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Algebraic independence over Qp

par Peter BUNDSCHUH et Kumiko NISHIOKA

Résumé. Soit f(x) une série entière
∑

n≥1 ζ(n)xe(n), où (e(n))
est une suite récurrente linéaire d’entiers naturels, strictement
croissante, et (ζ(n)) une suite de racines de l’unité dans Qp, qui
satisfait à une hypothèse technique convenable. Alors nous nous
sommes particulièrement intéressés à caractériser l’indépendance
algébrique sur Qp des éléments f(α1), . . . , f(αt) de Cp en fonction
des α1, . . . , αt ∈ Qp, deux à deux distincts, avec 0 < |ατ |p < 1
pour τ = 1, . . . , t. Une application remarquable de notre résultat
principal dit que, dans le cas e(n) = n, l’ensemble {f(α)|α ∈
Qp, 0 < |α|p < 1} est algébriquement indépendant sur Qp, si
(ζ(n)) satisfait à “l’hypothèse technique”. Nous terminerons par
une conjecture portant sur des suites (e(n)) plus générales.

Abstract. Let f(x) be a power series
∑

n≥1 ζ(n)xe(n), where
(e(n)) is a strictly increasing linear recurrence sequence of non-
negative integers, and (ζ(n)) a sequence of roots of unity in Qp

satisfying an appropriate technical condition. Then we are mainly
interested in characterizing the algebraic independence over Qp of
the elements f(α1), . . . , f(αt) from Cp in terms of the distinct
α1, . . . , αt ∈ Qp satisfying 0 < |ατ |p < 1 for τ = 1, . . . , t. A strik-
ing application of our basic result says that, in the case e(n) = n,
the set {f(α)|α ∈ Qp, 0 < |α|p < 1} is algebraically independent
over Qp if (ζ(n)) satisfies the “technical condition”. We close with
a conjecture concerning more general sequences (e(n)).

1. Introduction and results

Let p be a fixed prime, Qp be the p-adic completion of Q, let Qp be the
algebraic closure of Qp, and Cp be the p-adic completion of Qp, which is
an algebraically closed complete field with a valuation uniquely extended
from Qp.
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The question of transcendence or algebraic independence of elements
from Qp or even from Cp over Q is rather well investigated in the litera-
ture. In contrast to this situation, the corresponding question for Cp over
Qp has been studied in the past only occasionally. Seemingly, the first suf-
ficient criterion (of Liouville–type) for transcendence was stated implicitly
by Amice [1, p.74] as an exercise. Concerning algebraic independence, there
is a first article by Lampert [8], who used p-adic series of the form

(1)
∑

ak prk

with infinite sequences (rk) of positive non-integral rational numbers to
answer two questions of Koblitz [6, p.75] about the transcendence degrees
of Cp over Cunr

p and of Cunr
p over Qp. Here Cunr

p denotes the p-adic closure
of Qunr

p in Cp, where Qunr
p is the maximal unramified extension field of Qp.

A few years later, Nishioka [9], based on an approximation type criterion
for algebraic independence, gave more explicit examples for algebraically
independent elements from Cp over Cunr

p (and from Cunr
p over Qp as well)

than Lampert did.
Whereas the ak in Lampert’s series (1) were certain roots of unity in Cp,

the first-named author and Chirskii [2], [3] very recently proved a variety of
results giving sufficient conditions for the algebraic independence over Qp

of numbers from Cp, again defined by infinite series of type (1), but now
with coefficients from the ring Zp := {x ∈ Qp| |x|p ≤ 1} of p-adic integers.

In the present paper, we will be mainly interested in the algebraic inde-
pendence of f(α1), . . . , f(αt) over Qp, where α1, . . . , αt ∈ Q×p := Qp \ {0}
and f(x) is a power series

(2)
∞∑

n=1

ζ(n)xe(n) ∈ Qp[[x]]

with a strictly increasing sequence (e(n))n=1,2,... of non-negative integers.
Our motivation to consider series of type (2) originates from Gouvêa’s book
[4, p.165], where the transcendence of Σn≥1ζ(n)pn over Qp is proved under
assumptions which are much stronger than our’s will be in the sequel.

