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In memory of Robert Rankin

Résumé. En 1989, E. Saias a établi une formule asymptotique
pour Ψ(x, y) = |{n ≤ x : p | n ⇒ p ≤ y}| avec un très bon terme
d’erreur, valable si exp

(
(log log x)(5/3)+ε

)
≤ y ≤ x, x ≥ x0(ε), ε >

0. Nous étendons ce résultat à un corps de nombre K en obtenant
une formule asymptotique pour la fonction analogue ΨK(x, y) avec
le même terme d’erreur et la même zone de validité. Notre objectif
principal est de comparer les formules pour Ψ(x, y) et ΨK(x, y),
en particulier comparer le second terme des développements.

Abstract. In 1989, E. Saias established an asymptotic formula
for Ψ(x, y) = |{n ≤ x : p | n ⇒ p ≤ y}| with a very good error
term, valid for exp

(
(log log x)(5/3)+ε

)
≤ y ≤ x, x ≥ x0(ε), ε > 0.

We extend this result to an algebraic number field K by obtaining
an asymptotic formula for the analogous function ΨK(x, y) with
the same error term and valid in the same region. Our main ob-
jective is to compare the formulae for Ψ(x, y) and ΨK(x, y), and
in particular to compare the second term in the two expansions.

1. Introduction

Many authors have studied the function Ψ(x, y) defined to be the number
of positive integers n ≤ x with no prime factor exceeding y; see, for example,
[1], [11], [12], [26] and other papers cited by these authors. Estimates (with
various degrees of precision) for Ψ(x, y) have been applied in certain types
of investigations (for example, [5], [14], [15], [16], [18], [27]). Our objective
in this paper is to extend the more precise result of Saias [26] for Ψ(x, y) to
an algebraic number field in order to compare the formulae obtained, and
we apply our results to a sum analogous to one first considered by Ivić [14]
for the rational field. We begin by giving a brief survey of two results on
Ψ(x, y) that we will need and the associated notation.

Manuscrit reçu le 1er aout 2003.
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First we give some definitions. The Dickman function ρ(u) is defined by
the differential-difference equation

(1)

 ρ(u) = 0 for u < 0,
ρ(u) = 1 for 0 ≤ u ≤ 1,

uρ′(u) + ρ(u− 1) = 0 for u > 1.

Define Λ(x, y) for x > 1, y ≥ 2 by

(2)

{
Λ(x, y) = x

∫∞
0 ρ

(
log x

t
log y

)
d
(

[t]
t

)
for x /∈ N

Λ(x, y) = 1
2 (Λ(x− 0, y) + Λ(x + 0, y)) for x ∈ N.

Write log2(x) for log(log x) when x > 1. Let ε > 0; define the region Hε by

(3) Hε : (log2 x)
5
3
+ε ≤ log y ≤ log x, x ≥ x0(ε).

When (3) holds we write y ∈ Hε. Let u = log x
log y ; it is well known that

(4) Ψ(x, y) = xρ(u)
(

1 + O

(
log(u + 1)

log y

))
for y ∈ Hε; this range for y was established in [11]. Various other expres-
sions for Ψ(x, y) have been derived; we utilize one with a very good error
term established by Saias in [26]:

(5) Ψ(x, y) = Λ(x, y)
(
1 + Oε

(
exp

(
−(log y)

3
5
−ε
)))

for y ∈ Hε.
The first goal of this paper is to establish a result comparable to (5) in

the case when the rational field Q is replaced by an algebraic number field
K. Let K be a number field with degree n ≥ 2 and ring of integers OK . For
any ideal a of OK , define

(6) P (a) = max{N(p) : p|a}

where p denotes a prime ideal with norm N(p), and let P (OK) = 1. Define
ΨK(x, y) by

(7) ΨK(x, y) = |{a : N(a) ≤ x, P (a) ≤ y}| .

Thus when K = Q, ΨK(x, y) reduces to Ψ(x, y). For papers in the literature
on ΨK(x, y) see for example [3], [6], [7], [8]. [10], [19] and [22]. We establish
in Theorem 1.1 an asymptotic formula for ΨK(x, y) for y ∈ Hε with an error
term of the same order of magnitude as that in (5). We use this theorem to
study the difference between ΨK(x, y) and its leading term and derive our
main result in Theorem 1.3. This enables us to compare the second term
in the asymptotic formulae for ΨK(x, y) and Ψ(x, y).

In order to state our main results, we need some more notation. Let
ζK(s) denote the Dedekind zeta-function for the field K , a well studied
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function. As we see from Lemma 2.3(i), ζK(s) has a simple pole at s = 1
with residue λK (given in (21) in terms of invariants of K). Let

(8) gK(s) = ζK(s)− λKζ(s)

where ζ(s) is the Riemann zeta-function. Denote the Laplace transform
of ρ(u) (defined in (1)) by ρ̂(s) (see (43)). We define ξ = ξ(u) to be the
unique real solution of

(9) eξ = 1 + uξ (u > 1),

with ξ(1) = 0 by convention. Define α0 = α0(x, y) by

(10) α0 = 1− ξ(u)
log y

where u =
log x

log y
.

Let

(11) J0(x, y) =
1

2πi

α0+i∞∫
α0−i∞

gK(s)(s− 1) log y ρ̂((s− 1) log y)s−1xsds.

We will see in Lemma 4.3 that the integral in (11) converges. For ε > 0,
write

(12) Lε(y) = exp
(
(log y)

3
5
−ε
)

.

We can now state our result analogous to (5).

Theorem 1.1. Let ε > 0. For y ∈ Hε

ΨK(x, y) = λKΛ(x, y)
(

1 + O

(
1

Lε(y)

))
+ J0(x, y).

Using (4) and (5), we can compare ΨK(x, y) with Ψ(x, y), and we have:

Corollary 1.2. For y ∈ Hε

ΨK(x, y)− λKΨ(x, y) = J0(x, y) + O

(
xρ(u)
Lε(y)

)
.

Theorem 1.1 and its Corollary prompt us to ask what the magnitude of
J0(x, y) is and how it compares with that of Ψ(x, y).

Theorem 1.3. Assume y ∈ Hε.
(i) As u = log x

log y →∞,

(13) J0(x, y) = − x

log y
ρ(u)ξ(u)

(
gK(1) + O

(
log u

log y
+

log u√
u

))
.

(ii) If gK(1) 6= 0, J0(x, y) and Ψ(x, y) − xρ(u) have the same order of
magnitude as u →∞.
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We see from (18) and (23) that gK(1) =
∞∑

m=1

j(m)−λK

m which converges.

The question of whether there are algebraic number fields K 6= Q for which
gK(1) = 0 is an interesting one. The author has consulted several experts
in the area, but a definitive answer to this question does not seem to be
known at present. However, at least for some fields K, there are other
ways of looking at gK(1) that might help in deciding whether it is zero.
The author would like to thank Professor B. Z. Moroz and the Referee for
suggesting the following approaches. When K is a normal extension of Q,
ζK(s) = ζ(s)F (s) where F (1) = λK and F (s) is known to be an entire
function. Since ζ(s) = 1

s−1 + γ + O(|s− 1|) as s → 1, where γ is Euler’s
constant, we deduce that as s → 1

ζK(s) =
λK

s− 1
+ γλK + F ′(1) + O(|s− 1|),

and hence
gK(1) = lim

s→1
(ζK(s)− λKζ(s)) = F ′(1).

For K an abelian extension of Q, let G be the corresponding Galois group
and G∗ be the character group of G. The elements of G∗ can be regarded
as Dirichlet characters; let χo denote the principal character of G∗. It is
known that

F (s) =
∏

χ∈G∗

χ6=χo

L(s, χ)

where L(s, χ) denotes a Dirichlet L-function; see for example Theorem 9.2.2
and section 9.4 of [9] and also Theorem 8.1 of [24]. Hence, since F (1) = λK ,

gK(1) = F ′(1) = λK

∑
χ∈G∗

χ6=χo

L′(1, χ)
L(1, χ)

.

In particular when K is a quadratic field, gK(1) = F ′(1) = L′(1, χ) with
χ a quadratic character; the results in [4] may enable one to calculate
gK(1) with arbitrary precision. The techniques in [23] might also be useful
in investigating gK(1) further in some cases. However we do not address
these problems here.

We note that by (4) and (13) it follows from Theorem 1.1 that for y ∈ Hε

(14) ΨK(x, y) ∼ λKxρ(u) as u →∞,

a known result for suitable y; Krause [19] has shown that this holds for
y ∈ Hε. Hence Theorem 1.3 (ii) tells us that provided gK(1) 6= 0 the second
term in λKΛ(x, y) has the same order of magnitude as J0(x, y). In Theorem
6.4 in section 6, we show how to express a truncated version of the complex
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integral J0(x, y) (see (57)) in terms of real integrals. This representation
may be more useful in some applications.

To prove Theorem 1.1, we adopt the method used to establish (5) (see
[26] or chapter 3.5 of [31]) but with ζ(s) replaced by ζK(s). To do so requires
properties of ζK(s) analogous to some of the strongest known for ζ(s), for
example the zero free region given in [29] and consequential properties;
these are described in section 2. Properties of the Dickman function are
given in section 3. With these tools the proof of Theorem 1.1 in section 4
is standard.

The main work of this paper is to establish Theorem 1.3 in section 5.
Our approach must take into account that we have only limited information
on the partial sums of the coefficients of the Dirichlet series for ζK(s) (see
Lemma 2.1(ii)), that the bounds for ρ̂(s) depend on the size of t = =(s)
(see Lemma 3.4(iii)), and that, as y increases in the range Hε, u decreases
from (log x)(log2 x)−

5
3
−ε to 1. These remarks suggest that we should split

J0(x, y) into several integrals which we find we have to estimate by different
methods. The main contribution (when gK(1) 6= 0) comes from the small
values of t (see Lemma 5.1).

