \end{aligned}$
4	2	$\begin{gathered} 4 x^{2}+4 \sqrt{3} x y+4 y^{2} \\ 2 x^{2}+2 y^{2} \end{gathered}$	$\begin{aligned} & v_{1}=\frac{-\sqrt{3}+\iota}{2} \sim v_{3} \sim v_{5} \\ & v_{6}=\iota \end{aligned}$
24	2	$\begin{gathered} (6+2 \sqrt{3}) x^{2}-(-6+2 \sqrt{3}) y^{2} \\ 6 x^{2}-4 \sqrt{3} x y+6 y^{2} \end{gathered}$	$\begin{aligned} & \tau_{1}=\frac{(\sqrt{6}-\sqrt{2}) \iota}{2} \\ & \tau_{2}=\frac{-\sqrt{3}+\sqrt{6} \iota}{3} \sim \tau_{2}^{\prime} \end{aligned}$
40	4	$\begin{gathered} (10+2 \sqrt{3}) x^{2}+8 \sqrt{3} x y-(-10+2 \sqrt{3}) y^{2} \\ (8+2 \sqrt{3}) x^{2}+4 \sqrt{3} x y-(-8+2 \sqrt{3}) y^{2} \\ (8+2 \sqrt{3}) x^{2}-4 \sqrt{3} x y-(-8+2 \sqrt{3}) y^{2} \\ (10+2 \sqrt{3}) x^{2}-8 \sqrt{3} x y-(-10+2 \sqrt{3}) y^{2} \\ \hline \end{gathered}$	$\begin{aligned} & \tau_{3}=\frac{3-5 \sqrt{3}}{11}+\frac{5 \sqrt{10}-\sqrt{30}}{20} \iota \\ & \tau_{4}=\frac{3-4 \sqrt{3}}{13}+\frac{4 \sqrt{10}-\sqrt{30}}{22} \iota \\ & \tau_{5}=\frac{-3+4 \sqrt{3}}{13}+\frac{4 \sqrt{10}-\sqrt{30}}{2} \iota \\ & \tau_{6}=\frac{-3+5 \sqrt{3}}{11}+\frac{5 \sqrt{10}-\sqrt{30}}{22} \iota \end{aligned}$

Proposition 4.5. Consider the Eichler order $\mathcal{O}_{B}(p q, N)$ in $H_{B}(p, q)$ and the quadratic order $\Lambda=\Lambda(d, m)$.
(i) The set $\mathcal{H}\left(\mathbb{Z}+2 \mathcal{O}_{B}(p q, N), \Lambda\right)$ of binary forms contains precisely the forms $f=(q(a+b \sqrt{p}), 2 c \sqrt{p},-a+b \sqrt{p})$ where $a, b, c \in \mathbb{Z}, 2 N \mid(c-b)$ and $\operatorname{det}_{1}(f)=-D_{\Lambda}$.
(ii) The $\left(\mathcal{O}_{B}(p q, N), \Lambda\right)$-primitivity condition for these binary quadratic forms in (i) is $\operatorname{gcd}\left(a, b, \frac{c-b}{2 N}\right)=1$.
(iii) If $d<0$, the number of $\Gamma_{B}(p q, N)$-reduced positive definite primitive binary forms in $\mathcal{H}^{*}\left(\mathbb{Z}+2 \mathcal{O}_{B}(p q, N), \Lambda\right)$ is equal to $h(p q, N, d, m)$.
In figure 4.3 we show a fundamental domain for $\Gamma_{B}(10,1)$ given by the hyperbolic polygon of vertices $\left\{w_{1}, w_{2}, w_{3}, w_{4}, w_{5}, w_{6}\right\}$. All the vertices are elliptic points of order 3; thus they are the associated points to binary

Figure 4.3. Reduced binary forms in a fundamental domain for $X_{B}(10,1)$.