Before writing down the precise statement of our principal result, it is
useful to give the

Definition. A finite subset {α1, . . . , αt} of C×p := Cp \ {0} is called (e(n))-
dependent if there exist α ∈ C×p , roots of unity ζ1, . . . , ζt, and numbers
δ1, . . . , δt ∈ C×p such that the following conditions hold:
(i) ατ = ζτα for τ = 1, . . . , t,

(ii)
t∑

τ=1
δτ ζ

e(n)
τ = 0 for any large n.

We are now in a position to formulate our main result.
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Theorem 1. Let (e(n))n=1,2,... be a strictly increasing sequence of non-
negative integers forming a linear recurrence. Assume (ζ(n))n=1,2,... to be
a sequence of roots of unity, whose orders are all prime to p, satisfying
ζ(n) 6∈ Qp(ζ(1), . . . , ζ(n− 1)) for any large n ∈ N := {1, 2, . . .}. Put

(3) f(x) :=
∞∑

n=1

ζ(n)xe(n),

and let α1, . . . , αt ∈ Q×p be distinct with |ατ |p < 1 for τ = 1, . . . , t. Then
f(α1), . . . , f(αt) are algebraically dependent 1 if and only if there exists a
non-empty subset of {α1, . . . , αt} which is (e(n))-dependent.

Remark 1. An example of a ζ-sequence as in Theorem 1 is the following.
Let ` be a prime 6= p, and let ζ(n) be a primitive `n-th root of unity for
any n ∈ N.

Since, by a Vandermonde argument, no non-empty finite subset of C×p
can be (n)-dependent, the case e(n) = n yields our first application.

Corollary 1. Let (ζ(n)) be as in Theorem 1, and define

f(x) :=
∞∑

n=1

ζ(n)xn.

Then the set {f(α)|α ∈ Q×p , |α|p < 1} is algebraically independent.

Corollary 2. Let (ζ(n)) be as in Theorem 1, and define

fd(x) :=
∞∑

n=1

ζ(n)xdn

for fixed d ∈ N \ {1}. Suppose α1, . . . , αt ∈ Q×p to be distinct with |ατ |p < 1
for τ = 1, . . . , t. Then fd(α1), . . . , fd(αt) are algebraically dependent if and
only if there exists a non-empty (dn)-dependent subset of {α1, . . . , αt}.

With regard to Corollary 2 we can even go one step further by allowing d
to vary over N \ {1}. The corresponding result, which we state as Theorem
2, is not a direct consequence of Theorem 1, but its proof is rather similar.

Theorem 2. Assume (ζ(n)) to be as in Theorem 1, and fd(x) as in
Corollary 2. Suppose α1, . . . , αt ∈ Q×p to be distinct with |ατ |p < 1 for
τ = 1, . . . , t. Then the set {fd(ατ )|d ∈ N\{1}, τ = 1, . . . , t} is algebraically
dependent if and only if there exist a d0 ∈ N \ {1} and a non-empty subset
of {α1, . . . , αt} which is (dn

0 )-dependent.

An immediate consequence of Theorem 2 is

1 In our paper “algebraically dependent or independent” means always “over Qp”.
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Corollary 3. Suppose that no ατ/ατ ′ (1 ≤ τ < τ ′ ≤ t) is a root of unity.
Then the set {fd(ατ )|d ∈ N\{1}, τ = 1, . . . , t} is algebraically independent.

To conclude this introduction we propose the following

Conjecture. Let (e(n))n∈N be a strictly increasing sequence of non-negative
integers, and let (ζ(n))n∈N be as in Theorem 1. Suppose f to be defined
by (3), and let α1, . . . , αt ∈ Q×p be distinct with |ατ |p < 1 for τ = 1, . . . , t.
Then f(α1), . . . , f(αt) are algebraically dependent if and only if there exists
a non-empty (e(n))-dependent subset of {α1, . . . , αt}.

