On ideals free of large prime factors

\author{

Abstract

RÉSumé. En 1989, E. Saias a établi une formule asymptotique pour $\Psi(x, y)=|\{n \leq x: p \mid n \Rightarrow p \leq y\}|$ avec un très bon terme d'erreur, valable si $\exp \left((\log \log x)^{(5 / 3)+\epsilon}\right) \leq y \leq x, x \geq x_{0}(\epsilon), \epsilon>$ 0 . Nous étendons ce résultat à un corps de nombre K en obtenant une formule asymptotique pour la fonction analogue $\Psi_{K}(x, y)$ avec le même terme d'erreur et la même zone de validité. Notre objectif principal est de comparer les formules pour $\Psi(x, y)$ et $\Psi_{K}(x, y)$, en particulier comparer le second terme des développements.

}

Abstract. In 1989, E. Saias established an asymptotic formula for $\Psi(x, y)=|\{n \leq x: p \mid n \Rightarrow p \leq y\}|$ with a very good error term, valid for $\exp \left((\log \log x)^{(5 / 3)+\epsilon}\right) \leq y \leq x, x \geq x_{0}(\epsilon), \epsilon>0$. We extend this result to an algebraic number field K by obtaining an asymptotic formula for the analogous function $\Psi_{K}(x, y)$ with the same error term and valid in the same region. Our main objective is to compare the formulae for $\Psi(x, y)$ and $\Psi_{K}(x, y)$, and in particular to compare the second term in the two expansions.

1. Introduction

Many authors have studied the function $\Psi(x, y)$ defined to be the number of positive integers $n \leq x$ with no prime factor exceeding y; see, for example, [1], [11], [12], [26] and other papers cited by these authors. Estimates (with various degrees of precision) for $\Psi(x, y)$ have been applied in certain types of investigations (for example, [5], [14], [15], [16], [18], [27]). Our objective in this paper is to extend the more precise result of Saias $[26]$ for $\Psi(x, y)$ to an algebraic number field in order to compare the formulae obtained, and we apply our results to a sum analogous to one first considered by Ivić [14] for the rational field. We begin by giving a brief survey of two results on $\Psi(x, y)$ that we will need and the associated notation.

[^0]First we give some definitions. The Dickman function $\rho(u)$ is defined by the differential-difference equation

$$
\left\{\begin{align*}
\rho(u)=0 & \text { for } u<0 \tag{1}\\
\rho(u)=1 & \text { for } 0 \leq u \leq 1 \\
u \rho^{\prime}(u)+\rho(u-1)=0 & \text { for } u>1
\end{align*}\right.
$$

Define $\Lambda(x, y)$ for $x>1, y \geq 2$ by

$$
\begin{cases}\Lambda(x, y)=x \int_{0}^{\infty} \rho\left(\frac{\log \frac{x}{t}}{\log y}\right) d\left(\frac{[t]}{t}\right) & \text { for } x \notin \mathbf{N} \tag{2}\\ \Lambda(x, y)=\frac{1}{2}(\Lambda(x-0, y)+\Lambda(x+0, y)) & \text { for } x \in \mathbf{N}\end{cases}
$$

Write $\log _{2}(x)$ for $\log (\log x)$ when $x>1$. Let $\epsilon>0$; define the region H_{ϵ} by

$$
\begin{equation*}
H_{\epsilon}:\left(\log _{2} x\right)^{\frac{5}{3}+\epsilon} \leq \log y \leq \log x, x \geq x_{0}(\epsilon) \tag{3}
\end{equation*}
$$

When (3) holds we write $y \in H_{\epsilon}$. Let $u=\frac{\log x}{\log y}$; it is well known that

$$
\begin{equation*}
\Psi(x, y)=x \rho(u)\left(1+O\left(\frac{\log (u+1)}{\log y}\right)\right) \tag{4}
\end{equation*}
$$

for $y \in H_{\epsilon}$; this range for y was established in [11]. Various other expressions for $\Psi(x, y)$ have been derived; we utilize one with a very good error term established by Saias in [26]:

$$
\begin{equation*}
\Psi(x, y)=\Lambda(x, y)\left(1+O_{\epsilon}\left(\exp \left(-(\log y)^{\frac{3}{5}-\epsilon}\right)\right)\right) \tag{5}
\end{equation*}
$$

for $y \in H_{\epsilon}$.
The first goal of this paper is to establish a result comparable to (5) in the case when the rational field \mathbf{Q} is replaced by an algebraic number field K . Let K be a number field with degree $n \geq 2$ and ring of integers \mathfrak{O}_{K}. For any ideal \mathfrak{a} of \mathfrak{O}_{K}, define

$$
\begin{equation*}
P(\mathfrak{a})=\max \{N(\mathfrak{p}): \mathfrak{p} \mid \mathfrak{a}\} \tag{6}
\end{equation*}
$$

where \mathfrak{p} denotes a prime ideal with norm $N(\mathfrak{p})$, and let $P\left(\mathfrak{O}_{K}\right)=1$. Define $\Psi_{K}(x, y)$ by

$$
\begin{equation*}
\Psi_{K}(x, y)=|\{\mathfrak{a}: N(\mathfrak{a}) \leq x, P(\mathfrak{a}) \leq y\}| \tag{7}
\end{equation*}
$$

Thus when $K=\mathbf{Q}, \Psi_{K}(x, y)$ reduces to $\Psi(x, y)$. For papers in the literature on $\Psi_{K}(x, y)$ see for example [3], [6], [7], [8]. [10], [19] and [22]. We establish in Theorem 1.1 an asymptotic formula for $\Psi_{K}(x, y)$ for $y \in H_{\epsilon}$ with an error term of the same order of magnitude as that in (5). We use this theorem to study the difference between $\Psi_{K}(x, y)$ and its leading term and derive our main result in Theorem 1.3. This enables us to compare the second term in the asymptotic formulae for $\Psi_{K}(x, y)$ and $\Psi(x, y)$.

In order to state our main results, we need some more notation. Let $\zeta_{K}(s)$ denote the Dedekind zeta-function for the field K, a well studied
function. As we see from Lemma 2.3(i), $\zeta_{K}(s)$ has a simple pole at $s=1$ with residue λ_{K} (given in (21) in terms of invariants of K). Let

$$
\begin{equation*}
g_{K}(s)=\zeta_{K}(s)-\lambda_{K} \zeta(s) \tag{8}
\end{equation*}
$$

where $\zeta(s)$ is the Riemann zeta-function. Denote the Laplace transform of $\rho(u)$ (defined in (1)) by $\hat{\rho}(s)$ (see (43)). We define $\xi=\xi(u)$ to be the unique real solution of

$$
\begin{equation*}
e^{\xi}=1+u \xi \quad(u>1) \tag{9}
\end{equation*}
$$

with $\xi(1)=0$ by convention. Define $\alpha_{0}=\alpha_{0}(x, y)$ by

$$
\begin{equation*}
\alpha_{0}=1-\frac{\xi(u)}{\log y} \text { where } u=\frac{\log x}{\log y} \tag{10}
\end{equation*}
$$

Let

$$
\begin{equation*}
J_{0}(x, y)=\frac{1}{2 \pi i} \int_{\alpha_{0}-i \infty}^{\alpha_{0}+i \infty} g_{K}(s)(s-1) \log y \hat{\rho}((s-1) \log y) s^{-1} x^{s} d s \tag{11}
\end{equation*}
$$

We will see in Lemma 4.3 that the integral in (11) converges. For $\epsilon>0$, write

$$
\begin{equation*}
L_{\epsilon}(y)=\exp \left((\log y)^{\frac{3}{5}-\epsilon}\right) \tag{12}
\end{equation*}
$$

We can now state our result analogous to (5).
Theorem 1.1. Let $\epsilon>0$. For $y \in H_{\epsilon}$

$$
\Psi_{K}(x, y)=\lambda_{K} \Lambda(x, y)\left(1+O\left(\frac{1}{L_{\epsilon}(y)}\right)\right)+J_{0}(x, y)
$$

Using (4) and (5), we can compare $\Psi_{K}(x, y)$ with $\Psi(x, y)$, and we have:
Corollary 1.2. For $y \in H_{\epsilon}$

$$
\Psi_{K}(x, y)-\lambda_{K} \Psi(x, y)=J_{0}(x, y)+O\left(\frac{x \rho(u)}{L_{\epsilon}(y)}\right)
$$

Theorem 1.1 and its Corollary prompt us to ask what the magnitude of $J_{0}(x, y)$ is and how it compares with that of $\Psi(x, y)$.

Theorem 1.3. Assume $y \in H_{\epsilon}$.
(i) As $u=\frac{\log x}{\log y} \rightarrow \infty$,

$$
\begin{equation*}
J_{0}(x, y)=-\frac{x}{\log y} \rho(u) \xi(u)\left(g_{K}(1)+O\left(\frac{\log u}{\log y}+\frac{\log u}{\sqrt{u}}\right)\right) \tag{13}
\end{equation*}
$$

(ii) If $g_{K}(1) \neq 0, J_{0}(x, y)$ and $\Psi(x, y)-x \rho(u)$ have the same order of magnitude as $u \rightarrow \infty$.

We see from (18) and (23) that $g_{K}(1)=\sum_{m=1}^{\infty} \frac{j(m)-\lambda_{K}}{m}$ which converges. The question of whether there are algebraic number fields $K \neq \mathbf{Q}$ for which $g_{K}(1)=0$ is an interesting one. The author has consulted several experts in the area, but a definitive answer to this question does not seem to be known at present. However, at least for some fields K, there are other ways of looking at $g_{K}(1)$ that might help in deciding whether it is zero. The author would like to thank Professor B. Z. Moroz and the Referee for suggesting the following approaches. When K is a normal extension of \mathbf{Q}, $\zeta_{K}(s)=\zeta(s) F(s)$ where $F(1)=\lambda_{K}$ and $F(s)$ is known to be an entire function. Since $\zeta(s)=\frac{1}{s-1}+\gamma+O(|s-1|)$ as $s \rightarrow 1$, where γ is Euler's constant, we deduce that as $s \rightarrow 1$

$$
\zeta_{K}(s)=\frac{\lambda_{K}}{s-1}+\gamma \lambda_{K}+F^{\prime}(1)+O(|s-1|)
$$

and hence

$$
g_{K}(1)=\lim _{s \rightarrow 1}\left(\zeta_{K}(s)-\lambda_{K} \zeta(s)\right)=F^{\prime}(1)
$$

For K an abelian extension of \mathbf{Q}, let G be the corresponding Galois group and G^{*} be the character group of G. The elements of G^{*} can be regarded as Dirichlet characters; let χ_{o} denote the principal character of G^{*}. It is known that

$$
F(s)=\prod_{\substack{\chi \in G^{*} \\ \chi \neq \chi_{o}}} L(s, \chi)
$$

where $L(s, \chi)$ denotes a Dirichlet L-function; see for example Theorem 9.2.2 and section 9.4 of [9] and also Theorem 8.1 of [24]. Hence, since $F(1)=\lambda_{K}$,

$$
g_{K}(1)=F^{\prime}(1)=\lambda_{K} \sum_{\substack{\chi \in G^{*} \\ \chi \neq \chi_{o}}} \frac{L^{\prime}(1, \chi)}{L(1, \chi)}
$$

In particular when K is a quadratic field, $g_{K}(1)=F^{\prime}(1)=L^{\prime}(1, \chi)$ with χ a quadratic character; the results in [4] may enable one to calculate $g_{K}(1)$ with arbitrary precision. The techniques in [23] might also be useful in investigating $g_{K}(1)$ further in some cases. However we do not address these problems here.

We note that by (4) and (13) it follows from Theorem 1.1 that for $y \in H_{\epsilon}$

$$
\begin{equation*}
\Psi_{K}(x, y) \sim \lambda_{K} x \rho(u) \text { as } u \rightarrow \infty \tag{14}
\end{equation*}
$$

a known result for suitable y; Krause [19] has shown that this holds for $y \in H_{\epsilon}$. Hence Theorem 1.3 (ii) tells us that provided $g_{K}(1) \neq 0$ the second term in $\lambda_{K} \Lambda(x, y)$ has the same order of magnitude as $J_{0}(x, y)$. In Theorem 6.4 in section 6 , we show how to express a truncated version of the complex
integral $J_{0}(x, y)$ (see (57)) in terms of real integrals. This representation may be more useful in some applications.

To prove Theorem 1.1, we adopt the method used to establish (5) (see [26] or chapter 3.5 of [31]) but with $\zeta(s)$ replaced by $\zeta_{K}(s)$. To do so requires properties of $\zeta_{K}(s)$ analogous to some of the strongest known for $\zeta(s)$, for example the zero free region given in [29] and consequential properties; these are described in section 2. Properties of the Dickman function are given in section 3. With these tools the proof of Theorem 1.1 in section 4 is standard.

The main work of this paper is to establish Theorem 1.3 in section 5 . Our approach must take into account that we have only limited information on the partial sums of the coefficients of the Dirichlet series for $\zeta_{K}(s)$ (see Lemma 2.1(ii)), that the bounds for $\hat{\rho}(s)$ depend on the size of $t=\Im(s)$ (see Lemma 3.4(iii)), and that, as y increases in the range H_{ϵ}, u decreases from $(\log x)\left(\log _{2} x\right)^{-\frac{5}{3}-\epsilon}$ to 1 . These remarks suggest that we should split $J_{0}(x, y)$ into several integrals which we find we have to estimate by different methods. The main contribution (when $g_{K}(1) \neq 0$) comes from the small values of t (see Lemma 5.1).

We end the paper with an application of our Theorems. From (4), Ivić [14] derived the order of magnitude of the sum

$$
S_{\mathbf{Q}}(x)=\sum_{n \leq x} \frac{1}{P(n)} \text { where } P(n)=\max \{p: p \mid n\} \text { if } n>1, P(1)=1
$$

with as usual p denoting a rational prime. An asymptotic formula was obtained in [5], and a sharper asymptotic formula was obtained as a special case of Theorem 3 of [27]. In section 7 , we consider a sum analogous to $S_{\mathbf{Q}}(x)$ for the field K and estimate it using our results. Let

$$
\begin{equation*}
S_{K}(x)=\sum_{\substack{\mathfrak{a} \\ N(\mathfrak{a}) \leq x}} \frac{1}{P(\mathfrak{a})} \tag{15}
\end{equation*}
$$

where $P(\mathfrak{a})$ is defined in (6). Let

$$
\begin{equation*}
\mathcal{L}=\mathcal{L}(x)=\exp \left(\left(\frac{1}{2} \log x \log _{2} x\right)^{\frac{1}{2}}\right) \tag{16}
\end{equation*}
$$

We establish the following result.
Theorem 1.4. (i) If $g_{K}(1) \neq 0$,

$$
\begin{aligned}
& S_{K}(x)=x\left(\lambda_{K}+O\left(\frac{1}{L_{\epsilon}(\mathcal{L})}\right)\right) \int_{2}^{x} \frac{1}{v^{2} \log v}\left\{\rho\left(\frac{\log \frac{x}{v}}{\log v}\right)\right. \\
& \left.-\int_{1}^{x} \frac{w-[w]}{w^{2} \log v} \rho^{\prime}\left(\frac{\log \frac{x}{v w}}{\log v}\right) d w\right\} d v+\left(1+O\left(\frac{1}{L_{\epsilon}(\mathcal{L})}\right)\right) \int_{2}^{x} \frac{J\left(\frac{x}{v}, v\right)}{v \log v} d v
\end{aligned}
$$

where $J(x, y)$ is defined in (57).
(ii) $A s x \rightarrow \infty, S_{K}(x)=$

$$
x \int_{2}^{x} \frac{1}{v^{2} \log v}\left\{\lambda_{K}+\frac{\log _{2} x}{2 \log v}\left(\lambda_{K}(1-\gamma)-g_{K}(1)+o(1)\right)\right\} \rho\left(\frac{\log \frac{x}{v}}{\log v}\right) d v
$$

where γ is Euler's constant and $g_{K}(1)=\lim _{s \rightarrow 1}\left(\zeta_{K}(s)-\lambda_{K} \zeta(s)\right)$.
We remark that other more general applications of the methods used to derive (5) can be found in the literature. For example, in [28], H. Smida studied the sum

$$
\begin{equation*}
\sum_{\substack{m \leq x \\ P(m) \leq y}} d_{k}(m) \tag{17}
\end{equation*}
$$

where $d_{k}(m)$ denotes the number of representations of m as a product of k positive integers, its generating function being

$$
\sum_{m=1}^{\infty} d_{k}(m) m^{-s}=(\zeta(s))^{k} \quad(\Re(s)>1)
$$

Similarly one could consider sums analogous to (17) with $d_{k}(m)$ replaced by another appropriate multiplicative function with a generating function involving one or more Dedekind zeta-functions, and we may return to this problem.