We end the paper with an application of our Theorems. From (4), Ivić
[14] derived the order of magnitude of the sum

SQ(x) =
∑
n≤x

1
P (n)

where P (n) = max{p : p | n} if n > 1, P (1) = 1,

with as usual p denoting a rational prime. An asymptotic formula was
obtained in [5], and a sharper asymptotic formula was obtained as a special
case of Theorem 3 of [27]. In section 7, we consider a sum analogous to
SQ(x) for the field K and estimate it using our results. Let

(15) SK(x) =
∑

a
N(a)≤x

1
P (a)

where P (a) is defined in (6). Let

(16) L = L(x) = exp

((
1
2

log x log2 x

) 1
2

)
.

We establish the following result.

Theorem 1.4. (i) If gK(1) 6= 0,

SK(x) = x

(
λK + O

(
1

Lε(L)

))∫ x

2

1
v2 log v

{
ρ

(
log x

v

log v

)
−
∫ x

1

w − [w]
w2 log v

ρ′
(

log x
vw

log v

)
dw

}
dv +

(
1 + O

(
1

Lε(L)

))∫ x

2

J(x
v , v)

v log v
dv
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where J(x, y) is defined in (57).
(ii) As x →∞, SK(x) =

x

∫ x

2

1
v2 log v

{
λK +

log2 x

2 log v
(λK(1− γ)− gK(1) + o(1))

}
ρ

(
log x

v

log v

)
dv

where γ is Euler’s constant and gK(1) = lim
s→1

(ζK(s)− λKζ(s)) .

We remark that other more general applications of the methods used to
derive (5) can be found in the literature. For example, in [28], H. Smida
studied the sum

(17)
∑
m≤x

P (m)≤y

dk(m),

where dk(m) denotes the number of representations of m as a product of k
positive integers, its generating function being

∞∑
m=1

dk(m)m−s = (ζ(s))k (<(s) > 1).

Similarly one could consider sums analogous to (17) with dk(m) replaced
by another appropriate multiplicative function with a generating function
involving one or more Dedekind zeta-functions, and we may return to this
problem.

The author would like to thank the Referee for helpful comments, and in
particular for those relating to the constant gK(1) and for a simplification
in the quantity SK(x) investigated in Theorem 1.4.

Note added in proof: The author recently established an asymptotic ex-
pansion for the number defined by (7) that is analogous to the expansion
obtained in [26] for K the rational field. It is hoped to include this result
in a paper being prepared.

2. Properties of ζK(s)

As usual, we write s = σ + it.
Throughout this paper, K denotes a number field with degree n ≥ 2 and

ring of integers OK . Write a, b for ideals of OK and p for a prime ideal, and
let N(a) denote the norm of a.

For σ > 1, the Dedekind zeta-function ζK(s) is given by

(18) ζK(s) =
∑

a

(N(a))−s =
∞∑

m=1

j(m)m−s

where j(m) is the number of ideals a with N(a) = m. We require some
properties of ζK(s) that are analogous to some of the strongest available
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for the Riemann zeta-function ζ(s) near the line σ = 1, and we embody
those we need and related ones in the following Lemmas.

Lemma 2.1. (i) Let dn(m) denote the number of representations of m as
a product of n positive integers; then

(19) j(m) ≤ dn(m).

(ii) Let λK be the residue of ζK(s) at s = 1 (given in (21) below); then

(20) S(v) :=
∑
m≤v

j(m) = λKv + O(v1− 1
n ).

These results are well known. For (i), see Corollary 3 of Lemma 7.1 of
[24], and for (ii), see Theorem 6.3 of [21] from which we see that

(21) λK = 2q+rπrRh�m |∆|
1
2

where q is the number of real and r is the number of complex conjugate
pairs of monomorphisms K → C, m is the number of roots of unity in
K and R, h, ∆ denote the regulator, class number, discriminant of K,
respectively. For a stronger result, see Satz 210 of [20] or for recent results
see [25] when n ≥ 3 and [13] for n = 2.

Lemma 2.2. For δ fixed with 0 < δ < 1
2 ,∑

m≤x

dn(m)mδ−1 � xδ(log x)n.

Proof. This follows by partial summation and the result (see (13.3) and
Theorem 13.2 of [17]) ∑

m≤x

dn(m) � x(log x)n−1.

�

Lemma 2.3. (i) ζK(s) is differentiable in the half plane σ > 1− 1
n except

for a simple pole at s = 1 with residue λK (given by (21)), and in this
region

(22) ζK(s) =
λKs

s− 1
+ s

∫ ∞

1
(S(v)− λKv)v−s−1dv.

(ii) With gK(s) = ζK(s) − λK ζ(s) as in equation (8), we have for
σ > 1− 1

n that

(23) gK(s) =
∞∑

m=1

b(m)m−s = s

∫ ∞

1
(S(v)− λK [v])v−s−1dv

where b(m) = j(m)− λK � dn(m) and
∑

m≤v
b(m) = S(v)− λK [v] � v1− 1

n .



740 Eira J. Scourfield

(iii) For σ > 1− 1
n and any N ≥ 1

(24) gK(s) =
∑

m≤N

b(m)m−s + O

(
N1− 1

n
−σ

(
|s|

σ − 1 + 1
n

+ 1

))
.

Proof. (i) (22) follows for σ > 1 from (18) and (20) on using partial summa-
tion, and the other properties follow by analytic continuation since by (20)
the integral is absolutely convergent for σ > 1 − 1

n . (If we used a stronger
version of Lemma 2.1(ii), this range for σ could be extended, but we do not
need this.)

(ii) Since for σ > 0

(25) ζ(s) =
s

s− 1
+ s

∫ ∞

1
([v]− v)v−s−1dv,

(23) follows from part (i), (8) and (20).
(iii) By partial summation

gK(s) =
∑

m≤N

b(m)m−s− (S(N)−λKN)N−s +s

∫ ∞

N
(S(v)−λK [v])v−s−1dv

and the result then follows from (20). �

We remark that ζK(s) has more general properties in the whole complex
plane that are analogous to those of ζ(s), but we do not require them as
we are concerned only with the behaviour of ζK(s) in a region just to the
left of the line σ = 1. The properties that we need depend on the zero free
region of ζK(s), established in [29] by A.V.Sokolovskii, and related results:

Lemma 2.4. (i) For suitable positive constants c, t0, ζK(s) 6= 0 in the
region

(26) σ ≥ 1− c(log |t|)−2/3(log2 |t|)−1/3, |t| ≥ t0.

(ii) Let πK(x) denote the number of prime ideals p with N(p) ≤ x; then

(27) πK(x) = li(x) + O
(
x exp

(
−c(log x)3/5(log2 x)−1/5

))
.

Part (ii) is the prime ideal theorem. By standard arguments ζK(1+it) 6=
0; hence by taking c to be sufficiently small it follows that ζK(s) 6= 0 in the
region

(28) σ ≥ 1− c(log t0)−2/3(log2 t0)−1/3, |t| ≤ t0.

We require bounds for ζK(s) and for ζ
′
K(s)/ζK(s) in appropriate regions.

Lemma 2.5. For 1− 1
2n+1 < σ < 1, |t| ≥ t0

(29) gK(s) � |t|1/2 , ζK(s) � |t|1/2 .
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Proof. We apply (24) with N = |t|n and the property b(m) � dn(m) � mδ

for any fixed δ > 0 to obtain

gK(s) �
∑

m≤N

m−σ+δ + |t|N1− 1
n
−σ � N

1
2n+1

+δ + |t|N
1

2n+1
− 1

n � |t|1/2

by our choice of N if we take δ ≤ 1
2n(2n+1) . Since ζ(s) � |t|1/2 for 1

2 < σ < 1,

the bound for ζK(s) follows from (8) and analytic continuation. �

Lemma 2.6. For s in the region (26)

(30) ζK(s) � (log |t|)2/3 log2 |t| .
Proof. From the results in [30], when σ ≤ 1 in the region (26) we have

(31) ζK(s) � (log |t|)2/3,

and, when σ ≥ 3
2 , ζK(s) is bounded. Hence we need only consider 1 ≤ σ ≤

3
2 , t ≥ t0; the case t ≤ −t0 follows similarly. We apply Cauchy’s integral
formula twice using (29) and (31). Let η = 1

log t ; suppose ζK(s) � h(t) =
o (|t|) in the region (26), and let R be the rectangle with vertices

1− η + i(t± h(t)), 2 + i(t± h(t)).

We can bound ζK(s) by (31) when w = 1 − η + i(t + v) and |v| ≤ h(t),
and ζK(s) is bounded when w = 2 + i(t + v) and |v| ≤ h(t). By Cauchy’s
integral formula and since 2− σ ≥ 1/2 we have

ζK(s) =
1

2πi

∫
R

ζK(w)
w − s

dw

�
∫ h(t)

−h(t)

dv

|2− σ + iv|
+ h(t)

∫ 2

1−η

du

|u− σ + ih(t)|

+ (log t)2/3

∫ h(t)

−h(t)

dv

|1− η − σ + iv|
+ h(t)

∫ 2

1−η

du

|u− σ − ih(t)|

� log h(t) + 1 + (log t)2/3

(
1 +

∫ h(t)

σ−1+η
v−1dv

)
�
(
1 + (log t)2/3

)
log h(t).(32)

By (29), (32) holds with h(t) = t1/2, and so we obtain

(33) ζK(s) � (log t)5/3

when 1 ≤ σ ≤ 3/2 in the region (26). Now by (33) we can apply (32) again
with h(t) = (log t)5/3, and the result follows. �

Corollary 2.7. In the region (26)

(34) gK(s) � (log |t|)2/3 log2 |t| .
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Proof. Since ζ(s) � (log |t|)2/3 in the region (26) (see Theorem 6.3 of [17]),
the result follows from the lemma and (8). �

Lemma 2.8. In the region (26) for a suitable choice of c,

(35)
ζ ′K(s)
ζK(s)

� (log |t|)2/3(log2 |t|)4/3.

Proof. For σ > 1,

ζK(s) =
∏
p

(1− (N(p))−s)−1

and hence

(36)
ζ ′K(s)
ζK(s)

= −
∑

p

log N(p)
(N(p))s

+O(1) �
∑

p

j(p)p−σ log p+O(1) � 1
σ − 1

.