2. Theorem 1: The if-part and preparation of the only-if-part

Let {α1, . . . , αt′} be an (e(n))-dependent subset of {α1, . . . , αt} ⊂ Q×p .
By definition, there exist α ∈ C×p , roots of unity ζ1, . . . , ζt′ , and numbers
δ1, . . . , δt′ ∈ C×p such that
(i) ατ = ζτα (τ = 1, . . . , t′),

(ii)
t′∑

τ=1
δτζ

e(n)
τ = 0 (n > n0).

From (i) we see α ∈ Q×p , and from (ii) we may suppose δ1, . . . , δt′ ∈ Qp,
not all zero, compare the argument in [11, p.83].

To prove now the if-part, let α1, . . . , αt satisfy the hypotheses of our The-
orem 1, and let {α1, . . . , αt′} be an (e(n))-dependent subset of {α1, . . . , αt}.
Then, using (i) and (ii), we find

t′∑
τ=1

δτf(ατ ) =
∞∑

n=1

ζ(n)
t′∑

τ=1

δτα
e(n)
τ =

∞∑
n=1

ζ(n)αe(n)
t′∑

τ=1

δτζ
e(n)
τ

=
n0∑

n=1

ζ(n)αe(n)
t′∑

τ=1

δτζ
e(n)
τ

with δ1, . . . , δt′ ∈ Qp, not all zero. This last equation shows that 1, f(α1), . . .
f(αt′) are linearly dependent over Qp, and the algebraic dependence of
f(α1), . . . , f(αt′) (over Qp) follows. Clearly, this reasoning is independent
of the fact that (e(n)) is a recurrence sequence.

To begin with the only-if-part, we suppose f(α1), . . . , f(αt) to be alge-
braically dependent whereas, w.l.o.g., every t−1 of these numbers are alge-
braically independent. Then there exists a polynomial F ∈ Zp[x1, . . . , xt] \
{0} with minimal total degree such that

(4) F (f(α1), . . . , f(αt)) = 0.

Clearly, with Dτ = ∂/∂xτ , we have

(5) DτF (f(α1), . . . , f(αt)) 6= 0 for τ = 1, . . . , t.
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Assuming

(6) 0 < |α1|p ≤ · · · ≤ |αs|p < |αs+1|p = · · · = |αt|p < 1,

and defining

(7) βτ,k :=
k−1∑
n=1

ζ(n)αe(n)
τ (k ∈ N)

we have, with f(α) := (f(α1), . . . , f(αt)) and β
k

:= (β1,k, . . . , βt,k),

(8) F (f(α)) = F (β
k
) +

( s∑
τ=1

+
t∑

τ=s+1

)
DτF (β

k
)(f(ατ )− βτ,k)

+
t∑

τ,τ ′=1

DτDτ ′F (β
k
)(f(ατ )− βτ,k)(f(ατ ′)− βτ ′,k) + · · ·

From (7) we see |βτ,k|p ≤ 1 and

|f(ατ )− βτ,k|p =
∣∣ ∞∑
n=k

ζ(n)αe(n)
τ

∣∣
p

= |ατ |e(k)
p

for τ = 1, . . . , t and any k ∈ N. Using this and (4) we deduce from (8)

(9) F (β
k
) +

t∑
τ=s+1

DτF (β
k
)
∑
n≥k

ζ(n)αe(n)
τ = O(|αs|e(k)

p ) + O(|αt|2e(k)
p ).

With Kk := Qp(ζ(1), . . . , ζ(k)) for every large k ∈ N, let σ(k) ∈
Gal(Kk|Kk−1), σ(k) 6= id. As we shall explain in Remark 2 below, we can
extend σ(k) to an isometric automorphism of Cp over Qp, and therefore we
find from (9)

(10) F (β
k
) +

t∑
τ=s+1

DτF (β
k
)
∑
n≥k

ζ(n)σ(k)αe(n)
τ

= O(|αs|e(k)
p ) + O(|αt|2e(k)

p ).

