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Fundamental units in a family of cubic fields

par Veikko ENNOLA

Résumé. Soit O l’ordre maximal du corps cubique engendré par
une racine ε de l’equation x3 + (` − 1)x2 − `x − 1 = 0, où ` ∈ Z,
` ≥ 3. Nous prouvons que ε, ε−1 forment un système fondamental
d’unités dans O, si [O : Z[ε]] ≤ `/3.

Abstract. Let O be the maximal order of the cubic field gen-
erated by a zero ε of x3 + (` − 1)x2 − `x − 1 for ` ∈ Z, ` ≥ 3.
We prove that ε, ε − 1 is a fundamental pair of units for O, if
[O : Z[ε]] ≤ `/3.

1. Introduction

Many computational methods in number theory depend on the knowl-
edge of the unit group of an order in an algebraic number field. Especially,
several parametrized families of cubic orders with a given fundamental pair
of units are known (see, e.g., [3] and papers cited there). However, it
seems that the results mostly suffer from the incompleteness that either
it is not known whether the units also form a fundamental pair of units
for the maximal order of the field (cf. the corrigendum to [4]), or this is
achieved by imposing a further restrictive condition. E.g., in the case of a
non-Galois cubic field this means in practice that the discriminant of the
defining polynomial is assumed to be square-free.

In an earlier paper [2] we gathered together basic arithmetic facts and
further results and conjectures about the two families of cubic fields con-
taining exceptional units, the main emphasis laying on the non-abelian
family. This is the set F = {F`}, where

F` = Q(ε), Irr(ε, Q) = f`(x) = x3 + (`− 1)x2 − `x− 1, ` ≥ 3.

For each `, we fix ε somehow among its conjugates in order to get a unique
field F`. Here ` ≥ 3 is a natural limitation to avoid duplication and to
exclude from the family three fields one of which is cyclic and the other
two are not totally real.

E. Thomas [5] proved that ε, ε− 1 is a fundamental pair of units for the
order Z[ε], and in [2, Conjecture 4.1] we conjectured that the same is true
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for the maximal order O = OF`
. Using the Voronoi algorithm in the cases

when the discriminant D = D(f`) of the polynomial f`(x) is divisible by
the square of a prime p 6= 7, we were able to show that the conjecture is
true for 3 ≤ ` ≤ 500.

The main problem in this context is whether a unit of the form εa(ε−1)b

is a non-trivial pth power in F`. For (a, b) = (2, 1) or (1, 2) we showed in [2]
that it is not so if p = 5, and claimed that the same holds for any prime p.
We have been able to prove this by means of a very tedious computation, the
details of which are uninteresting. As suggested in [2], the crucial question
here is a successful choice of the approximation polynomial q. The following
construction seems to work in all cases: Suppose that ηp = εa(ε−1)b, where
η ∈ F`, p is an odd prime, and a and b are coprime positive integers less
than p. Put δ = 1, if a is even and b is odd, and δ = −1 otherwise. Take

q = δTr(η−a−b) + Tr(ηa) + Tr(ηb),

where Tr denotes the trace from F` to Q. This choice is different from the
one in [2], but so far it has worked well in each case investigated.

Let j denote the index [O : Z[ε]]. Our purpose is to prove the following
result which shows that the conjecture is true if j is not too large:

Theorem. If j = [O : Z[ε]] ≤ `/3, then ε, ε − 1 is a fundamental pair of
units for the maximal order O of the field F`.

Using Maple we have computed the prime factorization of D and have
verified that, for 3 ≤ ` ≤ 10000, D has a squared factor k2 with k > `/3
only in a few cases, and that in these cases k ≡ 0 mod 7, D 6≡ 0 mod 73, so
that (see Lemma 1) j is a divisor of k/7. One can then check that j ≤ `/3.
Therefore, ε, ε− 1 is a fundamental pair of units for O if 3 ≤ ` ≤ 10000.

2. Basic lemmas

These lemmas are contained in [2], but in order to make the proof of the
theorem self-contained, we repeat their proofs shortly here. Note that j2 is
a divisor of D, in fact, D/j2 is the discriminant of the field F`. By pm ‖ c
we mean that pm | c, pm+1 - c.

Lemma 1. (i) If ` 6≡ 2 mod 7, then 7 - D.

(ii) If ` ≡ 2 mod 7, but ` 6≡ 23 mod 49, then 72 ‖ D, 7 - j.

(iii) If ` ≡ 23 mod 49, then 73 ‖ D, 71 ‖ j.

Proof. The polynomial discriminant D has the expression

(1) D = `4 + 6`3 + 7`2 − 6`− 31 = (`2 + 3`− 1)2 − 32.