Using (30) and (36), we follow the method used to prove a slight improve-
ment of (35) when K = Q described in the proof of Lemma 12.3 of [17]. In
the argument leading to equation (12.55) of that proof, take

h(t) = (log |t|)−2/3(log2 |t|)−4/3, r = h(t0) log2 t0

and use Lemma 2.4(i) above and then (35) follows. �

3. Properties of the Dickman function

The Dickman function ρ(u) is defined as in (1) by the differential-diffe-
rence equation

(37)

 ρ(u) = 0 for u < 0,
ρ(u) = 1 for 0 ≤ u ≤ 1,

uρ′(u) + ρ(u− 1) = 0 for u > 1.

Lemma 3.1. The function ρ(u) has the following properties:
(i) As u →∞

ρ(u) = exp
(
−u

(
log u + log2 u− 1 + O

(
log2 u

log u

)))
.

(ii)
• ρ(u) is continuous except at u = 0.
• ρ′(u) is defined for u 6= 0 and continuous except at u = 1.
• 0 < ρ(u) ≤ 1 for u ≥ 0, −1 ≤ ρ′(u) < 0 for u > 1.
• ρ(u) decreases strictly and ρ′(u) increases strictly on u > 1.

Proof. A stronger form of (i) is due to de Bruijn [2], and (ii) follows from
(37). �
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In (9), we defined ξ = ξ(u) to be the unique real solution of the equation

(38) ξ(1) = 0, eξ = 1 + uξ (u > 1).

Define I(s), J(s) by

I(s) =
∫ s

0

ev − 1
v

dv (s ∈ C),(39)

J(s) =
∫ ∞

0

e−s−v

s + v
dv (s ∈ C \ (−∞,0]).(40)

Lemma 3.2. (i) ξ(u) = log u + log2 u + O
(

log2 u
log u

)
for u ≥ 3.

ξ′(u) ∼ 1
u

as u →∞.

(ii) ρ(k)(u) = (−ξ(u))kρ(u)
(
1 + O

(
1
u

))
for u > 1, u 6= 2, 3, ..., k, k ∈ N.

(iii) For u ≥ 1

ρ(u) =
(

ξ′(u)
2π

)1/2

exp (γ − uξ + I(ξ))
(

1 + O

(
1
u

))
.

(iv) For |v| ≤ 2
3u, u ≥ 3, u− v ≥ 3

ρ(u− v) = ρ(u) exp (v (log u + log2 u + O(1))) .

Proof. For (i)−(iii), see equations (47), (59), (56), (51) of chapter 3.5 of
[31] or Lemme 3 of [26]. Part (iv) follows by considering the integral

−
∫ u

u−v

ρ′(w)
ρ(w)

dw.

Note that we can rewrite (iv) as

(41) ρ(u− v) = ρ(u) exp (v (ξ(u) + O(1))) .

�

Corollary 3.3.

(42) e−uξ = ρ(u) exp
(
−u

(
1 + O

(
log2 u

log u

)))
.

This follows from (i) of Lemmas 3.1 and 3.2.
As usual, we denote the Laplace transform of ρ(u) by ρ̂(s), so for all

s ∈ C

(43) ρ̂(s) =
∫ ∞

0
e−svρ(v)dv.
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By Lemma 3.1(i), the integral converges absolutely for all s ∈ C. In our
context, the inverse of this Laplace transform is given by

(44) ρ(u) =
1

2πi

∫ −ξ(u)+i∞

−ξ(u)−i∞
eusρ̂(s)ds

for all real u ≥ 1; see, for example, equation (3.5.45) of [31].

Lemma 3.4. (i) I(−s) + J(s) + γ + log s = 0 for s ∈ C \ (−∞, 0], where
γ is Euler’s constant.

(ii) sρ̂(s) = exp(−J(s)) for s ∈ C \ (−∞, 0], ρ̂(s) = exp(γ + I(−s)).
(iii) For σ = −ξ(u), u > 1,

ρ̂(s) � exp
(

I(ξ)− t2u

2π2

)
for |t| ≤ π,

ρ̂(s) � exp
(

I(ξ)− u

ξ2 + π2

)
for |t| > π,

sρ̂(s) = 1 + O

(
1 + uξ

|s|

)
for |t| > 1 + uξ.

(iv)

sρ̂(s) = 1 +
∫ ∞

1
e−svρ′(v)dv,

the integral being absolutely convergent for all s ∈ C.

Proof. For (i) − (iii), see equations (43), (40), (44), (48), (49) of chapter
3.5 of [31]. For (iv), we have using (43)

sρ̂(s) = −
∫ ∞

0
ρ(v)d(e−sv) =

[
−ρ(v)e−sv

]∞
0

+
∫ ∞

0
e−svρ′(v)dv

on integrating by parts. The result now follows since ρ(0) = 1, e−σvρ(v) →
0 as v →∞ and ρ′(v) = 0 for 0 < v < 1. �

Lemma 3.5. As u = log x
log y →∞,

−
∫ x

1

v − [v]
v2

ρ′
(

u− log v

log y

)
dv

= Cρ(u)ξ(u)
(

1 + O

(
1

log u
+

1
(log2 x)1/2

+
y

x

))
(45)

where

(46) C =
∫ ∞

1

v − [v]
v2

dv = 1− γ.
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Proof. We consider first the integral over the range 1 ≤ v ≤ x2/3, where
log v
log y ≤

2
3u. By Lemma 3.2(i), (ii), (iv) and the mean value theorem applied

to ξ we have for v < min
(
x2/3, x

y

)
, so u− log v

log y > 1, that

−ρ′
(

u− log v

log y

)
= ξ

(
u− log v

log y

)
ρ

(
u− log v

log y

)(
1 + O

(
1
u

))

=
(

ξ(u) + O

(
log v

u log y

))
ρ(u) exp

(
log v

log y
(ξ(u) + O(1))

)(
1 + O

(
1
u

))

(47) = ξ(u)ρ(u) exp
(

log v

log y
(ξ(u) + O(1))

)(
1 + O

(
1

log u

))
.

Throughout this paper we are assuming that y ∈ Hε given by (3), so using
Lemma 3.2(i)

(48)
ξ(u) + O(1)

log y
� (log2 x)−

2
3
−ε.

Hence if log v = o
(
(log2 x)+

2
3
+ε
)

,

(49) exp
(

log v

log y
(ξ(u) + O(1))

)
= 1 + O

(
log v(log2 x)−

2
3
−ε
)

.

Define V = V (x) by log V = (log2 x)+
1
6
+ε; we could replace the exponent

1
6 by any positive number < 2

3 . For v < min(V, x
y ), it follows from (47) and

(49) that

ρ′
(

u− log v

log y

)
= ξ(u)ρ(u)

(
1 + O

(
1

log u
+

1

(log2 x)1/2

))
.

Hence since ρ′
(
u− log v

log y

)
= 0 for v > x

y ,

I1 := −
∫ V

1

v − [v]
v2

ρ′
(

u− log v

log y

)
dv

= ξ(u)ρ(u)

(
1 + O

(
1

log u
+

1

(log2 x)1/2

))∫ min(V, x
y
)

1

v − [v]
v2

dv

= Cξ(u)ρ(u)

(
1 + O

(
1

log u
+

1

(log2 x)1/2
+ max

(
1
V

,
y

x

)))
.(50)
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Since ζ(s) = 1
s−1 + γ + O(|s− 1|), we have C = 1 − γ by (25). By (47)

again when x
y > V

0 ≤ I2 := −
∫ min

(
x2/3, x

y

)
V

v − [v]
v2

ρ′
(

u− log v

log y

)
dv

≤ ξ(u)ρ(u)
(

1 + O

(
1

log u

))∫ min
(
x2/3, x

y

)
V

v−2+ηdv

where η = ξ(u)+O(1)
log y = O

(
(log2 x)−

2
3
−ε
)

by (48). Hence since V η ∼ 1 as
x →∞

(51) I2 � ξ(u)ρ(u)V −1.

Since ρ′
(
u− log v

log y

)
= 0 for v > x

y , we can extend the integral in I2 up to

v = x2/3 in all cases.
It remains to deal with the range x2/3 ≤ v ≤ x where we use Lemma

3.1(ii) to bound ρ′
(
u− log v

log y

)
. We have

(52) 0 ≤ I3 := −
∫ x

x2/3

v − [v]
v2

ρ′
(

u− log v

log y

)
dv ≤

∫ x

x2/3

v−2dv ≤ x−2/3.

Combining (50), (51), (52) we obtain

I1 + I2 + I3 = Cξ(u)ρ(u)
(

1 + O

(
1

log u
+

1
(log2 x)1/2

+
y

x

))
since 1

V + x−2/3

ξ(u)ρ(u) = o
(
(log2 x)−1/2

)
by (48) and Lemma 3.1(i). This gives

the result. �

In (2) we defined Λ(x, y) by

Λ(x, y) = x

∫ ∞

0
ρ

(
log x

v

log y

)
d

(
[v]
v

)
for x /∈ N,

Λ(x, y) =
1
2
(Λ(x + 0, y) + Λ(x− 0, y)) for x ∈ N.

Lemma 3.6. For x /∈ N and u = log x
log y

Λ(x, y) = x

{
ρ(u)−

∫ x

1

v − [v]
v2 log y

ρ′
(

u− log v

log y

)
dv

}
− (x− [x]).

See equation (80) of chapter 3.5 of [31], or Lemma 2.6 of [27] (where the
last bracketed expression was missing).

From Lemma 3.5 or equation (104) of chapter 3.5 of [31], we deduce
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Corollary 3.7. As u →∞

Λ(x, y) = x

{
ρ(u) +

ξ(u)ρ(u)
log y

(1− γ + o(1))
}

.

Note that ξ(u)
log y = O

(
log(u+1)

log y

)
= o(1) as u →∞ by (48).

Lemma 3.8 (Saias). For ε > 0 and y ∈ Hε given by (3)

Ψ(x, y) = Λ(x, y)
(
1 + Oε

(
exp

(
−(log y)

3
5
−ε
)))

.