The author would like to thank the Referee for helpful comments, and in particular for those relating to the constant $g_{K}(1)$ and for a simplification in the quantity $S_{K}(x)$ investigated in Theorem 1.4.

Note added in proof: The author recently established an asymptotic expansion for the number defined by (7) that is analogous to the expansion obtained in [26] for K the rational field. It is hoped to include this result in a paper being prepared.

2. Properties of $\zeta_{K}(s)$

As usual, we write $s=\sigma+i t$.
Throughout this paper, K denotes a number field with degree $n \geq 2$ and ring of integers \mathfrak{O}_{K}. Write $\mathfrak{a}, \mathfrak{b}$ for ideals of \mathfrak{O}_{K} and \mathfrak{p} for a prime ideal, and let $N(\mathfrak{a})$ denote the norm of \mathfrak{a}.

For $\sigma>1$, the Dedekind zeta-function $\zeta_{K}(s)$ is given by

$$
\begin{equation*}
\zeta_{K}(s)=\sum_{\mathfrak{a}}(N(\mathfrak{a}))^{-s}=\sum_{m=1}^{\infty} j(m) m^{-s} \tag{18}
\end{equation*}
$$

where $j(m)$ is the number of ideals \mathfrak{a} with $N(\mathfrak{a})=m$. We require some properties of $\zeta_{K}(s)$ that are analogous to some of the strongest available
for the Riemann zeta-function $\zeta(s)$ near the line $\sigma=1$, and we embody those we need and related ones in the following Lemmas.

Lemma 2.1. (i) Let $d_{n}(m)$ denote the number of representations of m as a product of n positive integers; then

$$
\begin{equation*}
j(m) \leq d_{n}(m) \tag{19}
\end{equation*}
$$

(ii) Let λ_{K} be the residue of $\zeta_{K}(s)$ at $s=1$ (given in (21) below); then

$$
\begin{equation*}
S(v):=\sum_{m \leq v} j(m)=\lambda_{K} v+O\left(v^{1-\frac{1}{n}}\right) \tag{20}
\end{equation*}
$$

These results are well known. For (i), see Corollary 3 of Lemma 7.1 of [24], and for (ii), see Theorem 6.3 of [21] from which we see that

$$
\begin{equation*}
\lambda_{K}=2^{q+r} \pi^{r} R h / m|\Delta|^{\frac{1}{2}} \tag{21}
\end{equation*}
$$

where q is the number of real and r is the number of complex conjugate pairs of monomorphisms $K \rightarrow \mathbf{C}, m$ is the number of roots of unity in K and R, h, Δ denote the regulator, class number, discriminant of K, respectively. For a stronger result, see Satz 210 of [20] or for recent results see [25] when $n \geq 3$ and [13] for $n=2$.

Lemma 2.2. For δ fixed with $0<\delta<\frac{1}{2}$,

$$
\sum_{m \leq x} d_{n}(m) m^{\delta-1} \ll x^{\delta}(\log x)^{n}
$$

Proof. This follows by partial summation and the result (see (13.3) and Theorem 13.2 of [17])

$$
\sum_{m \leq x} d_{n}(m) \ll x(\log x)^{n-1}
$$

Lemma 2.3. (i) $\zeta_{K}(s)$ is differentiable in the half plane $\sigma>1-\frac{1}{n}$ except for a simple pole at $s=1$ with residue λ_{K} (given by (21)), and in this region

$$
\begin{equation*}
\zeta_{K}(s)=\frac{\lambda_{K} s}{s-1}+s \int_{1}^{\infty}\left(S(v)-\lambda_{K} v\right) v^{-s-1} d v \tag{22}
\end{equation*}
$$

(ii) With $g_{K}(s)=\zeta_{K}(s)-\lambda_{K} \zeta(s)$ as in equation (8), we have for $\sigma>1-\frac{1}{n}$ that

$$
\begin{equation*}
g_{K}(s)=\sum_{m=1}^{\infty} b(m) m^{-s}=s \int_{1}^{\infty}\left(S(v)-\lambda_{K}[v]\right) v^{-s-1} d v \tag{23}
\end{equation*}
$$

where $b(m)=j(m)-\lambda_{K} \ll d_{n}(m)$ and $\sum_{m \leq v} b(m)=S(v)-\lambda_{K}[v] \ll v^{1-\frac{1}{n}}$.
(iii) For $\sigma>1-\frac{1}{n}$ and any $N \geq 1$

$$
\begin{equation*}
g_{K}(s)=\sum_{m \leq N} b(m) m^{-s}+O\left(N^{1-\frac{1}{n}-\sigma}\left(\frac{|s|}{\sigma-1+\frac{1}{n}}+1\right)\right) \tag{24}
\end{equation*}
$$

Proof. (i) (22) follows for $\sigma>1$ from (18) and (20) on using partial summation, and the other properties follow by analytic continuation since by (20) the integral is absolutely convergent for $\sigma>1-\frac{1}{n}$. (If we used a stronger version of Lemma 2.1(ii), this range for σ could be extended, but we do not need this.)
(ii) Since for $\sigma>0$

$$
\begin{equation*}
\zeta(s)=\frac{s}{s-1}+s \int_{1}^{\infty}([v]-v) v^{-s-1} d v \tag{25}
\end{equation*}
$$

(23) follows from part (i), (8) and (20).
(iii) By partial summation
$g_{K}(s)=\sum_{m \leq N} b(m) m^{-s}-\left(S(N)-\lambda_{K} N\right) N^{-s}+s \int_{N}^{\infty}\left(S(v)-\lambda_{K}[v]\right) v^{-s-1} d v$
and the result then follows from (20).
We remark that $\zeta_{K}(s)$ has more general properties in the whole complex plane that are analogous to those of $\zeta(s)$, but we do not require them as we are concerned only with the behaviour of $\zeta_{K}(s)$ in a region just to the left of the line $\sigma=1$. The properties that we need depend on the zero free region of $\zeta_{K}(s)$, established in [29] by A.V.Sokolovskii, and related results:

Lemma 2.4. (i) For suitable positive constants $c, t_{0}, \zeta_{K}(s) \neq 0$ in the region

$$
\begin{equation*}
\sigma \geq 1-c(\log |t|)^{-2 / 3}\left(\log _{2}|t|\right)^{-1 / 3}, \quad|t| \geq t_{0} \tag{26}
\end{equation*}
$$

(ii) Let $\pi_{K}(x)$ denote the number of prime ideals \mathfrak{p} with $N(\mathfrak{p}) \leq x$; then

$$
\begin{equation*}
\pi_{K}(x)=l i(x)+O\left(x \exp \left(-c(\log x)^{3 / 5}\left(\log _{2} x\right)^{-1 / 5}\right)\right) \tag{27}
\end{equation*}
$$

Part (ii) is the prime ideal theorem. By standard $\operatorname{arguments} \zeta_{K}(1+i t) \neq$ 0 ; hence by taking c to be sufficiently small it follows that $\zeta_{K}(s) \neq 0$ in the region

$$
\begin{equation*}
\sigma \geq 1-c\left(\log t_{0}\right)^{-2 / 3}\left(\log _{2} t_{0}\right)^{-1 / 3}, \quad|t| \leq t_{0} \tag{28}
\end{equation*}
$$

We require bounds for $\zeta_{K}(s)$ and for $\zeta_{K}^{\prime}(s) / \zeta_{K}(s)$ in appropriate regions.
Lemma 2.5. For $1-\frac{1}{2 n+1}<\sigma<1,|t| \geq t_{0}$

$$
\begin{equation*}
g_{K}(s) \ll|t|^{1 / 2}, \quad \zeta_{K}(s) \ll|t|^{1 / 2} \tag{29}
\end{equation*}
$$

Proof. We apply (24) with $N=|t|^{n}$ and the property $b(m) \ll d_{n}(m) \ll m^{\delta}$ for any fixed $\delta>0$ to obtain

$$
g_{K}(s) \ll \sum_{m \leq N} m^{-\sigma+\delta}+|t| N^{1-\frac{1}{n}-\sigma} \ll N^{\frac{1}{2 n+1}+\delta}+|t| N^{\frac{1}{2 n+1}-\frac{1}{n}} \ll|t|^{1 / 2}
$$

by our choice of N if we take $\delta \leq \frac{1}{2 n(2 n+1)}$. Since $\zeta(s) \ll|t|^{1 / 2}$ for $\frac{1}{2}<\sigma<1$, the bound for $\zeta_{K}(s)$ follows from (8) and analytic continuation.
Lemma 2.6. For s in the region (26)

$$
\begin{equation*}
\zeta_{K}(s) \ll(\log |t|)^{2 / 3} \log _{2}|t| \tag{30}
\end{equation*}
$$

Proof. From the results in [30], when $\sigma \leq 1$ in the region (26) we have

$$
\begin{equation*}
\zeta_{K}(s) \ll(\log |t|)^{2 / 3} \tag{31}
\end{equation*}
$$

and, when $\sigma \geq \frac{3}{2}, \zeta_{K}(s)$ is bounded. Hence we need only consider $1 \leq \sigma \leq$ $\frac{3}{2}, t \geq t_{0}$; the case $t \leq-t_{0}$ follows similarly. We apply Cauchy's integral formula twice using (29) and (31). Let $\eta=\frac{1}{\log t}$; suppose $\zeta_{K}(s) \ll h(t)=$ $o(|t|)$ in the region (26), and let R be the rectangle with vertices

$$
1-\eta+i(t \pm h(t)), 2+i(t \pm h(t))
$$

We can bound $\zeta_{K}(s)$ by (31) when $w=1-\eta+i(t+v)$ and $|v| \leq h(t)$, and $\zeta_{K}(s)$ is bounded when $w=2+i(t+v)$ and $|v| \leq h(t)$. By Cauchy's integral formula and since $2-\sigma \geq 1 / 2$ we have

$$
\begin{align*}
\zeta_{K}(s) & =\frac{1}{2 \pi i} \int_{R} \frac{\zeta_{K}(w)}{w-s} d w \\
& \ll \int_{-h(t)}^{h(t)} \frac{d v}{|2-\sigma+i v|}+h(t) \int_{1-\eta}^{2} \frac{d u}{|u-\sigma+i h(t)|} \\
& +(\log t)^{2 / 3} \int_{-h(t)}^{h(t)} \frac{d v}{|1-\eta-\sigma+i v|}+h(t) \int_{1-\eta}^{2} \frac{d u}{|u-\sigma-i h(t)|} \\
& \ll \log h(t)+1+(\log t)^{2 / 3}\left(1+\int_{\sigma-1+\eta}^{h(t)} v^{-1} d v\right) \\
& \ll\left(1+(\log t)^{2 / 3}\right) \log h(t) \tag{32}
\end{align*}
$$

By (29), (32) holds with $h(t)=t^{1 / 2}$, and so we obtain

$$
\begin{equation*}
\zeta_{K}(s) \ll(\log t)^{5 / 3} \tag{33}
\end{equation*}
$$

when $1 \leq \sigma \leq 3 / 2$ in the region (26). Now by (33) we can apply (32) again with $h(t)=(\log t)^{5 / 3}$, and the result follows.

Corollary 2.7. In the region (26)

$$
\begin{equation*}
g_{K}(s) \ll(\log |t|)^{2 / 3} \log _{2}|t| \tag{34}
\end{equation*}
$$

Proof. Since $\zeta(s) \ll(\log |t|)^{2 / 3}$ in the region (26) (see Theorem 6.3 of [17]), the result follows from the lemma and (8).

Lemma 2.8. In the region (26) for a suitable choice of c,

$$
\begin{equation*}
\frac{\zeta_{K}^{\prime}(s)}{\zeta_{K}(s)} \ll(\log |t|)^{2 / 3}\left(\log _{2}|t|\right)^{4 / 3} \tag{35}
\end{equation*}
$$

Proof. For $\sigma>1$,

$$
\zeta_{K}(s)=\prod_{\mathfrak{p}}\left(1-(N(\mathfrak{p}))^{-s}\right)^{-1}
$$

and hence
(36) $\frac{\zeta_{K}^{\prime}(s)}{\zeta_{K}(s)}=-\sum_{\mathfrak{p}} \frac{\log N(\mathfrak{p})}{(N(\mathfrak{p}))^{s}}+O(1) \ll \sum_{p} j(p) p^{-\sigma} \log p+O(1) \ll \frac{1}{\sigma-1}$.

Using (30) and (36), we follow the method used to prove a slight improvement of (35) when $K=\mathbf{Q}$ described in the proof of Lemma 12.3 of [17]. In the argument leading to equation (12.55) of that proof, take

$$
h(t)=(\log |t|)^{-2 / 3}\left(\log _{2}|t|\right)^{-4 / 3}, \quad r=h\left(t_{0}\right) \log _{2} t_{0}
$$

and use Lemma 2.4(i) above and then (35) follows.

3. Properties of the Dickman function

The Dickman function $\rho(u)$ is defined as in (1) by the differential-difference equation

$$
\left\{\begin{align*}
\rho(u)=0 & \text { for } u<0 \tag{37}\\
\rho(u)=1 & \text { for } 0 \leq u \leq 1 \\
u \rho^{\prime}(u)+\rho(u-1)=0 & \text { for } u>1
\end{align*}\right.
$$

Lemma 3.1. The function $\rho(u)$ has the following properties:
(i) As $u \rightarrow \infty$

$$
\rho(u)=\exp \left(-u\left(\log u+\log _{2} u-1+O\left(\frac{\log _{2} u}{\log u}\right)\right)\right)
$$

(ii)

- $\rho(u)$ is continuous except at $u=0$.
- $\rho^{\prime}(u)$ is defined for $u \neq 0$ and continuous except at $u=1$.
- $0<\rho(u) \leq 1$ for $u \geq 0,-1 \leq \rho^{\prime}(u)<0$ for $u>1$.
- $\rho(u)$ decreases strictly and $\rho^{\prime}(u)$ increases strictly on $u>1$.

Proof. A stronger form of (i) is due to de Bruijn [2], and (ii) follows from (37).

In (9), we defined $\xi=\xi(u)$ to be the unique real solution of the equation

$$
\begin{equation*}
\xi(1)=0, \quad e^{\xi}=1+u \xi \quad(u>1) \tag{38}
\end{equation*}
$$

Define $I(s), J(s)$ by

$$
\begin{align*}
& I(s)=\int_{0}^{s} \frac{e^{v}-1}{v} d v \quad(s \in \mathbf{C}) \tag{39}\\
& J(s)=\int_{0}^{\infty} \frac{e^{-s-v}}{s+v} d v \quad(s \in \mathbf{C} \backslash(-\infty, 0]) \tag{40}
\end{align*}
$$

Lemma 3.2. (i) $\xi(u)=\log u+\log _{2} u+O\left(\frac{\log _{2} u}{\log u}\right)$ for $u \geq 3$.

$$
\xi^{\prime}(u) \sim \frac{1}{u} \text { as } u \rightarrow \infty
$$

(ii) $\rho^{(k)}(u)=(-\xi(u))^{k} \rho(u)\left(1+O\left(\frac{1}{u}\right)\right)$ for $u>1, u \neq 2,3, \ldots, k, k \in \mathbf{N}$.
(iii) For $u \geq 1$

$$
\rho(u)=\left(\frac{\xi^{\prime}(u)}{2 \pi}\right)^{1 / 2} \exp (\gamma-u \xi+I(\xi))\left(1+O\left(\frac{1}{u}\right)\right)
$$

(iv) For $|v| \leq \frac{2}{3} u, u \geq 3, u-v \geq 3$

$$
\rho(u-v)=\rho(u) \exp \left(v\left(\log u+\log _{2} u+O(1)\right)\right)
$$

Proof. For (i)-(iii), see equations (47), (59), (56), (51) of chapter 3.5 of [31] or Lemme 3 of [26]. Part (iv) follows by considering the integral

$$
-\int_{u-v}^{u} \frac{\rho^{\prime}(w)}{\rho(w)} d w
$$

Note that we can rewrite (iv) as

$$
\begin{equation*}
\rho(u-v)=\rho(u) \exp (v(\xi(u)+O(1))) \tag{41}
\end{equation*}
$$

Corollary 3.3.

$$
\begin{equation*}
e^{-u \xi}=\rho(u) \exp \left(-u\left(1+O\left(\frac{\log _{2} u}{\log u}\right)\right)\right) \tag{42}
\end{equation*}
$$

This follows from (i) of Lemmas 3.1 and 3.2.
As usual, we denote the Laplace transform of $\rho(u)$ by $\hat{\rho}(s)$, so for all $s \in \mathbf{C}$

$$
\begin{equation*}
\hat{\rho}(s)=\int_{0}^{\infty} e^{-s v} \rho(v) d v \tag{43}
\end{equation*}
$$

By Lemma 3.1(i), the integral converges absolutely for all $s \in \mathbf{C}$. In our context, the inverse of this Laplace transform is given by

$$
\begin{equation*}
\rho(u)=\frac{1}{2 \pi i} \int_{-\xi(u)-i \infty}^{-\xi(u)+i \infty} e^{u s} \hat{\rho}(s) d s \tag{44}
\end{equation*}
$$

for all real $u \geq 1$; see, for example, equation (3.5.45) of [31].
Lemma 3.4. (i) $I(-s)+J(s)+\gamma+\log s=0$ for $s \in \mathbf{C} \backslash(-\infty, 0]$, where γ is Euler's constant.
(ii) $s \hat{\rho}(s)=\exp (-J(s))$ for $s \in \mathbf{C} \backslash(-\infty, 0], \hat{\rho}(s)=\exp (\gamma+I(-s))$.
(iii) For $\sigma=-\xi(u), u>1$,

$$
\begin{aligned}
\hat{\rho}(s) & \ll \exp \left(I(\xi)-\frac{t^{2} u}{2 \pi^{2}}\right) \text { for }|t| \leq \pi \\
\hat{\rho}(s) & \ll \exp \left(I(\xi)-\frac{u}{\xi^{2}+\pi^{2}}\right) \text { for }|t|>\pi \\
s \hat{\rho}(s) & =1+O\left(\frac{1+u \xi}{|s|}\right) \text { for }|t|>1+u \xi
\end{aligned}
$$

(iv)

$$
s \hat{\rho}(s)=1+\int_{1}^{\infty} e^{-s v} \rho^{\prime}(v) d v
$$

the integral being absolutely convergent for all $s \in \mathbf{C}$.
Proof. For (i) - (iii), see equations (43), (40), (44), (48), (49) of chapter 3.5 of [31]. For (iv), we have using (43)

$$
s \hat{\rho}(s)=-\int_{0}^{\infty} \rho(v) d\left(e^{-s v}\right)=\left[-\rho(v) e^{-s v}\right]_{0}^{\infty}+\int_{0}^{\infty} e^{-s v} \rho^{\prime}(v) d v
$$

on integrating by parts. The result now follows since $\rho(0)=1, e^{-\sigma v} \rho(v) \rightarrow$ 0 as $v \rightarrow \infty$ and $\rho^{\prime}(v)=0$ for $0<v<1$.