Note that every prime divisor of D is ≡ ±1 mod 8.
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It is easy to see that (i) holds, e.g., by direct computation. Suppose
therefore, that ` ≡ 2 mod 7. Substituting ` = 2 + 7n in (1) we get

D ≡ 49
(
(2n + 1)2 + 14(n2 + n)

)
mod 74.

Hence 73 ‖ D only for n ≡ 3 mod 7, i.e., ` ≡ 23 mod 49, and otherwise
72 ‖ D.

For ` 6≡ 23 mod 49,

f`(x + 2) = x3 + (` + 5)x2 + (3` + 8)x + 2` + 3

is an Eisenstein polynomial modulo 7, so that 7 is fully ramified in F`, and
(ii) follows.

For ` ≡ 23 mod 49, (iii) is a consequence of (ε − 2)2/7 ∈ O. This fact
can be seen in many ways, the most straightforward but perhaps not the
cleverest method being to compute the minimal polynomial. �

Lemma 2. The ring O has a Z-basis of the form 1, ε, α, where α = (u +
vε + ε2)/j, and the integers u, v are determined by 0 ≤ u, v < j and

(2) 28u ≡ −2`3 − 9`2 − 11` + 11, 28v ≡ `3 + `2 + 9`− 30 mod (7, j)j.

Proof. We shall use a theorem of Voronoi [1, p. 111, Theorem I]. Put a =
2(`2 + ` + 1), b = `2 − `− 9. Since the resultant of a and b with respect to
` equals 336 and b is odd, the gcd (a, b) is a divisor of 21.

Firstly, we must show that the simultaneous congruences

f`(x) ≡ 0 mod k3, f ′
`(x) ≡ 0 mod k2, 1

2f ′′
` (x) ≡ 0 mod k

do not have a common solution for any k > 1. Suppose the contrary. It
follows from the identities

9f`(x)− (3x + `− 1)f ′
`(x) = −ax + b,(3)

−12f ′
`(x) + f ′′

` (x)2 = 2a,

that k2 | (a, b), a contradiction.
Hence O has an integral basis of the required form, where u and v have

to be determined. Put j′ = j/(7, j), so that 7 - j′. By Voronoi’s theorem
we have

(4) u ≡ t2 + (`− 1)t− `, v ≡ t + `− 1 mod j′,

where t is a solution of the congruences

(5) f`(t) ≡ 0 mod j′2, f ′
`(t) ≡ 0 mod j′.

Further useful identities are

a2f ′
`(b/a) = −9D,(6)

a(3`3 + 10`2 − 22`− 41) + 392 = (6`− 10)D.(7)
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It follows from (7) that (a, j′) = 1, and then from the equations (3), (6)
that t = b/a is a solution of (5). Substituting t = b/a in (4) and using
(7) to remove the denominators, we obtain after a short computation the
congruences (2) modulo j′.

Suppose finally that 7 | j, i.e., ` ≡ 23 mod 49. In this case

f`(2) ≡ 0 mod 72, f ′
`(2) ≡ 0 mod 7,

so that Voronoi’s theorem implies u ≡ 4, v ≡ 3 mod 7. This is in accor-
dance with (2) modulo 49. �

3. Proof of the theorem

For the basic facts concerning Voronoi’s algorithm in totally real cubic
fields, see [1], Chapter IV. For any number ϑ ∈ F`, let ϑ, ϑ′, ϑ′′ (or ϑ(i), i =
0, 1, 2) be the conjugates, and let ϑ = (ϑ, ϑ′, ϑ′′) be the corresponding vector
in R3. We choose the order of the conjugates so that

(8) 1 < ε < 1 + `−1, −`−1 < ε′ < 0, −` < ε′′ < −` + `−2.

Let Λ = {ϑ|ϑ ∈ O} be the lattice in R3 corresponding to O. The theorem
is an immediate consequence of the following

Lemma 3. Suppose that j ≤ `/3. Let ξ and η be the relative minima of Λ
adjacent to 1 on the positive x- and y-axis, respectively. Then

ξ = (ε− 1)−1, η = ε−1.

Proof. We apply the result of Lemma 2. Since ε − 1 is a unit, it is clear
that (ε− 1)−1 is a relative minimum of Λ. It follows from (8) that

|ε′ − 1|−1 < 1, |ε′′ − 1|−1 < 1,

so that ξ must satisfy the conditions

(9) |ξ| ≤ |ε− 1|−1, |ξ′| < 1, |ξ′′| < 1.