Subtracting (9) from (10) we get

∑
n≥k

(ζ(n)σ(k) − ζ(n))
t∑

τ=s+1

DτF (β
k
)αe(n)

τ = O(|αs|e(k)
p ) + O(|αt|2e(k)

p ).
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Since DτF (β
k
) = DτF (f(α))+O(|αt|e(k)

p ), the last line can be equivalently
written as

(11)
∑
n≥k

(ζ(n)σ(k) − ζ(n))
( t∑
τ=s+1

DτF (f(α))
(

ατ

αt

)e(n))
α

e(n)−e(k)
t

= O

(∣∣∣∣αs

αt

∣∣∣∣e(k)

p

)
+ O(|αt|e(k)

p ).

We put

(12) M(k) := max
n≥k

∣∣ t∑
τ=s+1

DτF (f(α))
(

ατ

αt

)e(n)∣∣
p
;

this maximum exists because of the discreteness of | · |p on Cunr
p . If M(k) =

0, then
t∑

τ=s+1

DτF (f(α))
(

ατ

αt

)e(n)

= 0 for any n ≥ k.

Assume M(k) > 0, and let k′ ≥ k be such that

(13) M(k) =
∣∣ t∑
τ=s+1

DτF (f(α))
(

ατ

αt

)e(k′)∣∣
p
.

Then, for any n > k′, we have∣∣( t∑
τ=s+1

DτF (f(α))
(

ατ

αt

)e(n))
α

e(n)−e(k′)
t

∣∣
p

< M(k).

Replacing in (11) k by k′, and taking |ζ(k′)σ(k′) − ζ(k′)|p = 1 into account,
we get∣∣ t∑

τ=s+1

DτF (f(α))
(

ατ

αt

)e(k′)∣∣
p

=
∣∣∑
n≥k′

(ζ(n)σ(k′) − ζ(n))
( t∑
τ=s+1

DτF (f(α))
(

ατ

αt

)e(n))
α

e(n)−e(k′)
t

∣∣
p

= O

(∣∣αs

αt

∣∣e(k′)
p

)
+ O(|αt|e(k

′)
p ).

Combining this with (13) we find, by |αs/αt|p, |αt|p < 1,

(14) M(k) = O(ϑe(k))

with 0 < ϑ := max(|αs
αt
|p, |αt|p) < 1. By (14) we have, in particular,

(15) lim
k→∞

M(k) = 0.
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Clearly, (14) and (15) hold both in the anticipated case M(k) = 0 as well.

Remark 2. Writing σ for the above σ(k), we let σ be an automorphism
of Qp over Qp. For each x ∈ Qp, we define |x|∗ := |xσ|p. Then | · |∗ is an
absolute value on Qp coinciding on Qp with | · |p. Hence | · |∗ = | · |p, and
thus |xσ|p = |x|p for any x ∈ Qp.

In the above deduction of (10) from (9), we first extend σ ∈Gal(Kk|Kk−1)
to σ ∈ Aut(Qp|Qp). Then σ is isometric, and it can be further extended to
an isometric automorphism of Cp over Qp.

To finish the proof of the only-if-part of our Theorem 1 we need the
following lemma concerning the quotients ατ/αt (τ = s + 1, . . . , t) from Qp

of p-adic value 1, compare (6).

Lemma 1. Denoting q := p for p > 2, and q := 4 for p = 2 there exist
distinct γ1, . . . , γm ∈ 1 + qZp, and ϕ(q)-th roots of unity ζs+1, . . . , ζt such
that the representations

ατ

αt
= ζτγµ(τ) (τ = s + 1, . . . , t)

hold with appropriate µ(τ) ∈ {1, . . . ,m}.

The proof follows immediately from [4, Corollary 4.3.8]. Clearly, no
quotient γµ/γµ′ (µ 6= µ′) can be a root of unity.

3. A pedagogical example

Before concluding the proof of Theorem 1 in section 4 in the general
situation of linear recurrence sequences (e(n)), we treat, for pedagogical
reasons, first the particular case e(·) = g(·) with g ∈ Z[x]. To do this we
need

Lemma 2. Suppose G ∈ Z[x] such that (G(ν))ν∈N is a strictly increasing
sequence of non-negative integers. Let γ1, . . . , γm be as in Lemma 1, and
assume δ1, . . . , δm ∈ Cp, not all zero. Then

lim sup
ν→∞

∣∣ m∑
µ=1

δµγG(ν)
µ

∣∣
p

> 0.