See [26] or the proof of Theorem 3.5.9 in [31],

4. Proof of Theorem 1.1

Recall that throughout y lies in the region Hε given by (3) and Lε(y) is
defined by (12).

With P (a) as in (6), define ζK(s, y) by

(53) ζK(s, y) =
∏

N(p)≤y

(
1− (N(p))−s

)−1 =
∑

a
P (a)≤y

(N(a))−s

which is valid in σ > 0 since the product is finite.

Lemma 4.1. To each ε > 0, there exists y0(ε) such that

(54) ζK(s, y) = ζK(s)(s− 1) log y ρ̂((s− 1) log y)
(
1 + O((Lε(y))−1

)
)

uniformly for

(55) y ≥ y0(ε),σ ≥ 1− (log y)−
2
5
−ε, |t| ≤ Lε(y).

Proof. The proof is similar to that given in [31] for the case K = Q (see
Lemma 9.1 of chapter 3.5); see also Lemme 6 and Proposition 1 of [26].
The properties of ζ ′K(s)/ζK(s) required have been established in Lemma
2.8. �

Recall (see (10)) that α0 = 1− ξ(u)
log y . Let

(56) T = Lε/3(y).

Define

(57) J(x, y) :=
1

2πi

∫ α0+iT

α0−iT
gK(s)(s− 1) log y ρ̂((s− 1) log y) xss−1ds

where gK(s) = ζK(s)− λKζ(s) as in (8). Then (see (11))

lim
T→∞

J(x, y) = J0(x, y).
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Lemma 4.2. For y ∈ Hε

(58) ΨK(x, y) = λKΨ(x, y) + J(x, y) + O

(
xρ(u)
Lε(y)

)
.

Proof. By Perron’s formula

(59) ΨK(x, y) =
1

2πi

∫ α0+iT

α0−iT
ζK(s, y)xss−1ds + E

where

E � xα0

∞∑
m=1

jy(m)
mα0(1 + T

∣∣log x
m

∣∣) ,
with

jy(m) = |{a : N(a) = m,P (a) ≤ y}|
so 0 ≤ jy(m) ≤ j(m) ≤ dn(m), and by (53)

ζK(s, y) =
∞∑

m=1

jy(m)m−s.

Following the method employed to bound the error term in the proof of
Lemma 9.4 of chapter 3.5 of [31], but with T defined differently, and using
Lemma 4.1 and appropriate results from sections 2 and 3, in particular
noting that ζK(α0) � |α0 − 1|−1 , we find that

(60) E � xρ(u)(Lε(y))−1.

We now use Lemma 4.1 with ε replaced by ε/3 to substitute for ζK(s, y)
in the integral in (59). The conditions of (55) hold since

|t| ≤ T = Lε/3(y) and α0 = 1− ξ(u)
log y

≥ 1− (log y)−
2
5
− ε

3 for y ∈ Hε,

and we assume throughout that x and hence y are sufficiently large. We
obtain

ΨK(x, y) =
1

2πi

∫ α0+iT

α0−iT
ζK(s)(s− 1) log y ρ̂((s− 1) log y) xss−1ds

+ O

(
xρ(u)
Lε(y)

)
=

λK

2πi

∫ α0+iT

α0−iT
ζ(s)(s− 1) log y ρ̂((s− 1) log y) xss−1ds(61)

+ J(x, y) + O

(
xρ(u)
Lε(y)

)
by (8) and since

(Lε/3(y))−1

∫ α0+iT

α0−iT
ζK(s, y)xss−1ds � ζK(α0, y)xα0(Lε/3(y))−1 log T
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� ζK(α0)ξ(u)ρ̂(−ξ(u))xe−uξ(u) log y(Lε/3(y))−1 � xρ(u)(Lε(y))−1

on using Lemma 4.1, (22), Lemmas 3.4(iii), 3.2(iii) and the fact that log u =
o(log Lε/3(y)) for y ∈ Hε.

The first term on the right of (61) equals

(62) λKΛ(x, y) + O(xρ(u)(Lε(y))−1);

see the proof of Theorem 3.5.9 in [31] with a slightly different range of
integration or Proposition 2 of [26]. The lemma now follows from Lemma
3.8. �

To complete the proof of Theorem 1.1, we need to show that

|J0(x, y)− J(x, y)| � xρ(u)(Lε(y))−1;

this follows from

Lemma 4.3.∫
σ=α0
|t|≥T

gK(s)(s− 1) log yρ̂((s− 1) log y) xss−1ds � xρ(u)
Lε(y)

.

Proof. It is sufficient to consider the range t ≥ T. Let

J∗ =
∫

σ=α0
t≥T

gK(s)(s− 1) log y ρ̂((s− 1) log y) xss−1ds.

Since T log y > 1 + uξ, we have by Lemma 3.4(iii) that

(s− 1) log y ρ̂((s− 1) log y) = 1 + O

(
1 + uξ

|t| log y

)
.

Hence by Lemma 2.3(iii) with N = tn+1

J∗ =
∫

σ=α0
t≥T

 ∑
m≤tn+1

b(m)m−s + O

(
t
(n+1)

ξ(u)
log y

− 1
n

)
(

1 + O

(
1 + uξ

|t| log y

))
xss−1ds

=
∞∑

m=1

b(m)
∫

σ=α0

t≥max(T,m
1

n+1 )

( x

m

)s
s−1ds + E1(63)



750 Eira J. Scourfield

where, as |b(m)| � dn(m) and by Lemma 2.2 and Corollary 3.3,

E1 �
1 + uξ

log y
xα0

∫ ∞

T

 ∑
m≤tn+1

dn(m)m−α0

 t−2dt

+ xα0

∫ ∞

T
t
(n+1)

ξ(u)
log y

− 1
n−1

dt � xρ(u)(Lε(y))−1(64)

since

xα0 = xe−uξ,
ξ(u)
log y

= o(1), T = Lε/3(y).

It remains to estimate the main term in (63). We have∫ ∞

max(m
1

n+1 ,T )

(x/m)α0+it

α0+it
dt � (x/m)α0

1 + max(m
1

n+1 , T )
∣∣log x

m

∣∣
(see Lemma 2.2.1.1 of [31]). Hence the main term of (63) is

(65) � xα0

∞∑
m=1

dn(m)m−α0

1 + max(m
1

n+1 , T )
∣∣log x

m

∣∣ .
When |m− x| > x

1− 1
2(n+1) ,

∣∣log x
m

∣∣ � m
− 1

2(n+1) . Hence the contribution of
these terms to (65) is

� xα0
∑

|m−x|>x
1− 1

2(n+1)

dn(m)m−α0

(m
1

n+1 + T )m− 1
2(n+1)

� xe−uξ
∞∑

m=1

dn(m)

m
α0+ 1

2(n+1) + T
� xρ(u)(Lε(y))−1(66)

by Corollary 3.3; for the series on the right converges since α0 + 1
2(n+1) > 1,

and its sum is � T−1 = (Lε/3(y))−1.

When |m− x| ≤ x
1− 1

2(n+1) , (x/m)α0 � 1 and dn(m) � xδ for any δ > 0,
and so the contribution of these terms to (65) is

(67) � xδ x
1− 1

2(n+1) � xρ(u)(Lε(y))−1

if we take δ ≤ 1
4(n+1) (say) so Lε(y)/ρ(u) � x

1
2(n+1)

−δ
. Combining equations

(63) to (67), we obtain

J∗ � xρ(u)(Lε(y))−1.

The result of the lemma now follows, for the integral over t ≤ −T is just
the complex conjugate of J∗. �

The result of Theorem 1.1 now follows from Lemmas 4.2 and 4.3.
In the next two sections we investigate J(x, y) further.
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5. Asymptotic formula for J(x,y)

Define J(x, y) by (57) with T = Lε/3(y) and y ∈ Hε given by (3). We
split the integral into several parts depending on the size of |t| and of u,
and deal with each part in a separate lemma. Our aim is to show that the
magnitude of J(x, y) (when gK(1) 6= 0) is the same as that of the second
term in Λ(x, y), given in Corollary 3.7. Provided gK(1) 6= 0, the leading
term comes from the range |t| ≤ π in (68).

By the change of variable (s− 1) log y −→ s, we can rewrite (57) as

(68) J(x, y) =
x

2πi

∫ −ξ(u)+iT log y

−ξ(u)−iT log y

gK(1 + s
log y )

s + log y
sρ̂(s)eusds.

Lemma 5.1. For ξ(u) > 1,

J1 :=
1

2πi

∫ −ξ(u)+iπ

−ξ(u)−iπ

gK(1 + s
log y )

s + log y
sρ̂(s)eusds

= −ρ(u)ξ(u)
log y

{
gK(1) + O

(
ξ(u)
log y

+
1√
u

)}
.

Proof. Let

(69) F (w) = gK(w)w−1

(
<(w) > 1− 1

n

)
so in this region F (w) is differentiable and is bounded for bounded w.
Hence for |w − 1| ≤ 1

2n (say),

F (w) = F (1) + O(|w − 1|).

Putting w = 1 + −ξ+it
log y , |t| ≤ π, we obtain since ξ = ξ(u) > 1

(70) F

(
1 +

−ξ + it

log y

)
= gK(1) + O(ξ(u)/ log y).

Thus by Lemma 3.4(iii)

J1 =
e−uξ

2π log y

∫ π

−π
gK(1)(−ξ + it)ρ̂(−ξ + it)eiutdt

+ O

((
ξ(u)
log y

)2

e−uξ

∫ π

−π
exp

(
I(ξ)− ut2

2π2

)
dt

)
.(71)

The error term in (71) is

(72) � exp (I(ξ)− uξ)
1√
u

(
ξ(u)
log y

)2

� ρ(u)
(

ξ(u)
log y

)2

by Lemma 3.2(i) and (iii).
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It remains to investigate the integrals

J
(1)
1 =

1
2π

∫ π

−π
ρ̂(−ξ + it)eu(−ξ+it)dt,(73)

J
(2)
1 =

1
2π

∫ π

−π
tρ̂(−ξ + it)eu(−ξ+it)dt;(74)

for by (71) and (72)

(75) J1 =
gK(1)
log y

(−ξJ
(1)
1 + iJ

(2)
1 ) + O

(
ρ(u)

(
ξ(u)
log y

)2
)

.