Since ξ ∈ O, there are integers x, y, z such that

(10) x + yε(i) + zα(i) = ξ(i) (i = 0, 1, 2).

Consider (10) as a system of linear equations in the unknowns x, y, z. The
determinant of the system is −

√
D/j. Here the square root is positive, and

to get the correct sign we use (8). It follows that

(11)
√

Dz/j = (ε′ − ε′′)ξ + (ε′′ − ε)ξ′ + (ε− ε′)ξ′′.

Changing the sign of ξ, if necessary, we may assume that z ≥ 0.



Fundamental units in a family of cubic fields 573

From (1) we have
√

D > `2 + 3`− 2, so that (11), (9) and (8) imply

(`2 + 3`− 2)z/j < (ε′ − ε′′)/(ε− 1) + ε− ε′′ + ε− ε′

= `− 1 + 3ε + ε(` + ε)(ε′ − ε′′)

< `2 + 3` + 6.

Since j ≤ `/3, it follows that z ≤ j.
Subtract the equations (10) with i = 1, 2. Substituting the expressions

of α′ and α′′ we obtain after a short computation

(12) jy − (`− v)z = (ε− 1)z + j(ξ′ − ξ′′)/(ε′ − ε′′).

The absolute value of the right-hand side is less than

j(ε− 1 + 2/(ε′ − ε′′)).

We shall show that this expression is less than 3j/` ≤ 1, so that the final
result will be

(13) jy = (`− v)z.

For that purpose it is enough to show that

(14) (1 + 3`−1 − ε)(ε′ − ε′′) > 2.

The following improved bound for ε is valid: ε < r, where

r = 1 + `−1 − 2`−2 + 4`−3.

To see this, check that f`(1) < 0, f`(r) > 0. We then have

(1 + 3`−1 − ε)(ε′ − ε′′) > (1 + 3`−1 − r)(−`−1 + `− `−2),

which is easily seen to be > 2 if ` ≥ 4. For ` = 3 one can simply compute
the approximate values of ε, ε′, ε′′ and check that (14) holds even then.

We have thus proved (13). We contend that (j, `− v) = 1 which implies

(15) y = `− v, z = j,

because z ≤ j, v < j ≤ `/3, and the possibility z = y = 0 is absurd.
Suppose that ` − v and j are both divisible by a prime p. If p = 7,

then Lemma 1 gives ` ≡ 23 mod 49, but then v ≡ ` ≡ 2 mod 7 leads to a
contradiction with (2). Hence p 6= 7. From (2) we have h(`) ≡ 0 mod p,
where

h(`) = `3 + `2 − 19`− 30.

On the other hand

(3`2 + `− 7)h(`)− (3`− 14)D = 112(`− 2),

so that ` ≡ 2 mod p and h(`) ≡ h(2) ≡ −56 mod p, which is impossible.
Hence (15) is true, whence ξ = x+u+`ε+ε2 = x+u+(ε−1)−1. Looking

at (8), one can see that the two last conditions (9) are only satisfied for
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x+u = 0 or 1. However, the first condition (9) does not hold for x+u = 1.
It follows that ξ = (ε− 1)−1, and the first part of the lemma is proved.

The proof that η = ε−1 is very much the same. The number η satisfies
the conditions

(16) |η| < 1, |η′| ≤ |ε′|−1, |η′′| < 1.

Again there are integers x, y, z such that

(17) x + yε(i) + zα(i) = η(i) (i = 0, 1, 2).

We may assume that z ≥ 0, and we can prove that z ≤ j as before. Sub-
tracting the equations (17) with i = 0, 2 we obtain the following analogue
of (12):

(18) jy − (`− v − 1)z = ε′z + j(η − η′′)/(ε− ε′′).

In order to achieve the result

(19) jy = (`− v − 1)z

we have to show that the absolute value of the right-hand side of (18) is
less than 1. This is true if we can show that

(20) (ε− ε′′)(3`−1 + ε′) > 2.

But (20) follows easily from (8). Hence (19) holds.
Suppose now that j and `−v−1 are both divisible by a prime p. If p = 7,

then ` ≡ 23 mod 49 and v ≡ `−1 ≡ 1 mod 7, which contradicts (2). Thus
p 6= 7. Since v ≡ `−1 mod p, it follows from (2) that h(`)+28 ≡ 0 mod p.
On the other hand,

(2`3 + 9`2 + 11`− 11)(h(`) + 28)− (2`2 − `− 26)D = −784,

which is impossible. As before, we now have

y = `− v − 1, z = j,

so that η = x+u+ `+ ε−1. However, the first and third condition (16) are
only satisfied for x + u + ` = 0. This completes the proof. �
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