Lemma 3.5. As $u=\frac{\log x}{\log y} \rightarrow \infty$,

$$
\begin{align*}
-\int_{1}^{x} \frac{v-[v]}{v^{2}} \rho^{\prime} & \left(u-\frac{\log v}{\log y}\right) d v \\
& =C \rho(u) \xi(u)\left(1+O\left(\frac{1}{\log u}+\frac{1}{\left(\log _{2} x\right)^{1 / 2}}+\frac{y}{x}\right)\right) \tag{45}
\end{align*}
$$

where

$$
\begin{equation*}
C=\int_{1}^{\infty} \frac{v-[v]}{v^{2}} d v=1-\gamma \tag{46}
\end{equation*}
$$

Proof. We consider first the integral over the range $1 \leq v \leq x^{2 / 3}$, where $\frac{\log v}{\log y} \leq \frac{2}{3} u$. By Lemma 3.2(i), (ii), (iv) and the mean value theorem applied to ξ we have for $v<\min \left(x^{2 / 3}, \frac{x}{y}\right)$, so $u-\frac{\log v}{\log y}>1$, that

$$
\begin{gather*}
-\rho^{\prime}\left(u-\frac{\log v}{\log y}\right)=\xi\left(u-\frac{\log v}{\log y}\right) \rho\left(u-\frac{\log v}{\log y}\right)\left(1+O\left(\frac{1}{u}\right)\right) \\
=\left(\xi(u)+O\left(\frac{\log v}{u \log y}\right)\right) \rho(u) \exp \left(\frac{\log v}{\log y}(\xi(u)+O(1))\right)\left(1+O\left(\frac{1}{u}\right)\right) \\
\quad=\xi(u) \rho(u) \exp \left(\frac{\log v}{\log y}(\xi(u)+O(1))\right)\left(1+O\left(\frac{1}{\log u}\right)\right) \tag{47}
\end{gather*}
$$

Throughout this paper we are assuming that $y \in H_{\epsilon}$ given by (3), so using Lemma 3.2(i)

$$
\begin{equation*}
\frac{\xi(u)+O(1)}{\log y} \ll\left(\log _{2} x\right)^{-\frac{2}{3}-\epsilon} \tag{48}
\end{equation*}
$$

Hence if $\log v=o\left(\left(\log _{2} x\right)^{+\frac{2}{3}+\epsilon}\right)$,

$$
\begin{equation*}
\exp \left(\frac{\log v}{\log y}(\xi(u)+O(1))\right)=1+O\left(\log v\left(\log _{2} x\right)^{-\frac{2}{3}-\epsilon}\right) \tag{49}
\end{equation*}
$$

Define $V=V(x)$ by $\log V=\left(\log _{2} x\right)^{+\frac{1}{6}+\epsilon}$; we could replace the exponent $\frac{1}{6}$ by any positive number $<\frac{2}{3}$. For $v<\min \left(V, \frac{x}{y}\right)$, it follows from (47) and (49) that

$$
\rho^{\prime}\left(u-\frac{\log v}{\log y}\right)=\xi(u) \rho(u)\left(1+O\left(\frac{1}{\log u}+\frac{1}{\left(\log _{2} x\right)^{1 / 2}}\right)\right)
$$

Hence since $\rho^{\prime}\left(u-\frac{\log v}{\log y}\right)=0$ for $v>\frac{x}{y}$,

$$
\begin{aligned}
I_{1} & :=-\int_{1}^{V} \frac{v-[v]}{v^{2}} \rho^{\prime}\left(u-\frac{\log v}{\log y}\right) d v \\
& =\xi(u) \rho(u)\left(1+O\left(\frac{1}{\log u}+\frac{1}{\left(\log _{2} x\right)^{1 / 2}}\right)\right) \int_{1}^{\min \left(V, \frac{x}{y}\right)} \frac{v-[v]}{v^{2}} d v \\
(50) & =C \xi(u) \rho(u)\left(1+O\left(\frac{1}{\log u}+\frac{1}{\left(\log _{2} x\right)^{1 / 2}}+\max \left(\frac{1}{V}, \frac{y}{x}\right)\right)\right)
\end{aligned}
$$

Since $\zeta(s)=\frac{1}{s-1}+\gamma+O(|s-1|)$, we have $C=1-\gamma$ by (25). By (47) again when $\frac{x}{y} \stackrel{s-1}{>} V$

$$
\begin{aligned}
0 \leq I_{2} & :=-\int_{V}^{\min \left(x^{2 / 3}, \frac{x}{y}\right)} \frac{v-[v]}{v^{2}} \rho^{\prime}\left(u-\frac{\log v}{\log y}\right) d v \\
& \leq \xi(u) \rho(u)\left(1+O\left(\frac{1}{\log u}\right)\right) \int_{V}^{\min \left(x^{2 / 3}, \frac{x}{y}\right)} v^{-2+\eta} d v
\end{aligned}
$$

where $\eta=\frac{\xi(u)+O(1)}{\log y}=O\left(\left(\log _{2} x\right)^{-\frac{2}{3}-\epsilon}\right)$ by (48). Hence since $V^{\eta} \sim 1$ as $x \rightarrow \infty$

$$
\begin{equation*}
I_{2} \ll \xi(u) \rho(u) V^{-1} \tag{51}
\end{equation*}
$$

Since $\rho^{\prime}\left(u-\frac{\log v}{\log y}\right)=0$ for $v>\frac{x}{y}$, we can extend the integral in I_{2} up to $v=x^{2 / 3}$ in all cases.

It remains to deal with the range $x^{2 / 3} \leq v \leq x$ where we use Lemma 3.1 (ii) to bound $\rho^{\prime}\left(u-\frac{\log v}{\log y}\right)$. We have

$$
\begin{equation*}
0 \leq I_{3}:=-\int_{x^{2 / 3}}^{x} \frac{v-[v]}{v^{2}} \rho^{\prime}\left(u-\frac{\log v}{\log y}\right) d v \leq \int_{x^{2 / 3}}^{x} v^{-2} d v \leq x^{-2 / 3} \tag{52}
\end{equation*}
$$

Combining (50), (51), (52) we obtain

$$
I_{1}+I_{2}+I_{3}=C \xi(u) \rho(u)\left(1+O\left(\frac{1}{\log u}+\frac{1}{\left(\log _{2} x\right)^{1 / 2}}+\frac{y}{x}\right)\right)
$$

since $\frac{1}{V}+\frac{x^{-2 / 3}}{\xi(u) \rho(u)}=o\left(\left(\log _{2} x\right)^{-1 / 2}\right)$ by (48) and Lemma 3.1(i). This gives the result.

In (2) we defined $\Lambda(x, y)$ by

$$
\begin{aligned}
& \Lambda(x, y)=x \int_{0}^{\infty} \rho\left(\frac{\log \frac{x}{v}}{\log y}\right) d\left(\frac{[v]}{v}\right) \text { for } x \notin \mathbf{N} \\
& \Lambda(x, y)=\frac{1}{2}(\Lambda(x+0, y)+\Lambda(x-0, y)) \text { for } x \in \mathbf{N}
\end{aligned}
$$

Lemma 3.6. For $x \notin \mathbf{N}$ and $u=\frac{\log x}{\log y}$

$$
\Lambda(x, y)=x\left\{\rho(u)-\int_{1}^{x} \frac{v-[v]}{v^{2} \log y} \rho^{\prime}\left(u-\frac{\log v}{\log y}\right) d v\right\}-(x-[x])
$$

See equation (80) of chapter 3.5 of [31], or Lemma 2.6 of [27] (where the last bracketed expression was missing).

From Lemma 3.5 or equation (104) of chapter 3.5 of [31], we deduce

Corollary 3.7. As $u \rightarrow \infty$

$$
\Lambda(x, y)=x\left\{\rho(u)+\frac{\xi(u) \rho(u)}{\log y}(1-\gamma+o(1))\right\}
$$

Note that $\frac{\xi(u)}{\log y}=O\left(\frac{\log (u+1)}{\log y}\right)=o(1)$ as $u \rightarrow \infty$ by (48).
Lemma 3.8 (Saias). For $\epsilon>0$ and $y \in H_{\epsilon}$ given by (3)

$$
\Psi(x, y)=\Lambda(x, y)\left(1+O_{\epsilon}\left(\exp \left(-(\log y)^{\frac{3}{5}-\epsilon}\right)\right)\right)
$$

See [26] or the proof of Theorem 3.5.9 in [31],

4. Proof of Theorem 1.1

Recall that throughout y lies in the region H_{ϵ} given by (3) and $L_{\epsilon}(y)$ is defined by (12).

With $P(\mathfrak{a})$ as in (6), define $\zeta_{K}(s, y)$ by

$$
\begin{equation*}
\zeta_{K}(s, y)=\prod_{N(\mathfrak{p}) \leq y}\left(1-(N(\mathfrak{p}))^{-s}\right)^{-1}=\sum_{\substack{\mathfrak{a} \\ P(\mathfrak{a}) \leq y}}(N(\mathfrak{a}))^{-s} \tag{53}
\end{equation*}
$$

which is valid in $\sigma>0$ since the product is finite.
Lemma 4.1. To each $\epsilon>0$, there exists $y_{0}(\epsilon)$ such that

$$
\begin{equation*}
\zeta_{K}(s, y)=\zeta_{K}(s)(s-1) \log y \hat{\rho}((s-1) \log y)\left(1+O\left(\left(L_{\epsilon}(y)\right)^{-1}\right)\right) \tag{54}
\end{equation*}
$$

uniformly for

$$
\begin{equation*}
y \geq y_{0}(\epsilon), \sigma \geq 1-(\log y)^{-\frac{2}{5}-\epsilon},|t| \leq L_{\epsilon}(y) \tag{55}
\end{equation*}
$$

Proof. The proof is similar to that given in [31] for the case $K=\mathbf{Q}$ (see Lemma 9.1 of chapter 3.5); see also Lemme 6 and Proposition 1 of [26]. The properties of $\zeta_{K}^{\prime}(s) / \zeta_{K}(s)$ required have been established in Lemma 2.8.

Recall (see (10)) that $\alpha_{0}=1-\frac{\xi(u)}{\log y}$. Let

$$
\begin{equation*}
T=L_{\epsilon / 3}(y) \tag{56}
\end{equation*}
$$

Define
(57) $J(x, y):=\frac{1}{2 \pi i} \int_{\alpha_{0}-i T}^{\alpha_{0}+i T} g_{K}(s)(s-1) \log y \hat{\rho}((s-1) \log y) x^{s} s^{-1} d s$
where $g_{K}(s)=\zeta_{K}(s)-\lambda_{K} \zeta(s)$ as in (8). Then (see (11))

$$
\lim _{T \rightarrow \infty} J(x, y)=J_{0}(x, y)
$$

Lemma 4.2. For $y \in H_{\epsilon}$

$$
\begin{equation*}
\Psi_{K}(x, y)=\lambda_{K} \Psi(x, y)+J(x, y)+O\left(\frac{x \rho(u)}{L_{\epsilon}(y)}\right) . \tag{58}
\end{equation*}
$$

Proof. By Perron's formula

$$
\begin{equation*}
\Psi_{K}(x, y)=\frac{1}{2 \pi i} \int_{\alpha_{0}-i T}^{\alpha_{0}+i T} \zeta_{K}(s, y) x^{s} s^{-1} d s+E \tag{59}
\end{equation*}
$$

where

$$
E \ll x^{\alpha_{0}} \sum_{m=1}^{\infty} \frac{j_{y}(m)}{m^{\alpha_{0}}\left(1+T\left|\log \frac{x}{m}\right|\right)},
$$

with

$$
j_{y}(m)=|\{\mathfrak{a}: N(\mathfrak{a})=m, P(\mathfrak{a}) \leq y\}|
$$

so $0 \leq j_{y}(m) \leq j(m) \leq d_{n}(m)$, and by (53)

$$
\zeta_{K}(s, y)=\sum_{m=1}^{\infty} j_{y}(m) m^{-s} .
$$

Following the method employed to bound the error term in the proof of Lemma 9.4 of chapter 3.5 of [31], but with T defined differently, and using Lemma 4.1 and appropriate results from sections 2 and 3, in particular noting that $\zeta_{K}\left(\alpha_{0}\right) \ll\left|\alpha_{0}-1\right|^{-1}$, we find that

$$
\begin{equation*}
E \ll x \rho(u)\left(L_{\epsilon}(y)\right)^{-1} . \tag{60}
\end{equation*}
$$

We now use Lemma 4.1 with ϵ replaced by $\epsilon / 3$ to substitute for $\zeta_{K}(s, y)$ in the integral in (59). The conditions of (55) hold since

$$
|t| \leq T=L_{\epsilon / 3}(y) \text { and } \alpha_{0}=1-\frac{\xi(u)}{\log y} \geq 1-(\log y)^{-\frac{2}{5}-\frac{\epsilon}{3}} \text { for } y \in H_{\epsilon},
$$

and we assume throughout that x and hence y are sufficiently large. We obtain

$$
\begin{array}{r}
\Psi_{K}(x, y)=\frac{1}{2 \pi i} \int_{\alpha_{0}-i T}^{\alpha_{0}+i T} \zeta_{K}(s)(s-1) \log y \hat{\rho}((s-1) \log y) x^{s} s^{-1} d s \\
\quad+O\left(\frac{x \rho(u)}{L_{\epsilon}(y)}\right) \\
=\frac{\lambda_{K}}{2 \pi i} \int_{\alpha_{0}-i T}^{\alpha_{0}+i T} \zeta(s)(s-1) \log y \hat{\rho}((s-1) \log y) x^{s} s^{-1} d s \tag{61}\\
\quad+J(x, y)+O\left(\frac{x \rho(u)}{L_{\epsilon}(y)}\right)
\end{array}
$$

by (8) and since

$$
\left(L_{\epsilon / 3}(y)\right)^{-1} \int_{\alpha_{0}-i T}^{\alpha_{0}+i T} \zeta_{K}(s, y) x^{s} s^{-1} d s \ll \zeta_{K}\left(\alpha_{0}, y\right) x^{\alpha_{0}}\left(L_{\epsilon / 3}(y)\right)^{-1} \log T
$$

$$
\ll \zeta_{K}\left(\alpha_{0}\right) \xi(u) \hat{\rho}(-\xi(u)) x e^{-u \xi(u)} \log y\left(L_{\epsilon / 3}(y)\right)^{-1} \ll x \rho(u)\left(L_{\epsilon}(y)\right)^{-1}
$$

on using Lemma 4.1, (22), Lemmas 3.4(iii), 3.2(iii) and the fact that $\log u=$ $o\left(\log L_{\epsilon / 3}(y)\right)$ for $y \in H_{\epsilon}$.