$\operatorname{det}_{1}(f)$	n	f	$\tau(f)$
3	4	$(-5+5 \sqrt{2}) x^{2}+2 \sqrt{2} x y+(1+\sqrt{2}) y^{2}$	$w_{1}=\frac{-\sqrt{2}+\sqrt{3} \iota}{5(-1+\sqrt{2})} \sim w_{3}$
		$(5+5 \sqrt{2}) x^{2}+2 \sqrt{2} x y+(-1+\sqrt{2}) y^{2}$	$w_{2}=\frac{-\sqrt{2}+\sqrt{3} \iota}{5(1+\sqrt{2})}$
		$(35+25 \sqrt{2}) x^{2}-2 \sqrt{2} x y+(-7+5 \sqrt{2}) y^{2}$	$w_{4}=\frac{\sqrt{2}+\sqrt{3} \iota}{5(7+5 \sqrt{2})} \sim w_{6}$
		$(5+5 \sqrt{2}) x^{2}+2 \sqrt{2} x y+(-1+\sqrt{2}) y^{2}$	$w_{5}=\frac{\sqrt{2}+\sqrt{3} \iota}{5(1+\sqrt{2})}$
8	2	$5 \sqrt{2} x^{2}+2 \sqrt{2} x y+\sqrt{2} y^{2}$	
		$\left(5 \sqrt{2} x^{2}+2 \sqrt{2} x y+\sqrt{2} y^{2}\right.$	$\tau_{1}=\frac{-1+2 \iota}{5}$
20	2	$(10+10 \sqrt{2}) x^{2}+(-2+2 \sqrt{2}) y^{2}$	$\tau_{2}=\frac{1+2 \iota}{5}$
40	2	$(-10+10 \sqrt{2}) x^{2}+(2+2 \sqrt{2}) y^{2}$	$\left.\tau_{4}=\frac{(\sqrt{10}-\sqrt{5}) \iota}{5}+\sqrt{5}\right) \iota$
		$(40+30 \sqrt{2}) x^{2}+(-8+6 \sqrt{2}) y^{2}$	$\tau_{5}=\frac{(3 \sqrt{5}-2 \sqrt{10}) \iota}{5}$
$10 \sqrt{2} x^{2}+2 \sqrt{2} y^{2}$	$\tau_{6}=\frac{\sqrt{5} \iota}{5}$		

forms of determinant 3. We also represent the points corresponding to reduced binary quadratic forms f with $\operatorname{det}_{1}(f)=40$, which correspond to special complex points. The table also contains the explicit reduced definite positive binary forms and the corresponding points for determinants 8 and 20.

References

[AAB01] M. Alsina, A. Arenas, P. Bayer (eds.), Corbes de Shimura i aplicacions. STNB, Barcelona, 2001.
[AB04] M. Alsina, P. Bayer, Quaternion orders, quadratic forms and Shimura curves. CRM Monograph Series, vol. 22, American Mathematical Society, Providence, RI, 2004.
[Als00] M. Alsina, Dominios fundamentales modulares. Rev. R. Acad. Cienc. Exact. Fis. Nat. 94 (2000), no. 3, 309-322.
[Eic55] M. Eichler, Zur Zahlentheorie der Quaternionen-Algebren. J. reine angew. Math. 195 (1955), 127-151.
[Ogg83] A. P. Ogg, Real points on Shimura curves. Arithmetic and geometry, Vol. I, Progr. Math., vol. 35, Birkhäuser Boston, Boston, MA, 1983, pp. 277-307.
[Shi67] G. Shimura, Construction of class fields and zeta functions of algebraic curves. Annals of Math. 85 (1967), 58-159.
[Vig80] M.F. Vigneras, Arithmétique des algèbres de quaternions. Lecture Notes in Math., no. 800, Springer, 1980.

Montserrat Alsina
Dept. Matemàtica Aplicada III EUPM
Av. Bases de Manresa 61-73, Manresa-08240, Catalunya, Spain
E-mail: Montserrat.alsina@upc.edu

[^0]: The author was partially supported by MCYT BFM2000-0627.