By (44)

(76) J
(1)
1 = ρ(u)− 1

2π

∫
|t|>π

ρ̂(−ξ + it)eu(−ξ+it)dt.

Using Lemma 3.4(iii) and Lemma 3.2(i) and (iii)

1
2π

∫
π≤|t|≤1+uξ

ρ̂(−ξ + it)eu(−ξ+it)dt � uξe−uξ exp
(

I(ξ)− u

ξ2 + π2

)
� uξ

√
uρ(u) exp

(
− u

ξ2 + π2

)
.(77)

For any U1 > 1 + uξ, by Lemma 3.4(iii) the contribution to the integral in
(76) from the range 1 + uξ ≤ t ≤ U1 is

1
2π

∫
1+uξ≤t≤U1

eu(−ξ+it)

−ξ + it

(
1 + O

(
1 + uξ

t

))
dt

=
1

2πi

∫ −ξ+iU1

−ξ+i(1+uξ)
s−1eusds + O

(
e−uξ(1 + uξ)

∫ U1

1+uξ

dt

t2

)
=

1
2πi

{[
eus

us

]−ξ+iU1

−ξ+i(1+uξ)

+ u−1

∫ −ξ+iU1

−ξ+i(1+uξ)
s−2eusds

}
+ O(e−uξ)

� e−uξ = ρ(u) exp
(
−u

(
1 + O

(
log2 u

log u

)))
(78)

by Corollary 3.3. The same estimate holds when 1+uξ ≤ −t ≤ U1. Letting
U1 →∞, we obtain from (76), (77) and (78) that

(79) J
(1)
1 = ρ(u)

{
1 + O

(
u3/2 log u exp

(
− u

ξ2 + π2

))}
since ξ(u) > 1.
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By Lemmas 3.4(iii) and 3.2(iii) and (i)

J
(2)
1 � e−uξ

∫ π

0
t exp

(
I(ξ)− ut2

2π2

)
dt

�
√

uρ(u)u−1 =
1√
u

ρ(u) <
1√
u

ρ(u)ξ(u)(80)

since ξ(u) > 1.
We deduce from (75), (79) and (80) that since 1 < ξ(u) ∼ log u

J1 = −ρ(u)ξ(u)
log y

(
gK(1) + O

(
ξ(u)
log y

+
1√
u

))
as required. �

Lemma 5.2. For ξ(u) > 1

J2 :=
1

2πi

∫
σ=−ξ(u)

π≤|t|≤1+uξ

gK(1 + s
log y )

s + log y
sρ̂(s)eusds

� ρ(u)ξ(u)
log y

exp
(

−u

ξ2 + π2

)
u3(log u)3/2.

Proof. Let U2 = min(1 + uξ, 1
n+1 log y); then for π ≤ |t| ≤ U2, s = −ξ + it

we have
∣∣∣ s
log y

∣∣∣ ≤ ξ
log y + 1

n+1 < 1
n for sufficiently large y, and so gK(1+ s

log y )

is bounded whilst
∣∣∣1 + s

log y

∣∣∣� 1. With F (w) as in (69) it follows that

F

(
1 +

s

log y

)
� 1.

Hence by Lemma 3.4(iii)

1
2πi

∫
σ=−ξ(u)
π≤|t|≤U2

F (1 + s
log y )

log y
sρ̂(s)eusds

� U2
2

log y
exp

(
I(ξ)− uξ − u

ξ2 + π2

)
� (uξ)2

log y

√
uρ(u) exp

(
− u

ξ2 + π2

)
� ρ(u)ξ(u)

log y
exp

(
− u

ξ2 + π2

)
u5/2 log u(81)

by Lemma 3.2(i) and (iii).
Now suppose that U2 = 1

n+1 log y < 1 + uξ, U2 ≤ |t| ≤ 1 + uξ. In this

case, gK(1 + s
log y ) �

(
|t|

log y

)1/2
by Lemma 2.5, and

∣∣∣1 + s
log y

∣∣∣ � 1. Using
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Lemma 3.4(iii) again

1
2πi

∫
σ=−ξ(u)

1
n+1

log y≤|t|≤1+uξ

F (1 + s
log y )

log y
sρ̂(s)eusds

� (log y)−3/2 exp
(

I(ξ)− uξ − u

ξ2 + π2

)∫ 1+uξ

1
n+1

log y
t3/2dt

� (uξ)5/2(log y)−3/2√uρ(u) exp
(
− u

ξ2 + π2

)
� ρ(u)ξ(u)

log y
exp

(
− u

ξ2 + π2

)
u3(log u)3/2.(82)

The result of the lemma now follows from (81) and (82), the latter applying
only when 1

n+1 log y < 1 + uξ. �

Lemma 5.3. For u ≥ 5 and 1 + uξ < 1
n+1 log y

J3 :=
1

2πi

∫
σ=−ξ(u)

1+uξ≤|t|≤ 1
n+1

log y

gK(1 + s
log y )

s + log y
sρ̂(s)eusds � ρ(u)ξ(u)

log y

log u√
u

.

Proof. We can expand F
(
(1− ξ

log y ) + i t
log y

)
in a power series in t

log y since
|t|

log y ≤
1

n+1 , and we obtain

(83)
∞∑

m=0

c(m)
(

t

log y

)m

where c(0) = F

(
1− ξ

log y

)
� 1.

For m ≥ 1 we have by Cauchy’s inequalities that

(84) c(m) � (n +
1
2
)m

since F (w) is analytic and bounded for
∣∣∣w − (1− ξ

log y )
∣∣∣ ≤ (n + 1

2)−1 < 1
n .

Substituting in the integral J3 and using Lemma 3.4(iii) and (iv) we see
that

J3 =
e−uξ

2π log y

∞∑
m=1

c(m)(log y)−m

∫
1+uξ≤|t|≤ 1

n+1
log y

tmeiut

(
1 + O

(
1 + uξ

|t|

))
dt

+
e−uξc(0)
2π log y

∫
1+uξ≤|t|≤ 1

n+1
log y

eiut

(
1 +

∫ ∞

1
e(ξ−it)vρ′(v)dv

)
dt.(85)
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For m ≥ 1, ∫ 1
n+1

log y

1+uξ
tm−1dt �

(
1

n + 1
log y

)m

,(86) ∫
1+uξ≤|t|≤ 1

n+1
log y

tmeiutdt � u−1

(
1

n + 1
log y

)m

by the second mean value theorem for real integrals. Hence by (84)
∞∑

m=1

c(m)(log y)−m

∫
1+uξ≤|t|≤ 1

n+1
log y

tmeiut

(
1 + O

(
1 + uξ

|t|

))
dt

(87) �
∞∑

m=1

(
n + 1

2

n + 1

)m (
u−1 + uξ

)
� uξ.

However, when m = 0, the right side of (86) becomes O(log2 y) which is
too big for our purposes. Hence we adopt a different approach for this case,
as indicated in (85). We split the inner integral into sections, recalling that
it is absolutely convergent. Since

(88)
∫

1+uξ≤|t|≤ 1
n+1

log y
eiutdt � u−1,

our main concern is to investigate (with s = −ξ + it)

(89)
1

2πi log y

∫
σ=−ξ

1+uξ≤|t|≤ 1
n+1

log y

eus

(∫ ∞

1
e−svρ′(v)dv

)
ds.

The first three derivatives of ρ(v) are continuous on v ≥ 4, so consider first

i−1

∫
σ=−ξ

1+uξ≤t≤ 1
n+1

log y

eus

(∫ 4

1
e−svρ′(v)dv

)
ds

= e−uξ

∫ 4

1
ρ′(v)evξ

(∫ 1
n+1

log y

1+uξ
ei(u−v)tdt

)
dv � 1

uξ
e(4−u)ξ(90)

since ρ′(v) is bounded and u − v ≥ u − 4 ≥ 1. (It would be enough here
and below to have u− 4 ≥ δ for any fixed δ > 0.)

Let X be large (with log2 X > ξ + 1) where later we let X → ∞. On
integrating by parts twice
(91)∫ X

4
e−svρ′(v)dv =

[(
−s−1ρ′(v)− s−2ρ′′(v)

)
e−sv

]X
4

+ s−2

∫ X

4
e−svρ′′′(v)dv.
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In order to determine what this contributes to (89), we need estimates of
the following integrals for v = 4, X :∫

σ=−ξ
1+uξ≤t≤ 1

n+1
log y

s−1e(u−v)sds

=
[

1
s(u− v)

e(u−v)s

]−ξ+ i
n+1

log y

−ξ+i(1+uξ)

+
1

u− v

∫
σ=−ξ

1+uξ≤t≤ 1
n+1

log y

s−2e(u−v)sds

(92) � e−(u−v)ξ

(1 + uξ) |u− v|
and

(93)
∫

σ=−ξ
1+uξ≤|t|≤ 1

n+1
log y

s−2e(u−v)sds � e−(u−v)ξ

(1 + uξ)
.

We need also to estimate∫
σ=−ξ

1+uξ≤|t|≤ 1
n+1

log y

euss−2

∫ X

4
e−svρ′′′(v)dvds

� e−uξ

∫ 1
n+1

log y

1+uξ
t−2

(∫ X

4
eξv
∣∣ρ′′′(v)

∣∣ dv

)
dt.(94)

Since ρ′′′(v) < 0, the inner integral is[
−eξv(ρ′′(v)− ξρ′(v) + ξ2ρ(v))

]X
4

+ ξ3

∫ X

4
eξvρ(v)dv

where on using Lemma 3.1(i), (43) and Lemma 3.4(iii)

(95)
∫ X

4
eξvρ(v)dv = ρ̂(−ξ) + O(ξ−1e4ξ) + O(e−X log X) � eI(ξ) + ξ−1e4ξ

as X → ∞. From (95) and since
∣∣ρ(k)(X)

∣∣ eξX → 0 as X → ∞ for k =
0, 1, 2, (94) is
(96)
� e−uξ

(
ξ3eI(ξ) + ξ2e4ξ

)
(1 + uξ)−1 �

(
ξ3ρ(u)

√
u + ξ2e(4−u)ξ

)
(1 + uξ)−1.