The first term on the right of (61) equals

$$
\begin{equation*}
\lambda_{K} \Lambda(x, y)+O\left(x \rho(u)\left(L_{\epsilon}(y)\right)^{-1}\right) \tag{62}
\end{equation*}
$$

see the proof of Theorem 3.5.9 in [31] with a slightly different range of integration or Proposition 2 of [26]. The lemma now follows from Lemma 3.8.

To complete the proof of Theorem 1.1, we need to show that

$$
\left|J_{0}(x, y)-J(x, y)\right| \ll x \rho(u)\left(L_{\epsilon}(y)\right)^{-1}
$$

this follows from

Lemma 4.3.

$$
\int_{\substack{\sigma=\alpha_{0} \\|t| \geq T}} g_{K}(s)(s-1) \log y \hat{\rho}((s-1) \log y) x^{s} s^{-1} d s \ll \frac{x \rho(u)}{L_{\epsilon}(y)}
$$

Proof. It is sufficient to consider the range $t \geq T$. Let

$$
J^{*}=\int_{\substack{\sigma=\alpha_{0} \\ t \geq T}} g_{K}(s)(s-1) \log y \hat{\rho}((s-1) \log y) x^{s} s^{-1} d s
$$

Since $T \log y>1+u \xi$, we have by Lemma 3.4(iii) that

$$
(s-1) \log y \hat{\rho}((s-1) \log y)=1+O\left(\frac{1+u \xi}{|t| \log y}\right)
$$

Hence by Lemma 2.3(iii) with $N=t^{n+1}$

$$
\begin{align*}
J^{*}= & \int_{\substack{\sigma=\alpha_{0} \\
t \geq T}}\left(\sum_{m \leq t^{n+1}} b(m) m^{-s}+O\left(t^{(n+1) \frac{\xi(u)}{\log y}-\frac{1}{n}}\right)\right) \\
& \left(1+O\left(\frac{1+u \xi}{|t| \log y}\right)\right) x^{s} s^{-1} d s \\
= & \sum_{m=1}^{\infty} b(m) \int_{t \geq \max \left(T, m^{\frac{1}{n+1}}\right)}\left(\frac{x}{m}\right)^{s} s^{-1} d s+E_{1} \tag{63}
\end{align*}
$$

where, as $|b(m)| \ll d_{n}(m)$ and by Lemma 2.2 and Corollary 3.3,

$$
\begin{align*}
E_{1} \ll & \frac{1+u \xi}{\log y} x^{\alpha_{0}} \int_{T}^{\infty}\left(\sum_{m \leq t^{n+1}} d_{n}(m) m^{-\alpha_{0}}\right) t^{-2} d t \\
& +x^{\alpha_{0}} \int_{T}^{\infty} t^{(n+1) \frac{\xi(u)}{\log y}-\frac{1}{n}-1} d t \ll x \rho(u)\left(L_{\epsilon}(y)\right)^{-1} \tag{64}
\end{align*}
$$

since

$$
x^{\alpha_{0}}=x e^{-u \xi}, \quad \frac{\xi(u)}{\log y}=o(1), \quad T=L_{\epsilon / 3}(y)
$$

It remains to estimate the main term in (63). We have

$$
\int_{\max \left(m^{\frac{1}{n+1}}, T\right)}^{\infty} \frac{(x / m)^{\alpha_{0}+i t}}{\alpha_{0}+i t} d t \ll \frac{(x / m)^{\alpha_{0}}}{1+\max \left(m^{\frac{1}{n+1}}, T\right)\left|\log \frac{x}{m}\right|}
$$

(see Lemma 2.2.1.1 of [31]). Hence the main term of (63) is

$$
\begin{equation*}
\ll x^{\alpha_{0}} \sum_{m=1}^{\infty} \frac{d_{n}(m) m^{-\alpha_{0}}}{1+\max \left(m^{\frac{1}{n+1}}, T\right)\left|\log \frac{x}{m}\right|} \tag{65}
\end{equation*}
$$

When $|m-x|>x^{1-\frac{1}{2(n+1)}},\left|\log \frac{x}{m}\right| \gg m^{-\frac{1}{2(n+1)}}$. Hence the contribution of these terms to (65) is

$$
\begin{align*}
& \ll x^{\alpha_{0}} \sum_{|m-x|>x^{1-\frac{1}{2(n+1)}}} \frac{d_{n}(m) m^{-\alpha_{0}}}{\left(m^{\frac{1}{n+1}}+T\right) m^{-\frac{1}{2(n+1)}}} \\
& \ll x e^{-u \xi} \sum_{m=1}^{\infty} \frac{d_{n}(m)}{m^{\alpha_{0}+\frac{1}{2(n+1)}}+T} \ll x \rho(u)\left(L_{\epsilon}(y)\right)^{-1} \tag{66}
\end{align*}
$$

by Corollary 3.3; for the series on the right converges since $\alpha_{0}+\frac{1}{2(n+1)}>1$, and its sum is $\ll T^{-1}=\left(L_{\epsilon / 3}(y)\right)^{-1}$.

When $|m-x| \leq x^{1-\frac{1}{2(n+1)}},(x / m)^{\alpha_{0}} \ll 1$ and $d_{n}(m) \ll x^{\delta}$ for any $\delta>0$, and so the contribution of these terms to (65) is

$$
\begin{equation*}
\ll x^{\delta} x^{1-\frac{1}{2(n+1)}} \ll x \rho(u)\left(L_{\epsilon}(y)\right)^{-1} \tag{67}
\end{equation*}
$$

if we take $\delta \leq \frac{1}{4(n+1)}$ (say) so $L_{\epsilon}(y) / \rho(u) \ll x^{\frac{1}{2(n+1)}-\delta}$. Combining equations (63) to (67), we obtain

$$
J^{*} \ll x \rho(u)\left(L_{\epsilon}(y)\right)^{-1}
$$

The result of the lemma now follows, for the integral over $t \leq-T$ is just the complex conjugate of J^{*}.

The result of Theorem 1.1 now follows from Lemmas 4.2 and 4.3.
In the next two sections we investigate $J(x, y)$ further.
5. Asymptotic formula for $\mathbf{J}(\mathbf{x}, \mathrm{y})$

Define $J(x, y)$ by (57) with $T=L_{\epsilon / 3}(y)$ and $y \in H_{\epsilon}$ given by (3). We split the integral into several parts depending on the size of $|t|$ and of u, and deal with each part in a separate lemma. Our aim is to show that the magnitude of $J(x, y)$ (when $g_{K}(1) \neq 0$) is the same as that of the second term in $\Lambda(x, y)$, given in Corollary 3.7. Provided $g_{K}(1) \neq 0$, the leading term comes from the range $|t| \leq \pi$ in (68).

By the change of variable $(s-1) \log y \longrightarrow s$, we can rewrite (57) as

$$
\begin{equation*}
J(x, y)=\frac{x}{2 \pi i} \int_{-\xi(u)-i T \log y}^{-\xi(u)+i T \log y} \frac{g_{K}\left(1+\frac{s}{\log y}\right)}{s+\log y} s \hat{\rho}(s) e^{u s} d s \tag{68}
\end{equation*}
$$

Lemma 5.1. For $\xi(u)>1$,

$$
\begin{aligned}
J_{1} & :=\frac{1}{2 \pi i} \int_{-\xi(u)-i \pi}^{-\xi(u)+i \pi} \frac{g_{K}\left(1+\frac{s}{\log y}\right)}{s+\log y} s \hat{\rho}(s) e^{u s} d s \\
& =-\frac{\rho(u) \xi(u)}{\log y}\left\{g_{K}(1)+O\left(\frac{\xi(u)}{\log y}+\frac{1}{\sqrt{u}}\right)\right\}
\end{aligned}
$$

Proof. Let

$$
\begin{equation*}
F(w)=g_{K}(w) w^{-1} \quad\left(\Re(w)>1-\frac{1}{n}\right) \tag{69}
\end{equation*}
$$

so in this region $F(w)$ is differentiable and is bounded for bounded w. Hence for $|w-1| \leq \frac{1}{2 n}$ (say),

$$
F(w)=F(1)+O(|w-1|)
$$

Putting $w=1+\frac{-\xi+i t}{\log y},|t| \leq \pi$, we obtain since $\xi=\xi(u)>1$

$$
\begin{equation*}
F\left(1+\frac{-\xi+i t}{\log y}\right)=g_{K}(1)+O(\xi(u) / \log y) \tag{70}
\end{equation*}
$$

Thus by Lemma 3.4(iii)

$$
\begin{align*}
J_{1}= & \frac{e^{-u \xi}}{2 \pi \log y} \int_{-\pi}^{\pi} g_{K}(1)(-\xi+i t) \hat{\rho}(-\xi+i t) e^{i u t} d t \\
& +O\left(\left(\frac{\xi(u)}{\log y}\right)^{2} e^{-u \xi} \int_{-\pi}^{\pi} \exp \left(I(\xi)-\frac{u t^{2}}{2 \pi^{2}}\right) d t\right) \tag{71}
\end{align*}
$$

The error term in (71) is

$$
\begin{equation*}
\ll \exp (I(\xi)-u \xi) \frac{1}{\sqrt{u}}\left(\frac{\xi(u)}{\log y}\right)^{2} \ll \rho(u)\left(\frac{\xi(u)}{\log y}\right)^{2} \tag{72}
\end{equation*}
$$

by Lemma 3.2(i) and (iii).

It remains to investigate the integrals

$$
\begin{align*}
& J_{1}^{(1)}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \hat{\rho}(-\xi+i t) e^{u(-\xi+i t)} d t \tag{73}\\
& J_{1}^{(2)}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} t \hat{\rho}(-\xi+i t) e^{u(-\xi+i t)} d t \tag{74}
\end{align*}
$$

for by (71) and (72)

$$
\begin{equation*}
J_{1}=\frac{g_{K}(1)}{\log y}\left(-\xi J_{1}^{(1)}+i J_{1}^{(2)}\right)+O\left(\rho(u)\left(\frac{\xi(u)}{\log y}\right)^{2}\right) \tag{75}
\end{equation*}
$$

By (44)

$$
\begin{equation*}
J_{1}^{(1)}=\rho(u)-\frac{1}{2 \pi} \int_{|t|>\pi} \hat{\rho}(-\xi+i t) e^{u(-\xi+i t)} d t \tag{76}
\end{equation*}
$$

Using Lemma 3.4(iii) and Lemma 3.2(i) and (iii)

$$
\begin{align*}
\frac{1}{2 \pi} \int_{\pi \leq|t| \leq 1+u \xi} \hat{\rho}(-\xi+i t) e^{u(-\xi+i t)} d t & \ll u \xi e^{-u \xi} \exp \left(I(\xi)-\frac{u}{\xi^{2}+\pi^{2}}\right) \\
7) & \ll u \xi \sqrt{u} \rho(u) \exp \left(-\frac{u}{\xi^{2}+\pi^{2}}\right) \tag{77}
\end{align*}
$$

For any $U_{1}>1+u \xi$, by Lemma 3.4(iii) the contribution to the integral in (76) from the range $1+u \xi \leq t \leq U_{1}$ is

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{1+u \xi \leq t \leq U_{1}} \frac{e^{u(-\xi+i t)}}{-\xi+i t}\left(1+O\left(\frac{1+u \xi}{t}\right)\right) d t \\
& =\frac{1}{2 \pi i} \int_{-\xi+i(1+u \xi)}^{-\xi+i U_{1}} s^{-1} e^{u s} d s+O\left(e^{-u \xi}(1+u \xi) \int_{1+u \xi}^{U_{1}} \frac{d t}{t^{2}}\right) \\
& =\frac{1}{2 \pi i}\left\{\left[\frac{e^{u s}}{u s}\right]_{-\xi+i(1+u \xi)}^{-\xi+i U_{1}}+u^{-1} \int_{-\xi+i(1+u \xi)}^{-\xi+i U_{1}} s^{-2} e^{u s} d s\right\}+O\left(e^{-u \xi}\right) \\
& \text { (78) } \ll e^{-u \xi}=\rho(u) \exp \left(-u\left(1+O\left(\frac{\log _{2} u}{\log u}\right)\right)\right)
\end{aligned}
$$

by Corollary 3.3. The same estimate holds when $1+u \xi \leq-t \leq U_{1}$. Letting $U_{1} \rightarrow \infty$, we obtain from $(76),(77)$ and (78) that

$$
\begin{equation*}
J_{1}^{(1)}=\rho(u)\left\{1+O\left(u^{3 / 2} \log u \exp \left(-\frac{u}{\xi^{2}+\pi^{2}}\right)\right)\right\} \tag{79}
\end{equation*}
$$

since $\xi(u)>1$.

By Lemmas 3.4(iii) and 3.2(iii) and (i)

$$
\begin{align*}
J_{1}^{(2)} & \ll e^{-u \xi} \int_{0}^{\pi} t \exp \left(I(\xi)-\frac{u t^{2}}{2 \pi^{2}}\right) d t \\
& \ll \sqrt{u} \rho(u) u^{-1}=\frac{1}{\sqrt{u}} \rho(u)<\frac{1}{\sqrt{u}} \rho(u) \xi(u) \tag{80}
\end{align*}
$$

since $\xi(u)>1$.
We deduce from (75), (79) and (80) that since $1<\xi(u) \sim \log u$

$$
J_{1}=-\frac{\rho(u) \xi(u)}{\log y}\left(g_{K}(1)+O\left(\frac{\xi(u)}{\log y}+\frac{1}{\sqrt{u}}\right)\right)
$$

as required.
Lemma 5.2. For $\xi(u)>1$

$$
\begin{aligned}
J_{2} & :=\frac{1}{2 \pi i} \int_{\substack{\sigma=-\xi(t \mid \leq 1+u \xi}} \frac{g_{K}\left(1+\frac{s}{\log y}\right)}{s+\log y} s \hat{\rho}(s) e^{u s} d s \\
& \ll \frac{\rho(u) \xi(u)}{\log y} \exp \left(\frac{-u}{\xi^{2}+\pi^{2}}\right) u^{3}(\log u)^{3 / 2} .
\end{aligned}
$$

Proof. Let $U_{2}=\min \left(1+u \xi, \frac{1}{n+1} \log y\right)$; then for $\pi \leq|t| \leq U_{2}, s=-\xi+i t$ we have $\left|\frac{s}{\log y}\right| \leq \frac{\xi}{\log y}+\frac{1}{n+1}<\frac{1}{n}$ for sufficiently large y, and so $g_{K}\left(1+\frac{s}{\log y}\right)$ is bounded whilst $\left|1+\frac{s}{\log y}\right| \gg 1$. With $F(w)$ as in (69) it follows that

$$
F\left(1+\frac{s}{\log y}\right) \ll 1
$$

Hence by Lemma 3.4(iii)

$$
\begin{align*}
& \frac{1}{2 \pi i} \int_{\substack{\sigma=-\xi(u) \\
\pi \leq|t| \leq U_{2}}} \frac{F\left(1+\frac{s}{\log y}\right)}{\log y} s \hat{\rho}(s) e^{u s} d s \\
& \\
& \ll \frac{U_{2}^{2}}{\log y} \exp \left(I(\xi)-u \xi-\frac{u}{\xi^{2}+\pi^{2}}\right) \\
& \tag{81}
\end{align*} \lll \frac{(u \xi)^{2}}{\log y} \sqrt{u} \rho(u) \exp \left(-\frac{u}{\xi^{2}+\pi^{2}}\right) .
$$

by Lemma 3.2(i) and (iii).
Now suppose that $U_{2}=\frac{1}{n+1} \log y<1+u \xi, U_{2} \leq|t| \leq 1+u \xi$. In this case, $g_{K}\left(1+\frac{s}{\log y}\right) \ll\left(\frac{|t|}{\log y}\right)^{1 / 2}$ by Lemma 2.5, and $\left|1+\frac{s}{\log y}\right| \gg 1$. Using

Lemma 3.4(iii) again

$$
\begin{align*}
\frac{1}{2 \pi i} \int_{\frac{1}{n+1} \log y \leq|t| \leq 1+u \xi}^{\sigma=-\xi(u)}< & \frac{F\left(1+\frac{s}{\log y}\right)}{\log y} s \hat{\rho}(s) e^{u s} d s \\
& \ll(\log y)^{-3 / 2} \exp \left(I(\xi)-u \xi-\frac{u}{\xi^{2}+\pi^{2}}\right) \int_{\frac{1}{n+1} \log y}^{1+u \xi} t^{3 / 2} d t \\
& \ll(u \xi)^{5 / 2}(\log y)^{-3 / 2} \sqrt{u} \rho(u) \exp \left(-\frac{u}{\xi^{2}+\pi^{2}}\right) \\
& \ll \frac{\rho(u) \xi(u)}{\log y} \exp \left(-\frac{u}{\xi^{2}+\pi^{2}}\right) u^{3}(\log u)^{3 / 2} \tag{82}
\end{align*}
$$

The result of the lemma now follows from (81) and (82), the latter applying only when $\frac{1}{n+1} \log y<1+u \xi$.