Proof. W.l.o.g. we may assume |δµ|p ≤ 1 for µ = 1, . . . ,m. Then the
Skolem-Lech-Mahler theorem (for relatively simple proofs compare, e.g.,
[5], or [10, Theorem 2.5.3]) implies that there are at most finitely many
k ∈ N0 with

∑m
µ=1 δµγk

µ = 0, since no quotient γµ/γµ′ (µ 6= µ′) is a root of
unity. Thus, by our hypothesis on G, there exists ν0 ∈ N such that

m∑
µ=1

δµγG(ν0)
µ 6= 0,
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and this sum has p-adic value p−v with rational v ≥ 0. Defining M := [v] ∈
N0 we see γpM

µ − 1 ∈ pM+1Zp, and thus, for any ` ∈ N

γG(ν0+`pM )
µ = γG(ν0)+pMλ(`)

µ = γG(ν0)
µ (1 + pM+1ρµ(`))

with appropriate λ(`) ∈ N, ρµ(`) ∈ Zp. From this we see

∣∣ m∑
µ=1

δµγG(ν0+`pM )
µ −

m∑
µ=1

δµγG(ν0)
µ

∣∣
p

= p−M−1
∣∣ m∑

µ=1

δµρµ(`)γG(ν0)
µ

∣∣
p

≤ p−M−1 < p−v

for any ` ∈ N, and therefore∣∣ m∑
µ=1

δµγG(ν)
µ

∣∣
p

= p−v for ν = ν0 + `pM (` = 0, 1, 2, . . .).

This proves Lemma 2.
To prove the only-if-part of Theorem 1 in the particular case e = g, g ∈

Z[x], we write2 n = (p − 1)ν + r with r ∈ {0, . . . , p − 2}, thus getting
g(n) ≡ g(r) (mod(p− 1)). Using this and Lemma 1 we deduce

t∑
τ=s+1

DτF (f(α))
(

ατ

αt

)g(n)

=
t∑

τ=s+1

DτF (f(α))ζg(r)
τ γ

g(n)
µ(τ)

=
m∑

µ=1

 t∑
τ=s+1
µ(τ)=µ

DτF (f(α))ζg(r)
τ

 γg(n)
µ .(16)

Defining for any fixed r ∈ {0, . . . , p− 2} the new integer-valued polynomial
Gr by Gr(ν) := g((p − 1)ν + r), it is clear, that every Gr satisfies the
conditions on G in Lemma 2. On the other hand, it follows from (12), (15)
and (16) that for every r ∈ {0, . . . , p− 2}

0 = lim
n→∞

n≡r mod (p−1)

∣∣ t∑
τ=s+1

DτF (f(α))
(

ατ

αt

)g(n)∣∣
p

= lim
n→∞

n≡r mod (p−1)

∣∣ m∑
µ=1

δµ(r)γg(n)
µ

∣∣
p

= lim
ν→∞

∣∣ m∑
µ=1

δµ(r)γGr(ν)
µ

∣∣
p
,

where we defined

(17) δµ(r) :=
t∑

τ=s+1
µ(τ)=µ

DτF (f(α))ζg(r)
τ (µ = 1, . . . ,m).

2 Obviously, we leave the case p = 2 to the reader.
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Using Lemma 2 we see for any r ∈ {0, . . . , p− 2}

(18)
t∑

τ=s+1
µ(τ)=µ

DτF (f(α))ζg(r)
τ = 0 (µ = 1, . . . ,m).

This leads to

(19)
t∑

τ=s+1
µ(τ)=µ

DτF (f(α))ζg(n)
τ = 0 (µ = 1, . . . ,m)

for any n ∈ N.
Fix now µ0 ∈ {1, . . . ,m} such that the set of τ ∈ {s + 1, . . . , t} with

µ(τ) = µ0 is not empty. Then we find for those τ with µ(τ) = µ0

ατ = αtζτγµ(τ) = αtζτγµ0 = (αtγµ0)ζτ .