From (91), (92), (93) and (96) we obtain∫
σ=−ξ

1+uξ≤|t|≤ 1
n+1

log y

eus

(∫ ∞

4
e−svρ′(v)dv

)
ds

�
(
ξ3ρ(u)

√
u + ξ2e(4−u)ξ

)
(1 + uξ)−1 � ρ(u) (ξ(u))2 /

√
u(97)
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by Corollary 3.3. Combining (97) and (90), we see that the double integral
in (89) is

(98) � ρ(u)ξ(u)
log y

ξ(u)√
u

.

It follows from (87), (88) and (98) that

J3 �
e−uξuξ

log y
+

ρ(u) (ξ(u))2√
u log y

� ρ(u)(ξ(u))2

log y
√

u
� ρ(u)ξ(u)

log y

log u√
u

by Corollary 3.3. �

So far we have evaluated the part of the integral (68) with |t| ≤ max(1+
uξ, 1

n+1 log y) = U3 (say). To complete the estimate for the range U3 ≤
|t| ≤ T log y, we consider separately the two cases u < (log2 y)2, when
U3 = 1

n+1 log y, and u ≥ (log2 y)2.

Lemma 5.4. For u < (log2 y)2, ξ(u) > 1

J4 :=
1

2πi

∫
σ=−ξ(u)

1
n+1

log y≤|t|≤T log y

gK(1 + s
log y )

s + log y
sρ̂(s)eusds

� ρ(u)ξ(u)
log y

exp
(
−u

(
1 + O

(
log2 u

log u

)))
.

Proof. By Lemma 4(iii),

J4 =
1

2πi

∫
σ=−ξ(u)

1
n+1

log y≤|t|≤T log y

gK(1 + s
log y )

s + log y

(
1 + O

(
1 + uξ

|t|

))
eusds

=
e−uξ

2π

∫
1

n+1
≤|t|≤T

gK(α0 + it)
α0 + it

xit

(
1 + O

(
1 + uξ

|t| log y

))
dt(99)

by a change of variable. We verify that we can use Corollary 2.7 to bound
gK(α0 + it) in (99) by showing that (26) is satisfied. Thus we need to show
that

(100) α0 = 1− ξ

log y
≥ 1− c(log T )−2/3(log2 T )−1/3.

Since ξ(u) ∼ log u = log2 x− log2 y and y ∈ Hε (see (3))
ξ

log y
<

log2 x

log y
≤ (log y)

3
5+3ε

−1 = (log y)−
2
5
− 9ε

5(5+3ε) ,

and
(log T )2/3(log2 T )1/3 � (log y)

2
3
( 3
5
− ε

3
)(log2 y)1/3

and so (100) follows for sufficiently large y. Hence by Corollary 2.7

(101) gK(α0 + it) � (log |t|)2/3 log2 |t| � log |t|
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for t0 ≤ |t| ≤ T, and gK(α0 + it) is bounded for 1
n+1 ≤ |t| ≤ t0.

By (101), the error term in (99) is

� e−uξ (1 + uξ)
log y

(
1 +

∫ T

t0

t−2 log tdt

)
� ρ(u)ξ(u)

log y
exp

(
−u

(
1 + O

(
log2 u

log u

)))
(102)

by Corollary 3.3.
The main term in (99) may be written as

x−1

2πi

∫
σ=α0

1
n+1

≤|t|≤T

gK(s)s−1xsds.

We integrate this in the range 1
n+1 ≤ t ≤ T by parts six times to obtain

x−1

2πi


 5∑

j=0

(−1)j dj

dsj
(gK(s)s−1)xs(log x)−j−1

α0+iT

α0+ i
n+1

(103) +(log x)−6

∫ α0+iT

α0+ i
n+1

d6

ds6
(gK(s)s−1)xsds

 ,

with a corresponding expression when 1
n+1 ≤ −t ≤ T. Applying Cauchy’s

inequalities to gK(s)s−1 on a circle with centre s and radius of the form
c1/ log |t| for |t| ≥ t0 and using (101) we have that for t0 ≤ |t| ≤ T

(104)
dj

dsj
(gK(s)s−1) � |t|−1 (log |t|)j+1 (0 ≤ j ≤ 6).

For 1
n+1 ≤ |t| ≤ t0, the left side of (104) is bounded. Hence the main term

in (99) is

� xα0−1

(
(log x)−1 + (log x)−6

(
1 +

∫ T

t0

t−1(log t)7dt

))
� e−uξ

(
(log x)−1 + (log x)−6(log T )8

)
� e−uξ

(
(log x)−1 + (log x)−6(log y)8( 3

5
− ε

3
)
)
� (log x)−1e−uξ

� ρ(u)ξ(u)
log y

exp
(
−u

(
1 + O

(
log2 u

log u

)))
(105)

since y ≤ x, ξ(u) > 1 and by Corollary 3.3. The result of the lemma now
follows from (99), (102) and (105). �
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Lemma 5.5. For u ≥ (log2 y)2

J5 :=
1

2πi

∫
σ=−ξ(u)

U3≤|t|≤T log y

gK(1 + s
log y )

s + log y
sρ̂(s)eusds

� ρ(u)ξ(u)
log y

exp
(
−u

(
1 + O

(
log2 u

log u

)))
.

Proof. Note that 1
n+1 ≤ U3/ log y < T since log2 x ≤ (log y)

3
5
− 9ε

5(5+3ε) and
so

uξ

log y
<

log x log2 x

(log y)2
< T = Lε/3(y).

Using a modification of (99)

J5 =
e−uξ

2π

∫
U3

log y
≤|t|≤T

gK(α0 + it)
α0 + it

xit

(
1 + O

(
1 + uξ

|t| log y

))
dt

� e−uξ

{
1 +

uξ

log y
+
∫ T

max(t0,U3/ log y)
t−1 log t

(
1 +

uξ

t log y

)
dt

}

by (101). The integral is � (log T )2 since uξ
|t| log y ≤ uξ

U3
≤ 1. Hence by

Corollary 3.3 and the definition of T

J5 �
ρ(u)ξ(u)

log y
exp

(
−u

(
1 + O

(
log2 u

log u

)))(
log y + (log y)

11
5
− 2ε

3

)
� ρ(u)ξ(u)

log y
exp

(
−u

(
1 + O

(
log2 u

log u

)))
since log2 y ≤

√
u and so the positive powers of log y can be absorbed into

the O−term of the exponential. This completes the proof. �

Collecting together the results of Lemmas 5.1 to 5.5, we obtain from (68)

Lemma 5.6. For u ≥ 5, so ξ(u) > 1,

J(x, y) = −ρ(u)ξ(u)
log y

x

{
gK(1) + O

(
log u

log y
+

log u√
u

)}
.

Comparing this result with Corollary 3.7, we see that as u →∞, the two
quantities Λ(x, y) − xρ(u) and J(x, y) have the same order of magnitude
provided gK(1) 6= 0. Which error term dominates in Lemma 5.6 depends
on the size of u = log x

log y compared with log y. The result of Theorem 1.3 now
follows from Theorem 1.1 and Lemma 4.3.
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6. J(x,y) in terms of real integrals

The definition of J(x, y) in (57) is given in terms of a complex integral.
Our aim in this section is to find an alternative way of expressing J(x, y) as
a combination of finite real integrals and an error term. In some situations
it may be easier to manipulate this alternative form for J(x, y).

Using Lemma 3.4(iv), we write (57) in the form

(106) J(x, y) =
1

2πi

∫ α0+iT

α0−iT
gK(s)s−1xs(
1 +

∫ ∞

1
e−z(s−1) log yρ′(z)dz

)
ds = I1 + I2

where T = Lε/3(y) and

I1 =
1

2πi

∫ α0+iT

α0−iT
gK(s)s−1xsds,(107)

I2 =
1

2πi

∫ α0+iT

α0−iT
gK(s)s−1xs

(∫ ∞

1
y−z(s−1)ρ′(z)dz

)
ds.(108)

By Lemma 2.3(ii),

(109) gK(s)s−1 =
∫ ∞

1−
(S(v)− λK [v])v−s−1dv (σ > 1− 1

n
)

where by Lemma 2.1(ii)

(110) S(v) = λKv + O(v1− 1
n ).

Hence the integral in (109) is absolutely convergent when σ = α0. The idea
is to use (109) and (110) to replace gK(s)s−1 in (107) and (108). It turns
out (see Lemma 6.2) that, assuming gK(1) 6= 0, the main term in Lemma
5.6 comes from I2, with I1 contributing to the error term.

Lemma 6.1.

I1 =
1
π

xα0

∫ 2x

1−
(S(v)− λK [v])v−α0−1(log

x

v
)−1 sin(Lε/3(y) log

x

v
)dv

+ O(xρ(u)(Lε/3(y))−1).

Proof. Substituting (109) into (107), we have on interchanging the order of
integration (valid by absolute convergence) that

I1 =
1
2π

xα0

∫ ∞

1−
(S(v)− λK [v])v−α0−1

(∫ T

−T
(x/v)itdt

)
dv.

When v 6= x, the inner integral equals

2(log
x

v
)−1 sin(T log

x

v
) → 2T as v → x,
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and hence is continuous at v = x. We deduce that

I1 =
1
π

xα0

∫ ∞

1−
(S(v)− λK [v])v−α0−1(log

x

v
)−1 sin(Lε/3(y) log

x

v
)dv

by the definition of T. The result of the lemma now follows since by (110)

xα0

∫ ∞

2x
(S(v)− λK [v])v−α0−1(log

x

v
)−1 sin(Lε/3(y) log

x

v
)dv

� xα0

∫ ∞

2x
v−α0− 1

n dv � x1− 1
n � xρ(u)(Lε/3(y))−1.