Lemma 5.3. For $u \geq 5$ and $1+u \xi<\frac{1}{n+1} \log y$

$$
J_{3}:=\frac{1}{2 \pi i} \int_{\substack{\sigma=-\xi(u) \\ 1+u \xi \leq|t| \leq \frac{1}{n+1} \log y}} \frac{g_{K}\left(1+\frac{s}{\log y}\right)}{s+\log y} s \hat{\rho}(s) e^{u s} d s \ll \frac{\rho(u) \xi(u)}{\log y} \frac{\log u}{\sqrt{u}}
$$

Proof. We can expand $F\left(\left(1-\frac{\xi}{\log y}\right)+i \frac{t}{\log y}\right)$ in a power series in $\frac{t}{\log y}$ since $\frac{|t|}{\log y} \leq \frac{1}{n+1}$, and we obtain

$$
\begin{equation*}
\sum_{m=0}^{\infty} c(m)\left(\frac{t}{\log y}\right)^{m} \text { where } c(0)=F\left(1-\frac{\xi}{\log y}\right) \ll 1 \tag{83}
\end{equation*}
$$

For $m \geq 1$ we have by Cauchy's inequalities that

$$
\begin{equation*}
c(m) \ll\left(n+\frac{1}{2}\right)^{m} \tag{84}
\end{equation*}
$$

since $F(w)$ is analytic and bounded for $\left|w-\left(1-\frac{\xi}{\log y}\right)\right| \leq\left(n+\frac{1}{2}\right)^{-1}<\frac{1}{n}$. Substituting in the integral J_{3} and using Lemma 3.4(iii) and (iv) we see that

$$
J_{3}=\frac{e^{-u \xi}}{2 \pi \log y} \sum_{m=1}^{\infty} c(m)(\log y)^{-m}
$$

$$
\begin{align*}
& \int_{1+u \xi \leq|t| \leq \frac{1}{n+1} \log y} t^{m} e^{i u t}\left(1+O\left(\frac{1+u \xi}{|t|}\right)\right) d t \\
& +\frac{e^{-u \xi} c(0)}{2 \pi \log y} \int_{1+u \xi \leq|t| \leq \frac{1}{n+1} \log y} e^{i u t}\left(1+\int_{1}^{\infty} e^{(\xi-i t) v} \rho^{\prime}(v) d v\right) d t \tag{85}
\end{align*}
$$

For $m \geq 1$,

$$
\begin{align*}
\int_{1+u \xi}^{\frac{1}{n+1} \log y} t^{m-1} d t & \ll\left(\frac{1}{n+1} \log y\right)^{m} \tag{86}\\
\int_{1+u \xi \leq|t| \leq \frac{1}{n+1} \log y} t^{m} e^{i u t} d t & \ll u^{-1}\left(\frac{1}{n+1} \log y\right)^{m}
\end{align*}
$$

by the second mean value theorem for real integrals. Hence by (84)

$$
\begin{gather*}
\sum_{m=1}^{\infty} c(m)(\log y)^{-m} \int_{1+u \xi \leq|t| \leq \frac{1}{n+1} \log y} t^{m} e^{i u t}\left(1+O\left(\frac{1+u \xi}{|t|}\right)\right) d t \\
\ll \sum_{m=1}^{\infty}\left(\frac{n+\frac{1}{2}}{n+1}\right)^{m}\left(u^{-1}+u \xi\right) \ll u \xi \tag{87}
\end{gather*}
$$

However, when $m=0$, the right side of (86) becomes $O\left(\log _{2} y\right)$ which is too big for our purposes. Hence we adopt a different approach for this case, as indicated in (85). We split the inner integral into sections, recalling that it is absolutely convergent. Since

$$
\begin{equation*}
\int_{1+u \xi \leq|t| \leq \frac{1}{n+1} \log y} e^{i u t} d t \ll u^{-1} \tag{88}
\end{equation*}
$$

our main concern is to investigate (with $s=-\xi+i t$)

$$
\begin{equation*}
\frac{1}{2 \pi i \log y} \int_{1+u \xi \leq|t| \leq \frac{1}{n+1} \log y}^{\substack{\sigma=-\xi}} e^{u s}\left(\int_{1}^{\infty} e^{-s v} \rho^{\prime}(v) d v\right) d s \tag{89}
\end{equation*}
$$

The first three derivatives of $\rho(v)$ are continuous on $v \geq 4$, so consider first

$$
\begin{align*}
& i^{-1} \int_{\substack{\sigma=-\xi \\
1+u \xi \leq t \leq \frac{1}{n+1} \log y}} e^{u s}\left(\int_{1}^{4} e^{-s v} \rho^{\prime}(v) d v\right) d s \\
& \quad=e^{-u \xi} \int_{1}^{4} \rho^{\prime}(v) e^{v \xi}\left(\int_{1+u \xi}^{\frac{1}{n+1} \log y} e^{i(u-v) t} d t\right) d v \ll \frac{1}{u \xi} e^{(4-u) \xi} \tag{90}
\end{align*}
$$

since $\rho^{\prime}(v)$ is bounded and $u-v \geq u-4 \geq 1$. (It would be enough here and below to have $u-4 \geq \delta$ for any fixed $\delta>0$.)

Let X be large (with $\log _{2} X>\xi+1$) where later we let $X \rightarrow \infty$. On integrating by parts twice
(91)

$$
\int_{4}^{X} e^{-s v} \rho^{\prime}(v) d v=\left[\left(-s^{-1} \rho^{\prime}(v)-s^{-2} \rho^{\prime \prime}(v)\right) e^{-s v}\right]_{4}^{X}+s^{-2} \int_{4}^{X} e^{-s v} \rho^{\prime \prime \prime}(v) d v
$$

In order to determine what this contributes to (89), we need estimates of the following integrals for $v=4, X$:

$$
\begin{aligned}
& \int_{1+u \xi \leq t \leq \frac{1}{n+1} \log y} s^{-1} e^{(u-v) s} d s \\
& =\left[\frac{1}{s(u-v)} e^{(u-v) s}\right]_{-\xi+i(1+u \xi)}^{-\xi+\frac{i}{n+1} \log y}+\frac{1}{u-v} \int_{\substack{\sigma=-\xi \\
1+u \xi \leq t \leq \frac{1}{n+1} \log y}} s^{-2} e^{(u-v) s} d s
\end{aligned}
$$

$$
\begin{equation*}
\ll \frac{e^{-(u-v) \xi}}{(1+u \xi)|u-v|} \tag{92}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{1+u \xi \leq|t| \leq \frac{1}{n+1} \log y} s^{-2} e^{(u-v) s} d s \ll \frac{e^{-(u-v) \xi}}{(1+u \xi)} \tag{93}
\end{equation*}
$$

We need also to estimate

$$
\begin{align*}
\int_{1+u \xi \leq|t| \leq \frac{1}{\sigma+1} \log y}^{\sigma=-\xi} & e^{u s} s^{-2} \int_{4}^{X} e^{-s v} \rho^{\prime \prime \prime}(v) d v d s \\
& \ll e^{-u \xi} \int_{1+u \xi}^{\frac{1}{n+1} \log y} t^{-2}\left(\int_{4}^{X} e^{\xi v}\left|\rho^{\prime \prime \prime}(v)\right| d v\right) d t \tag{94}
\end{align*}
$$

Since $\rho^{\prime \prime \prime}(v)<0$, the inner integral is

$$
\left[-e^{\xi v}\left(\rho^{\prime \prime}(v)-\xi \rho^{\prime}(v)+\xi^{2} \rho(v)\right)\right]_{4}^{X}+\xi^{3} \int_{4}^{X} e^{\xi v} \rho(v) d v
$$

where on using Lemma 3.1(i), (43) and Lemma 3.4(iii)
(95) $\int_{4}^{X} e^{\xi v} \rho(v) d v=\hat{\rho}(-\xi)+O\left(\xi^{-1} e^{4 \xi}\right)+O\left(e^{-X \log X}\right) \ll e^{I(\xi)}+\xi^{-1} e^{4 \xi}$
as $X \rightarrow \infty$. From (95) and since $\left|\rho^{(k)}(X)\right| e^{\xi X} \rightarrow 0$ as $X \rightarrow \infty$ for $k=$ $0,1,2,(94)$ is
$\ll e^{-u \xi}\left(\xi^{3} e^{I(\xi)}+\xi^{2} e^{4 \xi}\right)(1+u \xi)^{-1} \ll\left(\xi^{3} \rho(u) \sqrt{u}+\xi^{2} e^{(4-u) \xi}\right)(1+u \xi)^{-1}$.
From (91), (92), (93) and (96) we obtain
$\int_{\substack{\sigma=-\xi \\ 1+u \xi \leq|t| \leq \frac{1}{n+1} \log y}} e^{u s}\left(\int_{4}^{\infty} e^{-s v} \rho^{\prime}(v) d v\right) d s$

$$
\begin{equation*}
\ll\left(\xi^{3} \rho(u) \sqrt{u}+\xi^{2} e^{(4-u) \xi}\right)(1+u \xi)^{-1} \ll \rho(u)(\xi(u))^{2} / \sqrt{u} \tag{97}
\end{equation*}
$$

by Corollary 3.3. Combining (97) and (90), we see that the double integral in (89) is

$$
\begin{equation*}
\ll \frac{\rho(u) \xi(u)}{\log y} \frac{\xi(u)}{\sqrt{u}} \tag{98}
\end{equation*}
$$

It follows from (87), (88) and (98) that

$$
J_{3} \ll \frac{e^{-u \xi} u \xi}{\log y}+\frac{\rho(u)(\xi(u))^{2}}{\sqrt{u} \log y} \ll \frac{\rho(u)(\xi(u))^{2}}{\log y \sqrt{u}} \ll \frac{\rho(u) \xi(u)}{\log y} \frac{\log u}{\sqrt{u}}
$$

by Corollary 3.3.
So far we have evaluated the part of the integral (68) with $|t| \leq \max (1+$ $\left.u \xi, \frac{1}{n+1} \log y\right)=U_{3}$ (say). To complete the estimate for the range $U_{3} \leq$ $|t| \leq T \log y$, we consider separately the two cases $u<\left(\log _{2} y\right)^{2}$, when $U_{3}=\frac{1}{n+1} \log y$, and $u \geq\left(\log _{2} y\right)^{2}$.

Lemma 5.4. For $u<\left(\log _{2} y\right)^{2}, \xi(u)>1$

$$
\begin{aligned}
J_{4} & :=\frac{1}{2 \pi i} \int_{\frac{1}{n+1} \log y \leq|t| \leq T \log y} \frac{g_{K}\left(1+\frac{s}{\log y}\right)}{s+\log y} s \hat{\rho}(s) e^{u s} d s \\
& \ll \frac{\rho(u) \xi(u)}{\log y} \exp \left(-u\left(1+O\left(\frac{\log _{2} u}{\log u}\right)\right)\right) .
\end{aligned}
$$

Proof. By Lemma 4(iii),

$$
\begin{aligned}
J_{4} & =\frac{1}{2 \pi i} \int_{\frac{1}{n+1} \log y \leq|t| \leq T \log y}^{\sigma=-\xi(u)} \frac{g_{K}\left(1+\frac{s}{\log y}\right)}{s+\log y}\left(1+O\left(\frac{1+u \xi}{|t|}\right)\right) e^{u s} d s \\
(99) & =\frac{e^{-u \xi}}{2 \pi} \int_{\frac{1}{n+1} \leq|t| \leq T} \frac{g_{K}\left(\alpha_{0}+i t\right)}{\alpha_{0}+i t} x^{i t}\left(1+O\left(\frac{1+u \xi}{|t| \log y}\right)\right) d t
\end{aligned}
$$

by a change of variable. We verify that we can use Corollary 2.7 to bound $g_{K}\left(\alpha_{0}+i t\right)$ in (99) by showing that (26) is satisfied. Thus we need to show that

$$
\begin{equation*}
\alpha_{0}=1-\frac{\xi}{\log y} \geq 1-c(\log T)^{-2 / 3}\left(\log _{2} T\right)^{-1 / 3} \tag{100}
\end{equation*}
$$

Since $\xi(u) \sim \log u=\log _{2} x-\log _{2} y$ and $y \in H_{\epsilon}($ see $(3))$

$$
\frac{\xi}{\log y}<\frac{\log _{2} x}{\log y} \leq(\log y)^{\frac{3}{5+3 \epsilon}-1}=(\log y)^{-\frac{2}{5}-\frac{9 \epsilon}{5(5+3 \epsilon)}}
$$

and

$$
(\log T)^{2 / 3}\left(\log _{2} T\right)^{1 / 3} \ll(\log y)^{\frac{2}{3}\left(\frac{3}{5}-\frac{\epsilon}{3}\right)}\left(\log _{2} y\right)^{1 / 3}
$$

and so (100) follows for sufficiently large y. Hence by Corollary 2.7

$$
\begin{equation*}
g_{K}\left(\alpha_{0}+i t\right) \ll(\log |t|)^{2 / 3} \log _{2}|t| \ll \log |t| \tag{101}
\end{equation*}
$$

for $t_{0} \leq|t| \leq T$, and $g_{K}\left(\alpha_{0}+i t\right)$ is bounded for $\frac{1}{n+1} \leq|t| \leq t_{0}$.
By (101), the error term in (99) is

$$
\begin{aligned}
& \ll e^{-u \xi} \frac{(1+u \xi)}{\log y}\left(1+\int_{t_{0}}^{T} t^{-2} \log t d t\right) \\
& \ll \frac{\rho(u) \xi(u)}{\log y} \exp \left(-u\left(1+O\left(\frac{\log _{2} u}{\log u}\right)\right)\right)
\end{aligned}
$$

by Corollary 3.3.
The main term in (99) may be written as

$$
\frac{x^{-1}}{2 \pi i} \int_{\frac{1}{n+1} \leq|t| \leq T} \quad g_{K}(s) s^{-1} x^{s} d s
$$

We integrate this in the range $\frac{1}{n+1} \leq t \leq T$ by parts six times to obtain

$$
\begin{aligned}
& \frac{x^{-1}}{2 \pi i}\left\{\left[\sum_{j=0}^{5}(-1)^{j} \frac{d^{j}}{d s^{j}}\left(g_{K}(s) s^{-1}\right) x^{s}(\log x)^{-j-1}\right]_{\alpha_{0}+\frac{i}{n+1}}^{\alpha_{0}+i T}\right. \\
& \left.\quad+(\log x)^{-6} \int_{\alpha_{0}+\frac{i}{n+1}}^{\alpha_{0}+i T} \frac{d^{6}}{d s^{6}}\left(g_{K}(s) s^{-1}\right) x^{s} d s\right\}
\end{aligned}
$$

with a corresponding expression when $\frac{1}{n+1} \leq-t \leq T$. Applying Cauchy's inequalities to $g_{K}(s) s^{-1}$ on a circle with centre s and radius of the form $c_{1} / \log |t|$ for $|t| \geq t_{0}$ and using (101) we have that for $t_{0} \leq|t| \leq T$

$$
\begin{equation*}
\frac{d^{j}}{d s^{j}}\left(g_{K}(s) s^{-1}\right) \ll|t|^{-1}(\log |t|)^{j+1} \quad(0 \leq j \leq 6) \tag{104}
\end{equation*}
$$

For $\frac{1}{n+1} \leq|t| \leq t_{0}$, the left side of (104) is bounded. Hence the main term in (99) is

$$
\begin{align*}
& \ll x^{\alpha_{0}-1}\left((\log x)^{-1}+(\log x)^{-6}\left(1+\int_{t_{0}}^{T} t^{-1}(\log t)^{7} d t\right)\right) \\
& \ll e^{-u \xi}\left((\log x)^{-1}+(\log x)^{-6}(\log T)^{8}\right) \\
& \ll e^{-u \xi}\left((\log x)^{-1}+(\log x)^{-6}(\log y)^{8\left(\frac{3}{5}-\frac{\epsilon}{3}\right)}\right) \ll(\log x)^{-1} e^{-u \xi} \\
& \ll \frac{\rho(u) \xi(u)}{\log y} \exp \left(-u\left(1+O\left(\frac{\log _{2} u}{\log u}\right)\right)\right) \tag{105}
\end{align*}
$$

since $y \leq x, \xi(u)>1$ and by Corollary 3.3. The result of the lemma now follows from (99), (102) and (105).

Lemma 5.5. For $u \geq\left(\log _{2} y\right)^{2}$

$$
\begin{aligned}
J_{5} & :=\frac{1}{2 \pi i} \int_{U_{3} \leq|t| \leq T \log y} \frac{g_{K}\left(1+\frac{s}{\log y}\right)}{s+\log y} s \hat{\rho}(s) e^{u s} d s \\
& <\frac{\rho(u) \xi(u)}{\log y} \exp \left(-u\left(1+O\left(\frac{\log _{2} u}{\log u}\right)\right)\right)
\end{aligned}
$$

Proof. Note that $\frac{1}{n+1} \leq U_{3} / \log y<T$ since $\log _{2} x \leq(\log y)^{\frac{3}{5}-\frac{9 \epsilon}{5(5+3 \epsilon)}}$ and so

$$
\frac{u \xi}{\log y}<\frac{\log x \log _{2} x}{(\log y)^{2}}<T=L_{\epsilon / 3}(y)
$$

Using a modification of (99)

$$
\begin{aligned}
J_{5} & =\frac{e^{-u \xi}}{2 \pi} \int_{\frac{U_{3}}{\log y} \leq|t| \leq T} \frac{g_{K}\left(\alpha_{0}+i t\right)}{\alpha_{0}+i t} x^{i t}\left(1+O\left(\frac{1+u \xi}{|t| \log y}\right)\right) d t \\
& \ll e^{-u \xi}\left\{1+\frac{u \xi}{\log y}+\int_{\max \left(t_{0}, U_{3} / \log y\right)}^{T} t^{-1} \log t\left(1+\frac{u \xi}{t \log y}\right) d t\right\}
\end{aligned}
$$

by (101). The integral is $\ll(\log T)^{2}$ since $\frac{u \xi}{|t| \log y} \leq \frac{u \xi}{U_{3}} \leq 1$. Hence by Corollary 3.3 and the definition of T

$$
\begin{aligned}
J_{5} & \ll \frac{\rho(u) \xi(u)}{\log y} \exp \left(-u\left(1+O\left(\frac{\log _{2} u}{\log u}\right)\right)\right)\left(\log y+(\log y)^{\frac{11}{5}-\frac{2 \epsilon}{3}}\right) \\
& \ll \frac{\rho(u) \xi(u)}{\log y} \exp \left(-u\left(1+O\left(\frac{\log _{2} u}{\log u}\right)\right)\right)
\end{aligned}
$$

since $\log _{2} y \leq \sqrt{u}$ and so the positive powers of $\log y$ can be absorbed into the O-term of the exponential. This completes the proof.

Collecting together the results of Lemmas 5.1 to 5.5 , we obtain from (68)
Lemma 5.6. For $u \geq 5$, so $\xi(u)>1$,

$$
J(x, y)=-\frac{\rho(u) \xi(u)}{\log y} x\left\{g_{K}(1)+O\left(\frac{\log u}{\log y}+\frac{\log u}{\sqrt{u}}\right)\right\}
$$

Comparing this result with Corollary 3.7, we see that as $u \rightarrow \infty$, the two quantities $\Lambda(x, y)-x \rho(u)$ and $J(x, y)$ have the same order of magnitude provided $g_{K}(1) \neq 0$. Which error term dominates in Lemma 5.6 depends on the size of $u=\frac{\log x}{\log y}$ compared with $\log y$. The result of Theorem 1.3 now follows from Theorem 1.1 and Lemma 4.3.

6. $J(x, y)$ in terms of real integrals

The definition of $J(x, y)$ in (57) is given in terms of a complex integral. Our aim in this section is to find an alternative way of expressing $J(x, y)$ as a combination of finite real integrals and an error term. In some situations it may be easier to manipulate this alternative form for $J(x, y)$.

Using Lemma 3.4(iv), we write (57) in the form

$$
\begin{align*}
J(x, y)=\frac{1}{2 \pi i} \int_{\alpha_{0}-i T}^{\alpha_{0}+i T} & g_{K}(s) s^{-1} x^{s} \tag{106}\\
& \left(1+\int_{1}^{\infty} e^{-z(s-1) \log y} \rho^{\prime}(z) d z\right) d s=I_{1}+I_{2}
\end{align*}
$$

where $T=L_{\epsilon / 3}(y)$ and

$$
\begin{align*}
I_{1} & =\frac{1}{2 \pi i} \int_{\alpha_{0}-i T}^{\alpha_{0}+i T} g_{K}(s) s^{-1} x^{s} d s \tag{107}\\
I_{2} & =\frac{1}{2 \pi i} \int_{\alpha_{0}-i T}^{\alpha_{0}+i T} g_{K}(s) s^{-1} x^{s}\left(\int_{1}^{\infty} y^{-z(s-1)} \rho^{\prime}(z) d z\right) d s \tag{108}
\end{align*}
$$

By Lemma 2.3(ii),

$$
\begin{equation*}
g_{K}(s) s^{-1}=\int_{1-}^{\infty}\left(S(v)-\lambda_{K}[v]\right) v^{-s-1} d v \quad\left(\sigma>1-\frac{1}{n}\right) \tag{109}
\end{equation*}
$$

where by Lemma 2.1(ii)

$$
\begin{equation*}
S(v)=\lambda_{K} v+O\left(v^{1-\frac{1}{n}}\right) \tag{110}
\end{equation*}
$$

Hence the integral in (109) is absolutely convergent when $\sigma=\alpha_{0}$. The idea is to use (109) and (110) to replace $g_{K}(s) s^{-1}$ in (107) and (108). It turns out (see Lemma 6.2) that, assuming $g_{K}(1) \neq 0$, the main term in Lemma 5.6 comes from I_{2}, with I_{1} contributing to the error term.

Lemma 6.1.

$$
\begin{aligned}
I_{1}=\frac{1}{\pi} x^{\alpha_{0}} \int_{1-}^{2 x}\left(S(v)-\lambda_{K}[v]\right) v^{-\alpha_{0}-1}\left(\log \frac{x}{v}\right)^{-1} & \sin \left(L_{\epsilon / 3}(y) \log \frac{x}{v}\right) d v \\
& +O\left(x \rho(u)\left(L_{\epsilon / 3}(y)\right)^{-1}\right)
\end{aligned}
$$

Proof. Substituting (109) into (107), we have on interchanging the order of integration (valid by absolute convergence) that

$$
I_{1}=\frac{1}{2 \pi} x^{\alpha_{0}} \int_{1-}^{\infty}\left(S(v)-\lambda_{K}[v]\right) v^{-\alpha_{0}-1}\left(\int_{-T}^{T}(x / v)^{i t} d t\right) d v
$$

When $v \neq x$, the inner integral equals

$$
2\left(\log \frac{x}{v}\right)^{-1} \sin \left(T \log \frac{x}{v}\right) \rightarrow 2 T \text { as } v \rightarrow x
$$

and hence is continuous at $v=x$. We deduce that

$$
I_{1}=\frac{1}{\pi} x^{\alpha_{0}} \int_{1-}^{\infty}\left(S(v)-\lambda_{K}[v]\right) v^{-\alpha_{0}-1}\left(\log \frac{x}{v}\right)^{-1} \sin \left(L_{\epsilon / 3}(y) \log \frac{x}{v}\right) d v
$$

by the definition of T. The result of the lemma now follows since by (110)

$$
\begin{aligned}
& x^{\alpha_{0}} \int_{2 x}^{\infty}\left(S(v)-\lambda_{K}[v]\right) v^{-\alpha_{0}-1}\left(\log \frac{x}{v}\right)^{-1} \sin \left(L_{\epsilon / 3}(y) \log \frac{x}{v}\right) d v \\
& \ll x^{\alpha_{0}} \int_{2 x}^{\infty} v^{-\alpha_{0}-\frac{1}{n}} d v \ll x^{1-\frac{1}{n}} \ll x \rho(u)\left(L_{\epsilon / 3}(y)\right)^{-1} .
\end{aligned}
$$

Lemma 6.2. For $\xi(u)>1$

$$
I_{1} \ll x \rho(u) \xi(u)(\log y)^{-1} \exp \left(-u\left(1+O\left(\frac{\log _{2} u}{\log u}\right)\right)\right) .
$$

Proof. We split the integral in Lemma 6.1 at the points $V:=\exp (\sqrt{\log x})$ and \sqrt{x}. We have

$$
\begin{aligned}
x^{\alpha_{0}} \int_{1-}^{V} & \left(S(v)-\lambda_{K}[v]\right) v^{-\alpha_{0}-1}\left(\log \frac{x}{v}\right)^{-1} \sin \left(L_{\epsilon / 3}(y) \log \frac{x}{v}\right) d v \\
& \ll \frac{x^{\alpha_{0}}}{\log x} \int_{1}^{V} v^{-\alpha_{0}-\frac{1}{n}} d v \ll \frac{x e^{-u \xi}}{\log x} \\
& \ll x \rho(u) \xi(u)(\log y)^{-1} \exp \left(-u\left(1+O\left(\frac{\log _{2} u}{\log u}\right)\right)\right)
\end{aligned}
$$

by Corollary 3.3. Also

$$
\begin{aligned}
x^{\alpha_{0}} \int_{V}^{\sqrt{x}} & \left(S(v)-\lambda_{K}[v]\right) v^{-\alpha_{0}-1}\left(\log \frac{x}{v}\right)^{-1} \sin \left(L_{\epsilon / 3}(y) \log \frac{x}{v}\right) d v \\
& \ll x^{\alpha_{0}} \int_{V}^{\sqrt{x}} v^{-\alpha_{0}-\frac{1}{n}} d v \ll x^{\alpha_{0}} V^{\frac{\xi}{\log y}-\frac{1}{n}} \\
& \ll x \rho(u) \xi(u)(\log y)^{-1} \exp \left(-u\left(1+O\left(\frac{\log _{2} u}{\log u}\right)\right)\right)
\end{aligned}
$$

since $\exp \left(\left(\frac{\xi}{\log y}-\frac{1}{n}\right) \sqrt{\log x}\right) \log y=o(1)$. For $\sqrt{x} \leq v \leq 2 x, \frac{\sin \left(T \log \frac{x}{v}\right)}{T \log \frac{x}{v}}$ is bounded, and hence

$$
\begin{aligned}
x^{\alpha_{0}} \int_{\sqrt{x}}^{2 x} & \left(S(v)-\lambda_{K}[v]\right) v^{-\alpha_{0}-1}\left(\log \frac{x}{v}\right)^{-1} \sin \left(L_{\epsilon / 3}(y) \log \frac{x}{v}\right) d v \\
& \ll x^{\alpha_{0}} L_{\epsilon / 3}(y) \int_{\sqrt{x}}^{2 x} v^{-\alpha_{0}-\frac{1}{n}} d v \ll x^{\alpha_{0}} L_{\epsilon / 3}(y) x^{\frac{1}{2}\left(\frac{\xi}{\log y}-\frac{1}{n}\right)} \\
& \ll x \rho(u) \xi(u)(\log y)^{-1} \exp \left(-u\left(1+O\left(\frac{\log _{2} u}{\log u}\right)\right)\right)
\end{aligned}
$$

since $L_{\epsilon / 3}(y) \log y=o\left(x^{\frac{1}{2}\left(\frac{1}{n}-\frac{\xi}{\log y}\right)}\right)$. This completes the proof of the lemma.

Lemma 6.3. Let $X=\max \left(x, x^{-1} \exp \left((\log y)^{8 / 5}\right)\right)$. Then

$$
\begin{aligned}
& I_{2}=\frac{x}{\pi \log y} \int_{1-}^{x} \frac{S(v)-\lambda_{K}[v]}{v^{2}} \\
& \qquad\left(\int_{\frac{1}{X v}}^{\frac{x}{y v}} \rho^{\prime}\left(u-\frac{\log (v w)}{\log y}\right) \frac{\sin \left(L_{\epsilon / 3}(y) \log w\right)}{w^{1+\frac{\xi}{\log y}} \log w} d w\right) d v \\
& +O\left(x \rho(u)\left(L_{\epsilon / 3}(y)\right)^{-1}\right)
\end{aligned}
$$

Proof. The inner integral in (108) converges absolutely for $\sigma=\alpha_{0}$ since $\left|y^{-(s-1) z}\right|=e^{\xi z}$. Substituting (109) into (108) and rearranging the order of the integrals, we obtain

$$
I_{2}=\frac{x^{\alpha_{0}}}{2 \pi} \int_{1-}^{\infty} \frac{S(v)-\lambda_{K}[v]}{v^{\alpha_{0}+1}} \int_{1}^{\infty} e^{\xi z} \rho^{\prime}(z) \int_{|t| \leq T}\left(\frac{x}{v y^{z}}\right)^{i t} d t d z d v
$$

The inner integral is

$$
\frac{2 \sin \left(T \log \frac{x}{v y^{z}}\right)}{\log \frac{x}{v y^{z}}} \text { if } v y^{z} \neq x \text { and } 2 T \text { if } v y^{z}=x
$$

and so is a continuous function of $v y^{z}$ at x. Hence

$$
\begin{equation*}
I_{2}=\frac{x^{\alpha_{0}}}{\pi} \int_{1-}^{\infty} \frac{S(v)-\lambda_{K}[v]}{v^{\alpha_{0}+1}}\left(\int_{1}^{\infty} e^{\xi z} \rho^{\prime}(z) \frac{\sin \left(T \log \frac{x}{v y^{z}}\right)}{\log \frac{x}{v y^{z}}} d z\right) d v \tag{111}
\end{equation*}
$$

Let $U=\max \left(2 u,(\log y)^{3 / 5}\right)$. We show that we can truncate the integral with respect to z at $z=U$ and the integral with respect to v at $v=x$ at the expense of a quantity covered by the error term of the lemma. For $z \geq U \geq 2 u$, we have $y^{z} \geq x^{2}$ and so for $v \geq 1, \frac{x}{v y^{z}} \leq \frac{1}{x}<1$, whence
$\left|\log \frac{x}{v y^{z}}\right| \geq \log x$. Hence

$$
\int_{U}^{\infty} e^{\xi z} \rho^{\prime}(z) \frac{\sin \left(T \log \frac{x}{v y^{z}}\right)}{\log \frac{x}{v y^{z}}} d z \ll \frac{1}{\log x} \int_{U}^{\infty} e^{\xi z}\left|\rho^{\prime}(z)\right| d z \ll\left(L_{\epsilon / 3}(y)\right)^{-1}
$$

since for $z \geq U>\log L_{\epsilon / 3}(y)$

$$
e^{\xi z} \rho^{\prime}(z) \ll e^{\xi z} \rho(z) \log z \ll \exp (-z \log U)
$$

by Lemma 3.1(i) and Lemma 3.2(ii). It follows that the contribution to (111) from the range $z \geq U$ is

$$
\begin{equation*}
\ll x^{\alpha_{0}}\left(L_{\epsilon / 3}(y)\right)^{-1} \int_{1}^{\infty} v^{-\alpha_{0}-\frac{1}{n}} d v \ll x \rho(u)\left(L_{\epsilon / 3}(y)\right)^{-1} . \tag{112}
\end{equation*}
$$