�

Lemma 6.2. For ξ(u) > 1

I1 � xρ(u)ξ(u)(log y)−1 exp
(
−u

(
1 + O

(
log2 u

log u

)))
.

Proof. We split the integral in Lemma 6.1 at the points V := exp(
√

log x)
and

√
x. We have

xα0

∫ V

1−
(S(v)− λK [v])v−α0−1(log

x

v
)−1 sin(Lε/3(y) log

x

v
)dv

� xα0

log x

∫ V

1
v−α0− 1

n dv � xe−uξ

log x

� xρ(u)ξ(u)(log y)−1 exp
(
−u

(
1 + O

(
log2 u

log u

)))

by Corollary 3.3. Also

xα0

∫ √
x

V
(S(v)− λK [v])v−α0−1(log

x

v
)−1 sin(Lε/3(y) log

x

v
)dv

� xα0

∫ √
x

V
v−α0− 1

n dv � xα0V
ξ

log y
− 1

n

� xρ(u)ξ(u)(log y)−1 exp
(
−u

(
1 + O

(
log2 u

log u

)))
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since exp
((

ξ
log y −

1
n

)√
log x

)
log y = o(1). For

√
x ≤ v ≤ 2x, sin(T log x

v
)

T log x
v

is
bounded, and hence

xα0

∫ 2x

√
x

(S(v)− λK [v])v−α0−1(log
x

v
)−1 sin(Lε/3(y) log

x

v
)dv

� xα0Lε/3(y)
∫ 2x

√
x

v−α0− 1
n dv � xα0Lε/3(y)x

1
2
( ξ
log y

− 1
n

)

� xρ(u)ξ(u)(log y)−1 exp
(
−u

(
1 + O

(
log2 u

log u

)))
since Lε/3(y) log y = o(x

1
2
( 1

n
− ξ

log y
)). This completes the proof of the lemma.

�

Lemma 6.3. Let X = max(x, x−1 exp((log y)8/5)). Then

I2 =
x

π log y

∫ x

1−

S(v)− λK [v]
v2(∫ x

yv

1
Xv

ρ′
(

u− log(vw)
log y

)
sin(Lε/3(y) log w)

w
1+ ξ

log y log w
dw

)
dv

+ O
(
xρ(u)(Lε/3(y))−1

)
.

Proof. The inner integral in (108) converges absolutely for σ = α0 since∣∣y−(s−1)z
∣∣ = eξz. Substituting (109) into (108) and rearranging the order of

the integrals, we obtain

I2 =
xα0

2π

∫ ∞

1−

S(v)− λK [v]
vα0+1

∫ ∞

1
eξzρ′(z)

∫
|t|≤T

(
x

vyz

)it

dtdzdv.

The inner integral is

2 sin(T log x
vyz )

log x
vyz

if vyz 6= x and 2T if vyz = x,

and so is a continuous function of vyz at x. Hence

(111) I2 =
xα0

π

∫ ∞

1−

S(v)− λK [v]
vα0+1

(∫ ∞

1
eξzρ′(z)

sin(T log x
vyz )

log x
vyz

dz

)
dv.

Let U = max(2u, (log y)3/5). We show that we can truncate the integral
with respect to z at z = U and the integral with respect to v at v = x
at the expense of a quantity covered by the error term of the lemma. For
z ≥ U ≥ 2u, we have yz ≥ x2 and so for v ≥ 1, x

vyz ≤ 1
x < 1, whence
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vyz

∣∣∣ ≥ log x. Hence∫ ∞

U
eξzρ′(z)

sin(T log x
vyz )

log x
vyz

dz � 1
log x

∫ ∞

U
eξz
∣∣ρ′(z)

∣∣ dz � (Lε/3(y))−1

since for z ≥ U > log Lε/3(y)

eξzρ′(z) � eξzρ(z) log z � exp(−z log U)

by Lemma 3.1(i) and Lemma 3.2(ii). It follows that the contribution to
(111) from the range z ≥ U is

(112) � xα0(Lε/3(y))−1

∫ ∞

1
v−α0− 1

n dv � xρ(u)(Lε/3(y))−1.

For v ≥ x, z ≥ 1, we have x
vyz ≤ 1

y so
∣∣∣log x

vyz

∣∣∣ ≥ log y. Hence

xα0

∫ ∞

x

S(v)− λK [v]
vα0+1

(∫ ∞

1
eξzρ′(z)

sin(T log x
vyz )

log x
vyz

dz

)
dv

� xα0

log y

∫ ∞

x
v
−α0−

1
n dv

∫ ∞

1
eξz
∣∣ρ′(z)

∣∣ dz

� x
1− ξ

log y

log y
x

ξ
log y

− 1
n ξeI(ξ) � xρ(u)(Lε/3(y))−1(113)

since the integral over z is � ξeI(ξ) + 1 and ξ
√

ueuξx−
1
n � (Lε/3(y))−1 for

y ∈ Hε. Here we have used that

0 >

∫ ∞

1
eξzρ′(z)dz =

[
eξzρ(z)

]∞
1
− ξ

∫ ∞

1
eξzρ(z)dz = −1− ξρ̂(−ξ),

by Lemma 3.4(iii), and Lemma 3.2(iii).
By (112) and (113), we can now write (111) in the form

I2 =
xα0

π

∫ x

1−

S(v)− λK [v]
vα0+1

(∫ U

1
eξzρ′(z)

sin(Lε/3(y) log x
vyz )

log x
vyz

dz

)
dv

+ O

(
xρ(u)

Lε/3(y)

)
.(114)

To obtain the result in the form given in the lemma, we change the variable
in the inner integral of (114) by putting w = x

vyz , so z =
(
log x

vw

)
/ log y =

u− log(vw)
log y , and ∂z

∂w = − 1
w log y . Also w = x

vy when z = 1, and w = x
vyU = 1

xv

or x
v exp(−(log y)8/5) according as z = U = 2u or z = U = (log y)3/5;
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hence when z = U , w = 1
Xv by definition of X. It follows that eξz =

eξuv
− ξ

log y w
− ξ

log y and so

I2 =
x

π log y

∫ x

1−

S(v)− λK [v]
v2(∫ x

yv

1
Xv

ρ′
(

u− log(vw)
log y

)
sin(Lε/3(y) log w)

w
1+ ξ

log y log w
dw

)
dv + O

(
xρ(u)

Lε/3(y)

)
as required. �

From Lemmas 6.1 and 6.3 we deduce

Theorem 6.4.

J(x,y) =
x

π log y

∫ x

1−

S(v)− λK [v]
v2(∫ x

yv

1
Xv

ρ′
(

u− log(vw)
log y

)
sin(Lε/3(y) log w)

w
1+ ξ

log y log w
dw

)
dv

+
1
π

xα0

∫ 2x

1−
(S(v)− λK [v])v−α0−1(log

x

v
)−1 sin(Lε/3(y) log

x

v
)dv

+ O

(
xρ(u)

Lε/3(y)

)
.

7. An application

Our aim in this section is to use our main results above and the methods
of [27] to study the sum defined in (15):

(115) SK(x) =
∑

a
N(a)≤x

1
P (a)

where P (a) = max {N(p) : p | a}, P (OK) = 1. When K = Q the sum in
(115) becomes

SQ(x) =
∑
n≤x

1
P (n)

where P (n) = max {p : p | n} , P (1) = 1

which, as stated in section 1, has been the subject of several papers (for
example [5], [14], [15], [16], [18]). It follows from [27] that for a sufficiently
small ε > 0

SQ(x) = x

(
1 + O

(
exp

(
−
(

1
2

log x log2 x

) 3
10
−ε
)))

H(x)
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where

H(x) =
∫ x

2

1
w2 log w

{
ρ

(
log x

log w
− 1
)
−
∫ x

1

v − [v]
v2 log w

ρ′
(

log x
v

log w
− 1
)

dv

}
dw.

It was shown in [14] that

SQ(x) = x exp
(
−(2 log x log2 x)1/2(1 + o(1))

)
.

We can obtain the corresponding results for a general number field K.
In (16) we defined

(116) L = L(x) = exp

((
1
2

log x log2 x

) 1
2

)
.

Lemma 7.1.

(i) SK(x) =
∑

L1/3≤N(p)≤L3

1
N(p)

ΨK

(
x

N(p)
, N(p)

)
+ O(x exp(−(3 + o(1)) logL(x))).

(ii) SK(x) = λKx exp(−(2 + o(1)) logL(x)).

Proof. Let r(a) denote the number of distinct prime ideals p with p |a and
N(p) = P (a), so 1 ≤ r(a) ≤ n where n = [K : Q]. For each of these prime
ideals p, a = pb where P (b) ≤ P (a), so∑

a
N(a)≤x

r(a)
P (a)

=
∑

N(p)≤x

1
N(p)

∑
b

N(b)≤x/N(p)
P (b)≤N(p)

1 =
∑

N(p)≤x

1
N(p)

ΨK

(
x

N(p)
, N(p)

)
.

Hence

(117) SK(x) =
∑

N(p)≤x

1
N(p)

ΨK

(
x

N(p)
, N(p)

)
−

∑
a

N(a)≤x

r(a)− 1
P (a)

.

When a contributes to the last sum of (117), a has two or more different
prime ideal divisors with norm P (a), so a = p1p2b with N(p1) = N(p2) =
P (a), P (b) ≤ P (a). It follows by a similar argument to above that∑

a
N(a)≤x

r(a)− 1
P (a)

�
∑

N(p)≤x

1
N(p)

ΨK

(
x

(N(p))2
, N(p)

)
.

Adapting the method used to prove Lemma 3.3(i) of [27], we find that the
contribution to the first sum in (117) made by those p with N(p) < L1/3

or L3 < N(p) ≤ x is

� x exp (− (3 + o(1)) logL) .
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Since ΨK

(
x

(N(p))2
, N(p)

)
≤ ΨK

(
x

N(p) , N(p)
)

, part (i) will be established
if we show that∑

L1/3≤N(p)≤L3

1
N(p)

ΨK

(
x

(N(p))2
, N(p)

)
� x exp (− (3 + o(1)) logL) .