For $v \geq x, z \geq 1$, we have $\frac{x}{v y^{z}} \leq \frac{1}{y}$ so $\left|\log \frac{x}{v y^{z}}\right| \geq \log y$. Hence

$$
\begin{align*}
& x^{\alpha_{0}} \int_{x}^{\infty} \frac{S(v)-\lambda_{K}[v]}{v^{\alpha_{0}+1}}\left(\int_{1}^{\infty} e^{\xi z} \rho^{\prime}(z) \frac{\sin \left(T \log \frac{x}{v y^{z}}\right)}{\log \frac{x}{v y^{z}}} d z\right) d v \\
& \quad \ll \frac{x^{\alpha_{0}}}{\log y} \int_{x}^{\infty} v^{-\alpha_{0}-\frac{1}{n}} d v \int_{1}^{\infty} e^{\xi z}\left|\rho^{\prime}(z)\right| d z \\
& \quad \ll \frac{x^{1-\frac{\xi}{\log y}}}{\log y} x^{\frac{\xi}{\log y}-\frac{1}{n}} \xi e^{I(\xi)} \ll x \rho(u)\left(L_{\epsilon / 3}(y)\right)^{-1} \tag{113}
\end{align*}
$$

since the integral over z is $\ll \xi e^{I(\xi)}+1$ and $\xi \sqrt{u} e^{u \xi} x^{-\frac{1}{n}} \ll\left(L_{\epsilon / 3}(y)\right)^{-1}$ for $y \in H_{\epsilon}$. Here we have used that

$$
0>\int_{1}^{\infty} e^{\xi z} \rho^{\prime}(z) d z=\left[e^{\xi z} \rho(z)\right]_{1}^{\infty}-\xi \int_{1}^{\infty} e^{\xi z} \rho(z) d z=-1-\xi \hat{\rho}(-\xi),
$$

by Lemma 3.4(iii), and Lemma 3.2(iii).
By (112) and (113), we can now write (111) in the form

$$
\begin{aligned}
& I_{2}=\frac{x^{\alpha_{0}}}{\pi} \int_{1-}^{x} \frac{S(v)-\lambda_{K}[v]}{v^{\alpha_{0}+1}}\left(\int_{1}^{U} e^{\xi z} \rho^{\prime}(z) \frac{\sin \left(L_{\epsilon / 3}(y) \log \frac{x}{v y^{z}}\right)}{\log \frac{x}{v y^{z}}} d z\right) d v \\
& \text { 4) } \begin{aligned}
& +O\left(\frac{x \rho(u)}{L_{\epsilon / 3}(y)}\right) .
\end{aligned}
\end{aligned}
$$

To obtain the result in the form given in the lemma, we change the variable in the inner integral of (114) by putting $w=\frac{x}{v y^{z}}$, so $z=\left(\log \frac{x}{v w}\right) / \log y=$ $u-\frac{\log (v w)}{\log y}$, and $\frac{\partial z}{\partial w}=-\frac{1}{w \log y}$. Also $w=\frac{x}{v y}$ when $z=1$, and $w=\frac{x}{v y^{U}}=\frac{1}{x v}$ or $\frac{x}{v} \exp \left(-(\log y)^{8 / 5}\right)$ according as $z=U=2 u$ or $z=U=(\log y)^{3 / 5}$;
hence when $z=U, w=\frac{1}{X v}$ by definition of X. It follows that $e^{\xi z}=$ $e^{\xi u} v^{-\frac{\xi}{\log y}} w^{-\frac{\xi}{\log y}}$ and so

$$
\begin{aligned}
I_{2}= & \frac{x}{\pi \log y} \int_{1-}^{x} \frac{S(v)-\lambda_{K}[v]}{v^{2}} \\
& \left(\int_{\frac{1}{X v}}^{\frac{x}{y v}} \rho^{\prime}\left(u-\frac{\log (v w)}{\log y}\right) \frac{\sin \left(L_{\epsilon / 3}(y) \log w\right)}{w^{1+\frac{\xi}{\log y}} \log w} d w\right) d v+O\left(\frac{x \rho(u)}{L_{\epsilon / 3}(y)}\right)
\end{aligned}
$$

as required.

From Lemmas 6.1 and 6.3 we deduce

Theorem 6.4.

$$
\begin{aligned}
J(x, y)= & \frac{x}{\pi \log y} \int_{1-}^{x} \frac{S(v)-\lambda_{K}[v]}{v^{2}} \\
& \left(\int_{\frac{1}{X v}}^{\frac{x}{y v}} \rho^{\prime}\left(u-\frac{\log (v w)}{\log y}\right) \frac{\sin \left(L_{\epsilon / 3}(y) \log w\right)}{w^{1+\frac{\xi}{\log y}} \log w} d w\right) d v \\
+ & \frac{1}{\pi} x^{\alpha_{0}} \int_{1-}^{2 x}\left(S(v)-\lambda_{K}[v]\right) v^{-\alpha_{0}-1}\left(\log \frac{x}{v}\right)^{-1} \sin \left(L_{\epsilon / 3}(y) \log \frac{x}{v}\right) d v \\
+ & O\left(\frac{x \rho(u)}{L_{\epsilon / 3}(y)}\right)
\end{aligned}
$$

7. An application

Our aim in this section is to use our main results above and the methods of [27] to study the sum defined in (15):

$$
\begin{equation*}
S_{K}(x)=\sum_{\substack{\mathfrak{a} \\ N(\mathfrak{a}) \leq x}} \frac{1}{P(\mathfrak{a})} \tag{115}
\end{equation*}
$$

where $P(\mathfrak{a})=\max \{N(\mathfrak{p}): \mathfrak{p} \mid \mathfrak{a}\}, P\left(\mathfrak{D}_{K}\right)=1$. When $K=\mathbf{Q}$ the sum in (115) becomes

$$
S_{\mathbf{Q}}(x)=\sum_{n \leq x} \frac{1}{P(n)} \text { where } P(n)=\max \{p: p \mid n\}, \quad P(1)=1
$$

which, as stated in section 1 , has been the subject of several papers (for example [5], [14], [15], [16], [18]). It follows from [27] that for a sufficiently small $\epsilon>0$

$$
S_{\mathbf{Q}}(x)=x\left(1+O\left(\exp \left(-\left(\frac{1}{2} \log x \log _{2} x\right)^{\frac{3}{10}-\epsilon}\right)\right)\right) H(x)
$$

where
$H(x)=\int_{2}^{x} \frac{1}{w^{2} \log w}\left\{\rho\left(\frac{\log x}{\log w}-1\right)-\int_{1}^{x} \frac{v-[v]}{v^{2} \log w} \rho^{\prime}\left(\frac{\log \frac{x}{v}}{\log w}-1\right) d v\right\} d w$.
It was shown in [14] that

$$
S_{\mathbf{Q}}(x)=x \exp \left(-\left(2 \log x \log _{2} x\right)^{1 / 2}(1+o(1))\right) .
$$

We can obtain the corresponding results for a general number field K.
In (16) we defined

$$
\begin{equation*}
\mathcal{L}=\mathcal{L}(x)=\exp \left(\left(\frac{1}{2} \log x \log _{2} x\right)^{\frac{1}{2}}\right) \tag{116}
\end{equation*}
$$

Lemma 7.1.

(i) $S_{K}(x)=\sum_{\mathcal{L}^{1 / 3} \leq N(\mathfrak{p}) \leq \mathcal{L}^{3}} \frac{1}{N(\mathfrak{p})} \Psi_{K}\left(\frac{x}{N(\mathfrak{p})}, N(\mathfrak{p})\right)$

$$
+O(x \exp (-(3+o(1)) \log \mathcal{L}(x)))
$$

(ii) $S_{K}(x)=\lambda_{K} x \exp (-(2+o(1)) \log \mathcal{L}(x))$.

Proof. Let $r(\mathfrak{a})$ denote the number of distinct prime ideals \mathfrak{p} with $\mathfrak{p} \mid \mathfrak{a}$ and $N(\mathfrak{p})=P(\mathfrak{a})$, so $1 \leq r(\mathfrak{a}) \leq n$ where $n=[K: \mathbf{Q}]$. For each of these prime ideals $\mathfrak{p}, \mathfrak{a}=\mathfrak{p b}$ where $P(\mathfrak{b}) \leq P(\mathfrak{a})$, so

$$
\sum_{\substack{\mathfrak{a} \\ N(\mathfrak{a}) \leq x}} \frac{r(\mathfrak{a})}{P(\mathfrak{a})}=\sum_{\substack{N(\mathfrak{p}) \leq x}} \frac{1}{N(\mathfrak{p})} \sum_{\substack{N(\mathfrak{b}) \leq x / N(\mathfrak{p}) \\ P(\mathfrak{b}) \leq N(\mathfrak{p})}} 1=\sum_{N(\mathfrak{p}) \leq x} \frac{1}{N(\mathfrak{p})} \Psi_{K}\left(\frac{x}{N(\mathfrak{p})}, N(\mathfrak{p})\right) .
$$

Hence

$$
\begin{equation*}
S_{K}(x)=\sum_{N(\mathfrak{p}) \leq x} \frac{1}{N(\mathfrak{p})} \Psi_{K}\left(\frac{x}{N(\mathfrak{p})}, N(\mathfrak{p})\right)-\sum_{\substack{\mathfrak{a} \\ N(\mathfrak{a}) \leq x}} \frac{r(\mathfrak{a})-1}{P(\mathfrak{a})} . \tag{117}
\end{equation*}
$$

When \mathfrak{a} contributes to the last sum of (117), \mathfrak{a} has two or more different prime ideal divisors with norm $P(\mathfrak{a})$, so $\mathfrak{a}=\mathfrak{p}_{1} \mathfrak{p}_{2} \mathfrak{b}$ with $N\left(\mathfrak{p}_{1}\right)=N\left(\mathfrak{p}_{2}\right)=$ $P(\mathfrak{a}), P(\mathfrak{b}) \leq P(\mathfrak{a})$. It follows by a similar argument to above that

$$
\sum_{\substack{\mathfrak{a} \\ N(\mathfrak{a}) \leq x}} \frac{r(\mathfrak{a})-1}{P(\mathfrak{a})} \ll \sum_{N(\mathfrak{p}) \leq x} \frac{1}{N(\mathfrak{p})} \Psi_{K}\left(\frac{x}{(N(\mathfrak{p}))^{2}}, N(\mathfrak{p})\right) .
$$

Adapting the method used to prove Lemma 3.3(i) of [27], we find that the contribution to the first sum in (117) made by those \mathfrak{p} with $N(\mathfrak{p})<\mathcal{L}^{1 / 3}$ or $\mathcal{L}^{3}<N(\mathfrak{p}) \leq x$ is

$$
\ll x \exp (-(3+o(1)) \log \mathcal{L}) .
$$

Since $\Psi_{K}\left(\frac{x}{(N(\mathfrak{p}))^{2}}, N(\mathfrak{p})\right) \leq \Psi_{K}\left(\frac{x}{N(\mathfrak{p})}, N(\mathfrak{p})\right)$, part (i) will be established if we show that

$$
\sum_{\mathcal{L}^{1 / 3} \leq N(\mathfrak{p}) \leq \mathcal{L}^{3}} \frac{1}{N(\mathfrak{p})} \Psi_{K}\left(\frac{x}{(N(\mathfrak{p}))^{2}}, N(\mathfrak{p})\right) \ll x \exp (-(3+o(1)) \log \mathcal{L})
$$

Then part (ii) follows on using the argument in the proof of Lemma 3.4 of [27].

From [19] or Theorems 1.1 and 1.3 and equation (4) above we see that for $y \in H_{\epsilon}$ and $\xi(u)>1$

$$
\begin{equation*}
\Psi_{K}(x, y)=\lambda_{K} x \rho(u)\left(1+O\left(\frac{\log u}{\log y}\right)\right) \tag{118}
\end{equation*}
$$

When $u=\frac{\log x}{\log N(\mathfrak{p})}-2, \mathcal{L}^{1 / 3} \leq N(\mathfrak{p}) \leq \mathcal{L}^{3}$, we have

$$
\rho(u)=\exp \left(-\frac{1}{2} \frac{\log x \log _{2} x}{\log N(\mathfrak{p})}(1+o(1))\right)=\exp \left(-\frac{(\log \mathcal{L})^{2}}{\log N(\mathfrak{p})}(1+o(1))\right)
$$

on using equation (120), (116) and Lemma 3.1(i). Hence by (118)

$$
\Psi_{K}\left(\frac{x}{(N(\mathfrak{p}))^{2}}, N(\mathfrak{p})\right) \ll \frac{x}{(N(\mathfrak{p}))^{2}} \exp \left(-\frac{(\log \mathcal{L})^{2}}{\log N(\mathfrak{p})}(1+o(1))\right)
$$

Since $N(\mathfrak{p})=p^{m}$ for some rational prime p and $m \leq n$,

$$
\begin{aligned}
\sum_{\mathcal{L}^{1 / 3} \leq N(\mathfrak{p}) \leq \mathcal{L}^{3}} & \frac{1}{N(\mathfrak{p})} \Psi_{K}\left(\frac{x}{(N(\mathfrak{p}))^{2}}, N(\mathfrak{p})\right) \\
& \ll x \sum_{\mathcal{L}^{1 / 3} \leq p \leq \mathcal{L}^{3}} \frac{1}{p^{3}} \exp \left(-\frac{(\log \mathcal{L})^{2}}{\log p}(1+o(1))\right) \\
& \ll x \int_{\mathcal{L}^{1 / 3}}^{\mathcal{L}^{3}} \frac{1}{w^{3} \log w} \exp \left(-\frac{(\log \mathcal{L})^{2}}{\log w}(1+o(1))\right) d w
\end{aligned}
$$

on using Lemma 2.9 of [27]. The required bound for the second sum in (117) now follows on integrating by parts.

From (61) and (62) we have for $y \in H_{\epsilon}$

$$
\begin{equation*}
\Psi_{K}(x, y)=\lambda_{K} \Lambda(x, y)+J(x, y)+O\left(x \rho(u) / L_{\epsilon}(y)\right) \tag{119}
\end{equation*}
$$

We substitute this in Lemma 7.1(i) and investigate the sums involved. $\Lambda(x, y)$ is given by Lemma 3.6 and $J(x, y)$ by Lemma 5.6. We need to estimate $J\left(\frac{x}{v}, v\right)$ for $\mathcal{L}^{1 / 3} \leq v \leq \mathcal{L}^{3}$.

Lemma 7.2. (i) For $\mathcal{L}^{1 / 3} \leq v \leq \mathcal{L}^{3}$,

$$
\begin{aligned}
J\left(\frac{x}{v}, v\right)=-\frac{1}{2} x\left(\log _{2} x+\log _{3} x\right. & +O(1))\left(g_{K}(1)\right. \\
& \left.+O\left(\left(\log _{2} x\right)^{5 / 4}(\log x)^{-1 / 4}\right)\right) \frac{\rho\left(\frac{\log x}{\log v}-1\right)}{v \log v} .
\end{aligned}
$$

(ii) Provided $g_{K}(1) \neq 0,-\left(2 / g_{K}(1)\right) v \log v J\left(\frac{x}{v}, v\right)$ is positive and increases in magnitude as v increases from $\mathcal{L}^{1 / 3}$ to \mathcal{L}^{3}.

Proof. (i)We apply Lemma 5.6 with $u=\frac{\log \frac{x}{v}}{\log v}=\frac{\log x}{\log v}-1$. Then

$$
\log u=\log _{2} x-\log _{2} v+O\left(\frac{\log v}{\log x}\right), \quad \log _{2} u=\log _{3} x+O(1)
$$

so for $\mathcal{L}^{1 / 3} \leq v \leq \mathcal{L}^{3}$,

$$
\begin{aligned}
\xi(u) & =\log u+\log _{2} u+O\left(\frac{\log _{2} u}{\log u}\right)=\log _{2} x-\log _{2} \mathcal{L}+\log _{3} x+O(1) \\
(120) & =\frac{1}{2}\left(\log _{2} x+\log _{3} x\right)+O(1)=\log _{2} v+O(1)
\end{aligned}
$$

Also

$$
\frac{\log u}{\log v}+\frac{\xi(u)}{\sqrt{u}} \ll \frac{\log _{2} x}{\log \mathcal{L}}+\sqrt{\frac{\log \mathcal{L}}{\log x}} \log _{2} x \ll\left(\frac{\log _{2} x}{\log x}\right)^{1 / 4} \log _{2} x
$$

Hence by Lemma 5.6 when $\mathcal{L}^{1 / 3} \leq v \leq \mathcal{L}^{3}$ we have

$$
\begin{aligned}
& J\left(\frac{x}{v}, v\right)=-\frac{x}{v \log v}\left(\frac{1}{2}\left(\log _{2} x+\log _{3} x\right)+O(1)\right)\left(g_{K}(1)\right. \\
& \left.+O\left(\left(\log _{2} x\right)^{5 / 4}(\log x)^{-1 / 4}\right)\right) \rho\left(\frac{\log x}{\log v}-1\right)
\end{aligned}
$$

which is the result stated.
(ii) As v increases from $\mathcal{L}^{1 / 3}$ to $\mathcal{L}^{3}, \rho\left(\frac{\log x}{\log v}-1\right)$ increases and by (120) and Lemma 3.1(i) equals $\exp \left(-\frac{\log x}{\log v}\left(\log _{2} v+O(1)\right)\right)$. Hence if $g_{K}(1) \neq 0$, the result follows from (i) since $g_{K}(1)$ is real.
Lemma 7.3. (i) Assume $g_{K}(1) \neq 0$. Then

$$
\sum_{\mathcal{L}^{1 / 3} \leq N(\mathfrak{p}) \leq \mathcal{L}^{3}} \frac{1}{N(\mathfrak{p})} J\left(\frac{x}{N(\mathfrak{p})}, N(\mathfrak{p})\right)=\left(1+O\left(\frac{1}{L_{\epsilon}(\mathcal{L})}\right)\right) \int_{\mathcal{L}^{1 / 3}}^{\mathcal{L}^{3}} \frac{J\left(\frac{x}{v}, v\right)}{v \log v} d v
$$

(ii) When $g_{K}(1)=0$,

$$
\begin{aligned}
\sum_{\mathcal{L}^{1 / 3} \leq N(\mathfrak{p}) \leq \mathcal{L}^{3}} & \frac{1}{N(\mathfrak{p})} J\left(\frac{x}{N(\mathfrak{p})}, N(\mathfrak{p})\right) \\
& \ll x\left(\log _{2} x\right)^{9 / 4}(\log x)^{-1 / 4} \int_{\mathcal{L}^{1 / 3}}^{\mathcal{L}^{3}} \frac{\rho\left(\frac{\log x}{\log v}-1\right)}{(v \log v)^{2}} d v
\end{aligned}
$$

Proof. (i) From the Prime Ideal Theorem in the form of Lemma 2.4(ii), we deduce that

$$
\theta_{K}(x):=\sum_{N(\mathfrak{p}) \leq x} \log N(\mathfrak{p})=x(1+E(x))
$$

where

$$
E(x) \ll\left(L_{\epsilon / 2}(x)\right)^{-1}
$$

By Lemma 7.2(ii), it follows as in Lemmas 2.8 and 2.9 of [27] with $g(v)=$ $v \log v\left|J\left(\frac{x}{v}, v\right)\right|$ and $h(v)=v \log v$ that
$\sum_{\mathcal{L}^{1 / 3} \leq N(\mathfrak{p}) \leq \mathcal{L}^{3}} \frac{1}{N(\mathfrak{p})} J\left(\frac{x}{N(\mathfrak{p})}, N(\mathfrak{p})\right)=\int_{\mathcal{L}^{1 / 3}}^{\mathcal{L}^{3}} \frac{J\left(\frac{x}{v}, v\right)}{v \log v}\left(1+O\left(\left(L_{3 \epsilon / 4}(v)\right)^{-1}\right)\right) d v$

$$
\begin{equation*}
+O\left(\max _{v=\mathcal{L}^{1 / 3}, \mathcal{L}^{3}} \frac{\left|J\left(\frac{x}{v}, v\right)\right|}{L_{\epsilon / 2}(v)}\right) \tag{121}
\end{equation*}
$$

For $\mathcal{L}^{1 / 3} \leq v \leq \mathcal{L}^{3},\left(L_{3 \epsilon / 4}(v)\right)^{-1} \ll\left(L_{\epsilon}(\mathcal{L})\right)^{-1}$. Also for $v=\mathcal{L}^{1 / 3}, \mathcal{L}^{3}$,

$$
\frac{1}{v \log v} \rho\left(\frac{\log x}{\log v}-1\right) \ll \exp (-(3+o(1)) \log \mathcal{L})
$$

and so

$$
\begin{equation*}
\frac{J\left(\frac{x}{v}, v\right)}{L_{\epsilon / 2}(v)} \ll x \exp (-(3+o(1)) \log \mathcal{L}) \tag{122}
\end{equation*}
$$

This error term is smaller than

$$
\begin{equation*}
\frac{1}{L_{\epsilon}(\mathcal{L})} \int_{\mathcal{L}^{1 / 3}}^{\mathcal{L}^{3}} \frac{J\left(\frac{x}{v}, v\right)}{v \log v} d v \tag{123}
\end{equation*}
$$

for (123) is

$$
\asymp x \log _{2} x \frac{1}{L_{\epsilon}(\mathcal{L})} \int_{\mathcal{L}^{1 / 3}}^{\mathcal{L}^{3}} \frac{\rho\left(\frac{\log x}{\log v}-1\right)}{(v \log v)^{2}} d v
$$

and from [5] (or by proofs analogous to those of Lemma 3.4 and 3.5 of [27])

$$
x \int_{\mathcal{L}^{1 / 3}}^{\mathcal{L}^{3}} \frac{\rho\left(\frac{\log x}{\log v}-1\right)}{v^{2} \log v} d v \sim \sum_{\mathcal{L}^{1 / 3} \leq p \leq \mathcal{L}^{3}} p^{-1} \Psi\left(\frac{x}{p}, p\right)=x \exp (-(2+o(1)) \log \mathcal{L})
$$

The result now follows from (121) and (122).
(ii) This follows from Lemma 7.2(i) since

$$
\sum_{\mathcal{L}^{1 / 3} \leq N(\mathfrak{p}) \leq \mathcal{L}^{3}} \frac{1}{(N(\mathfrak{p}))^{2} \log N(\mathfrak{p})} \rho\left(\frac{\log x}{\log N(\mathfrak{p})}-1\right) \sim \int_{\mathcal{L}^{1 / 3}}^{\mathcal{L}^{3}} \frac{\rho\left(\frac{\log x}{\log v}-1\right)}{(v \log v)^{2}} d v
$$

Although we do not need to do so to prove Theorem 1.4, we can use Theorem 6.4 in section 6 to express the integral on the right of Lemma 7.3(i) in terms of real integrals. Let $\eta(v)=\xi\left(\frac{\log x}{\log v}-1\right) / \log v$. From Theorem 6.4 we deduce

Lemma 7.4.

$$
\begin{gathered}
\int_{\mathcal{L}^{1 / 3}}^{\mathcal{L}^{3}} \frac{J\left(\frac{x}{v}, v\right)}{v \log v} d v=\frac{x}{\pi} \int_{\mathcal{L}^{1 / 3}}^{\mathcal{L}^{3}} \frac{x^{-\eta(v)}}{v^{2-\eta(v)} \log v} \\
\left\{\int_{1-}^{2 x / v} \frac{S(z)-\lambda_{K}[z]}{z^{2-\eta(v)}}\left(\log \frac{x}{v z}\right)^{-1} \sin \left(L_{\epsilon / 3}(v) \log \frac{x}{v z}\right) d z\right\} d v \\
\quad+\frac{x}{\pi} \int_{\mathcal{L}^{1 / 3}}^{\mathcal{L}^{3}} \frac{1}{(v \log v)^{2}} \\
\left\{\int _ { 1 - } ^ { x / v } \frac { S (z) - \lambda _ { K } [z] } { z ^ { 2 } } \left\{\int_{\frac{1}{X(v) z}}^{x / v^{2} z} \rho^{\prime}\left(\frac{\log \frac{x}{v z w}}{\log v}\right) \frac{\sin \left(L_{\epsilon / 3}(v) \log w\right.}{\left.\left.w^{1+\eta(v) \log w} d w\right\} d z\right\} d v}\right.\right. \\
+
\end{gathered} \begin{aligned}
\left.x \int_{\mathcal{L}^{1 / 3}}^{\mathcal{L}^{3}} \rho\left(\frac{\log x}{\log v}-1\right) v^{-2}\left(L_{\epsilon / 3}(v) \log v\right)^{-1} d v\right)
\end{aligned}
$$

where $X(v)=\max \left(\frac{x}{v}, \frac{v}{x} \exp \left((\log v)^{8 / 5}\right)\right)$.
Note that the O-term is

$$
\ll\left(L_{\epsilon}(\mathcal{L})\right)^{-1} \int_{\mathcal{L}^{1 / 3}}^{\mathcal{L}^{3}}(v \log v)^{-1} J\left(\frac{x}{v}, v\right) d v .
$$

Lemma 7.5.

$$
\begin{aligned}
& \lambda_{K} \sum_{\mathcal{L}^{1 / 3} \leq N(p) \leq \mathcal{L}^{3}}(N(\mathfrak{p}))^{-1}\left\{\Lambda\left(\frac{x}{N(\mathfrak{p})}, N(\mathfrak{p})\right)\right. \\
& \quad+O\left(x\left(N(\mathfrak{p}) L_{\epsilon}(N(\mathfrak{p}))^{-1} \rho\left(\frac{\log x}{\log N(\mathfrak{p})}-1\right)\right)\right\} \\
& =x\left(\lambda_{K}+O\left(\left(L_{\epsilon}(\mathcal{L})\right)^{-1}\right)\right) \int_{\mathcal{L}^{1 / 3}}^{\mathcal{L}^{3}} \frac{1}{v^{2} \log v}\left\{\rho\left(\frac{\log x}{\log v}-1\right)\right. \\
& \left.\quad-\int_{1}^{x} \frac{w-[w]}{w^{2} \log v} \rho^{\prime}\left(\frac{\log \frac{x}{w}}{\log v}-1\right) d w\right\} d v .
\end{aligned}
$$

Proof. This follows on combining the method used to prove Lemma 7.3(i) with that used to establish Theorem 3 of [27] (and in particular with a result analogous to Lemma 4.1(i) of [27]) in the case $\nu=1, \eta(w)=1$.
Proof. (Theorem 1.4.) (i) From Lemmas 7.1(i), 7.3(i), 7.5 and equation (119), we obtain when $g_{K}(1) \neq 0$

$$
\begin{align*}
S_{K}(x)= & x\left(\lambda_{K}+O\left(\left(L_{\epsilon}(\mathcal{L})\right)^{-1}\right)\right) \int_{\mathcal{L}^{1 / 3}}^{\mathcal{L}^{3}} \frac{1}{v^{2} \log v}\left\{\rho\left(\frac{\log x}{\log v}-1\right)\right. \\
& \left.-\int_{1}^{x} \frac{w-[w]}{w^{2} \log v} \rho^{\prime}\left(\frac{\log \frac{x}{w}}{\log v}-1\right) d w\right\} d v \\
& +\left(1+O\left(\left(L_{\epsilon}(\mathcal{L})\right)^{-1}\right) \int_{\mathcal{L}^{1 / 3}}^{\mathcal{L}^{3}} \frac{1}{v \log v} J\left(\frac{x}{v}, v\right) d v .\right. \tag{124}
\end{align*}
$$

We can extend the range of integration for v to $2 \leq v \leq x$ at the expense of an error term of the form (122) which we know can be absorbed in the O-term above.
(ii) From (119), (120), (124) and Lemmas 7.2, 7.3, 7.5, 3.5, we deduce (irrespective of the value of $\left.g_{K}(1)\right)$ that

$$
\begin{aligned}
& S_{K}(x)= x\left(\lambda_{K}+O\left(\left(L_{\epsilon}(\mathcal{L})\right)^{-1}\right)\right) \int_{\mathcal{L}^{1 / 3}}^{\mathcal{L}^{3}} \frac{1}{v^{2} \log v} \rho\left(\frac{\log x}{\log v}-1\right) \\
&\left\{1+\frac{C}{2 \log v}\left(\log _{2} x+\log _{3} x+O(1)\right)\right\} d v \\
&- \frac{1}{2} x\left(\log _{2} x+\log _{3} x+O(1)\right)\left(g_{K}(1)+O\left(\left(\log _{2} x\right)^{5 / 4}(\log x)^{-1 / 4}\right)\right) \\
& \int_{\mathcal{L}^{1 / 3}}^{\mathcal{L}^{3}} \frac{1}{v^{2}(\log v)^{2}} \rho\left(\frac{\log x}{\log v}-1\right) d v \\
&= x \int_{\mathcal{L}^{1 / 3}}^{\mathcal{L}^{3}} \frac{1}{v^{2} \log v} \rho\left(\frac{\log x}{\log v}-1\right) \\
&\left\{\lambda_{K}+\frac{1}{2 \log v}\left(C \lambda_{K}-g_{K}(1)\right)\left(\log _{2} x+\log _{3} x+O(1)\right)\right\} d v
\end{aligned}
$$

where $C=1-\gamma$ and $g_{K}(1)=\lim _{s \rightarrow 1}\left(\zeta_{K}(s)-\lambda_{K} \zeta(s)\right)$. As before the integral over v can be extended to the range $2 \leq v \leq x$ since the error involved is bounded by the right side of (122) and so is negligible.

References

[1] N.G. de Bruisn, On the number of positive integers $\leq x$ and free of prime factors $>y$. Indag. Math. 13 (1951), 50-60.
[2] N.G. De Bruijn, The asymptotic behaviour of a function occurring in the theory of primes.J. Indian Math. Soc. (NS) 15 (1951), 25-32.
[3] J.A. Buchmann, C.S Hollinger, On smooth ideals in number fields. J. Number Theory 59 (1996), 82-87.
[4] K. Dilcher, Generalized Euler constants for arithmetical progressions. Math. Comp. 59 (1992), 259-282.
[5] P. Erdös, A. Ivić, C. Pomerance, On sums involving reciprocals of the largest prime factor of an integer. Glas. Mat. Ser. III 21 (41) (1986), 283-300.
[6] J.H. Evertse, P. Moree, C.L. Stewart, R. Tijdeman, Multivariate Diophantine equations with many solutions. Acta Arith. 107 (2003), 103-125.
[7] J.B. Friedlander, On the large number of ideals free from large prime divisors. J. Reine Angew. Math. 255 (1972), 1-7.
[8] J.R. Gillett, On the largest prime divisors of ideals in fields of degree n. Duke Math. J. 37 (1970), 589-600.
[9] L.J. Goldstein, Analytic Number Theory, Prentice-Hall, Inc., New Jersey, 1971.
[10] D.G. Hazlewood, On ideals having only small prime factors. Rocky Mountain J. Math. 7 (1977), 753-768.
[11] A. Hildebrand, On the number of positive integers $\leq x$ and free of prime factors $>y$. J. Number Theory 22 (1986), 289-307.
[12] A. Hildebrand, G. Tenenbaum, On integers free of large prime factors. Trans. Amer. Math. Soc. 296 (1986), 265-290.
[13] M.N. Huxley, N. Watt, The number of ideals in a quadratic field II. Israel J. Math. 120 (2000), part A, 125-153.
[14] A. Ivıć, Sum of reciprocals of the largest prime factor of an integer. Arch. Math. 36 (1981), 57-61.
[15] A. Ivić, On some estimates involving the number of prime divisors of an integer. Acta Arith. 49 (1987), 21-33.
[16] A. Ivić, On sums involving reciprocals of the largest prime factor of an integer II. Ibid 71 (1995), 229-251.
[17] A. Ivić, The Riemann zeta-function, Wiley, New York - Chichester - Brisbane - Toronto Singapore, 1985.
[18] A. Ivić, C. Pomerance, Estimates for certain sums involving the largest prime factor of an integer. In: Topics in Classical Number Theory (Budapest,1981), Colloq. Math. Soc. János Bolyai 34, North-Holland, Amsterdam, 1984, 769-789.
[19] U. Krause, Abschätzungen für die Funktion $\Psi_{K}(x, y)$ in algebraischen Zahlkörpern. Manuscripta Math. 69 (1990), 319-331.
[20] E. Landau, Einführung in die elementare und analytische Theorie der algebraische Zahlen und Ideale. Teubner, Leipzig, 1927, reprint Chelsea, New York, 1949.
[21] S. Lang, Algebraic Number Theory, Addison-Wesley, Reading, Mass. - Menlo Park, Calif. London - Don Mills, Ont., 1970.
[22] P. Moree, An interval result for the number field $\Psi(x, y)$ function. Manuscripta Math. 76 (1992), 437-450.
[23] P. Moree, On some claims in Ramanujan's 'unpublished' manuscript on the partition and tau functions, arXiv:math.NT/0201265.
[24] W. NARkiewicz, Elementary and analytic theory of algebraic numbers. PNW, Warsaw, 1974.
[25] W.G. Nowak, On the distribution of integer ideals in algebraic number fields. Math. Nachr. 161 (1993), 59-74.
[26] E. Saias, Sur le nombre des entiers sans grand facteur premier. J. Number Theory 32 (1989), 78-99.
[27] E.J. Scourfield, On some sums involving the largest prime divisor of n, II. Acta Arith. 98 (2001), 313-343.
[28] H. Smida, Valeur moyenne des fonctions de Piltz sur entiers sans grand facteur premier. Ibid 63 (1993), 21-50.
[29] A.V. Sokolovskil, A theorem on the zeros of Dedekind's zeta-function and the distance between 'neighbouring' prime ideals, (Russian). Ibid 13 (1968), 321-334.
[30] W. Staś, On the order of Dedekind zeta-function in the critical strip. Funct. Approximatio Comment. Math. 4 (1976), 19-26.
[31] G. Tenenbaum, Introduction to analytic and probabilistic number theory, CUP, Cambridge, 1995.

Eira J. Scourfield
Mathematics Department,
Royal Holloway University of London,
Egham, Surrey TW20 0EX, UK.
E-mail: e.scourfield@rhul.ac.uk

[^0]: Manuscrit reçu le 1er aout 2003.