Then part (ii) follows on using the argument in the proof of Lemma 3.4 of
[27].

From [19] or Theorems 1.1 and 1.3 and equation (4) above we see that
for y ∈ Hε and ξ(u) > 1

(118) ΨK(x, y) = λK xρ(u)
(

1 + O

(
log u

log y

))
.

When u = log x
log N(p) − 2,L1/3 ≤ N(p) ≤ L3, we have

ρ(u) = exp
(
−1

2
log x log2 x

log N(p)
(1 + o(1))

)
= exp

(
− (logL)2

log N(p)
(1 + o(1))

)
on using equation (120), (116) and Lemma 3.1(i). Hence by (118)

ΨK

(
x

(N(p))2
, N(p)

)
� x

(N(p))2
exp

(
− (logL)2

log N(p)
(1 + o(1))

)
.

Since N(p) = pm for some rational prime p and m ≤ n,∑
L1/3≤N(p)≤L3

1
N(p)

ΨK

(
x

(N(p))2
, N(p)

)

� x
∑

L1/3≤p≤L3

1
p3

exp

(
−(logL)2

log p
(1 + o(1))

)

� x

∫ L3

L1/3

1
w3 log w

exp

(
−(logL)2

log w
(1 + o(1))

)
dw

on using Lemma 2.9 of [27]. The required bound for the second sum in
(117) now follows on integrating by parts. �

From (61) and (62) we have for y ∈ Hε

(119) ΨK(x, y) = λKΛ(x, y) + J(x, y) + O(xρ(u)/Lε(y)).

We substitute this in Lemma 7.1(i) and investigate the sums involved.
Λ(x, y) is given by Lemma 3.6 and J(x, y) by Lemma 5.6. We need to
estimate J(x

v , v) for L1/3 ≤ v ≤ L3.
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Lemma 7.2. (i) For L1/3 ≤ v ≤ L3,

J(
x

v
, v) = −1

2
x(log2 x + log3 x + O(1))

(
gK(1)

+ O
(
(log2 x)5/4(log x)−1/4

))ρ
(

log x
log v − 1

)
v log v

.

(ii) Provided gK(1) 6= 0,−(2/gK(1))v log vJ(x
v , v) is positive and in-

creases in magnitude as v increases from L1/3 to L3.

Proof. (i)We apply Lemma 5.6 with u = log x
v

log v = log x
log v − 1. Then

log u = log2 x− log2 v + O

(
log v

log x

)
, log2 u = log3 x + O(1)

so for L1/3 ≤ v ≤ L3,

ξ(u) = log u + log2 u + O

(
log2 u

log u

)
= log2 x− log2 L+ log3 x + O(1)

=
1
2
(log2 x + log3 x) + O(1) = log2 v + O(1).(120)

Also

log u

log v
+

ξ(u)√
u
� log2 x

logL
+

√
logL
log x

log2 x �
(

log2 x

log x

)1/4

log2 x.

Hence by Lemma 5.6 when L1/3 ≤ v ≤ L3 we have

J(
x

v
, v) = − x

v log v

(
1
2
(log2 x + log3 x) + O(1)

)(
gK(1)

+ O
(
(log2 x)5/4(log x)−1/4

))
ρ

(
log x

log v
− 1
)

which is the result stated.
(ii) As v increases from L1/3 to L3, ρ

(
log x
log v − 1

)
increases and by (120)

and Lemma 3.1(i) equals exp
(
− log x

log v (log2 v + O(1))
)

. Hence if gK(1) 6= 0,

the result follows from (i) since gK(1) is real. �

Lemma 7.3. (i) Assume gK(1) 6= 0. Then

∑
L1/3≤N(p)≤L3

1
N(p)

J

(
x

N(p)
, N(p)

)
=
(

1 + O

(
1

Lε(L)

))∫ L3

L1/3

J(x
v , v)

v log v
dv.
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(ii) When gK(1) = 0,∑
L1/3≤N(p)≤L3

1
N(p)

J

(
x

N(p)
, N(p)

)

� x(log2 x)9/4(log x)−1/4

∫ L3

L1/3

ρ( log x
log v − 1)

(v log v)2
dv.

Proof. (i) From the Prime Ideal Theorem in the form of Lemma 2.4(ii), we
deduce that

θK(x) :=
∑

N(p)≤x

log N(p) = x(1 + E(x))

where
E(x) � (Lε/2(x))−1.

By Lemma 7.2(ii), it follows as in Lemmas 2.8 and 2.9 of [27] with g(v) =
v log v

∣∣J(x
v , v)

∣∣ and h(v) = v log v that∑
L1/3≤N(p)≤L3

1
N(p)

J

(
x

N(p)
, N(p)

)
=
∫ L3

L1/3

J(x
v , v)

v log v
(1 + O((L3ε/4(v))−1))dv

+ O

(
max

v=L1/3,L3

∣∣J(x
v , v)

∣∣
Lε/2(v)

)
.(121)

For L1/3 ≤ v ≤ L3, (L3ε/4(v))−1 � (Lε(L))−1. Also for v = L1/3,L3,

1
v log v

ρ(
log x

log v
− 1) � exp(−(3 + o(1)) logL)

and so

(122)
J(x

v , v)
Lε/2(v)

� x exp(−(3 + o(1)) logL).

This error term is smaller than

(123)
1

Lε(L)

∫ L3

L1/3

J(x
v , v)

v log v
dv;

for (123) is

� x log2 x
1

Lε(L)

∫ L3

L1/3

ρ( log x
log v − 1)

(v log v)2
dv

and from [5] (or by proofs analogous to those of Lemma 3.4 and 3.5 of [27])

x

∫ L3

L1/3

ρ( log x
log v − 1)

v2 log v
dv ∼

∑
L1/3≤p≤L3

p−1Ψ(
x

p
, p) = x exp(−(2 + o(1)) logL).

The result now follows from (121) and (122).
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(ii) This follows from Lemma 7.2(i) since∑
L1/3≤N(p)≤L3

1
(N(p))2 log N(p)

ρ

(
log x

log N(p)
− 1
)
∼
∫ L3

L1/3

ρ( log x
log v − 1)

(v log v)2
dv.

�

Although we do not need to do so to prove Theorem 1.4, we can use
Theorem 6.4 in section 6 to express the integral on the right of Lemma 7.3(i)
in terms of real integrals. Let η(v) = ξ( log x

log v − 1)/ log v. From Theorem 6.4
we deduce

Lemma 7.4.∫ L3

L1/3

J(x
v , v)

v log v
dv =

x

π

∫ L3

L1/3

x−η(v)

v2−η(v) log v{∫ 2x/v

1−

S(z)− λK [z]
z2−η(v)

(log
x

vz
)−1 sin(Lε/3(v) log

x

vz
)dz

}
dv

+
x

π

∫ L3

L1/3

1
(v log v)2{∫ x/v

1−

S(z)− λK [z]
z2

{∫ x/v2z

1
X(v)z

ρ′
(

log x
vzw

log v

)
sin(Lε/3(v) log w

w1+η(v) log w
dw

}
dz

}
dv

+ O

(
x

∫ L3

L1/3

ρ

(
log x

log v
− 1
)

v−2(Lε/3(v) log v)−1dv

)
where X(v) = max(x

v , v
x exp((log v)8/5)).

Note that the O−term is

� (Lε(L))−1

∫ L3

L1/3

(v log v)−1J(
x

v
, v)dv.

Lemma 7.5.

λK

∑
L1/3≤N(p)≤L3

(N(p))−1

{
Λ
(

x

N(p)
, N(p)

)

+O

(
x(N(p)Lε(N(p))−1ρ

(
log x

log N(p)
− 1
))}

= x(λK + O((Lε(L))−1))
∫ L3

L1/3

1
v2 log v

{
ρ

(
log x

log v
− 1
)

−
∫ x

1

w − [w]
w2 log v

ρ′
(

log x
w

log v
− 1
)

dw

}
dv.
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Proof. This follows on combining the method used to prove Lemma 7.3(i)
with that used to establish Theorem 3 of [27] (and in particular with a
result analogous to Lemma 4.1(i) of [27]) in the case ν = 1, η(w) = 1. �

Proof. (Theorem 1.4.) (i) From Lemmas 7.1(i), 7.3(i), 7.5 and equation
(119), we obtain when gK(1) 6= 0

SK(x) = x(λK + O((Lε(L))−1))
∫ L3

L1/3

1
v2 log v

{
ρ

(
log x

log v
− 1
)

−
∫ x

1

w − [w]
w2 log v

ρ′
(

log x
w

log v
− 1
)

dw

}
dv

+ (1 + O((Lε(L))−1)
∫ L3

L1/3

1
v log v

J(
x

v
, v)dv.(124)

We can extend the range of integration for v to 2 ≤ v ≤ x at the expense
of an error term of the form (122) which we know can be absorbed in the
O−term above.

(ii) From (119), (120), (124) and Lemmas 7.2, 7.3, 7.5, 3.5, we deduce
(irrespective of the value of gK(1)) that

SK(x) = x(λK + O((Lε(L))−1))
∫ L3

L1/3

1
v2 log v

ρ

(
log x

log v
− 1
)

{
1 +

C

2 log v
(log2 x + log3 x + O(1))

}
dv

− 1
2
x(log2 x + log3 x + O(1))

(
gK(1) + O

(
(log2 x)5/4(log x)−1/4

))
∫ L3

L1/3

1
v2(log v)2

ρ

(
log x

log v
− 1
)

dv

= x

∫ L3

L1/3

1
v2 log v

ρ

(
log x

log v
− 1
)

{
λK +

1
2 log v

(CλK − gK(1))(log2 x + log3 x + O(1))
}

dv

where C = 1− γ and gK(1) = lim
s→1

(ζK(s)− λKζ(s)). As before the integral
over v can be extended to the range 2 ≤ v ≤ x since the error involved is
bounded by the right side of (122) and so is negligible. �
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