This, combined with equation (19) for µ = µ0, shows that {ατ |µ(τ) = µ0}
is a (g(n))-dependent subset of {α1, . . . , αt}. Here we recall the fact that
DτF (f(α)) 6= 0 (τ = s + 1, . . . , t), see (5).

4. The general case

To finish the proof of the only-if-part of Theorem 1 in the general case of
linear recurrence sequences (e(n))n∈N, we note the existence of n0, h ∈ N
such that e(n + h) ≡ e(n) (mod (p − 1)) (or (mod 2) if p = 2) holds for
any n ≥ n0. Equivalently written, with e(n) = e(hν + r) =: Er(ν) for any
ν ∈ N0, r ∈ {n0, . . . , n0 + h− 1}, this means Er(ν) ≡ Er(0) (mod (p− 1))
(or (mod 2) if p = 2). Then we can proceed as in section 3: Combination
of (12) and (14) yields, by reasoning parallel to (16),

ϑEr(ν) = ϑe(n) �
∣∣ t∑

τ=s+1

DτF (f(α))
(

ατ

αt

)e(n) ∣∣
p

=
∣∣ m∑

µ=1

δµ(r)γEr(ν)
µ

∣∣
p
,(20)

where δµ(r) is defined by (17) with g(r) now replaced by e(r) = Er(0).
Using the postponed Lemma 3 we deduce from (20) that the m equa-

tions (18), with g(r) again replaced by e(r) = Er(0), hold for any r ∈
{n0, . . . , n0 +h−1}. Therefore the equations (19) hold for any n ≥ n0 with
g(n) replaced by e(n), and from here on the proof terminates as explained
at the end of section 3.

Remark 3. For the proof of Lemma 3 below we need a few facts on (ho-
mogeneous) linear recurrence sequences with constant coefficients, for short



528 Peter Bundschuh, Kumiko Nishioka

recurrence sequences, which the reader may find in the introductory chapter
”Recurrence Sequences” of the book of Shorey and Tijdeman [12].

First, for our integral recurrence sequence (e(n))n≥1 there exists a unique
recurrence relation of minimal order L, say,

(21) e(n) = aL−1e(n− 1) + · · ·+ a0e(n− L) (n > L)

with a0 6= 0. As it is easily seen, the recurrence coefficients a0, . . . , aL−1

are rational, in fact, by a theorem due to Fatou, integral. Secondly, from
[12, Theorem C.1a)] we know

(22) e(n) =
∑̀
λ=1

gλ(n)dn
λ (n ∈ N),

where the distinct non-zero algebraic integers d1, . . . , d` are the roots of
order ρ1, . . . , ρ` ∈ N (ρ1 + · · ·+ ρ` = L) of the companion polynomial

xL − aL−1 xL−1 − · · · − a0 (∈ Z[x])

of the recurrence (21). The uniquely determined gλ ∈ Q(d1, . . . , d`)[x] have
degrees < ρλ (λ = 1, . . . , `). Thirdly, we have from [12, Theorem C.1b)]: If
d1, . . . , d` ∈ C× are distinct, ρ1, . . . , ρ` ∈ N, and if one defines a0, . . . , aL−1

by

xL − aL−1 xL−1 − · · · − a0 :=
∏̀
λ=1

(x− dλ)ρλ (L :=
∑̀
λ=1

ρλ),

and if the gλ are any polynomials of degree < ρλ (λ = 1, . . . , `), then the
sequence (e(n)) defined by (22) satisfies the recurrence relation (21).

When we applied earlier Lemma 3 to the sequences (Er(ν))ν for fixed r,
we must be sure that these are recurrence sequences for every fixed r. But
this follows easily from our above statement and

Er(ν) = e(hν + r) =
∑̀
λ=1

gλ(hν + r)dr
λ(dh

λ)ν =:
`′∑

λ=1

Gλ(ν)Dν
λ,

where D1, . . . , D`′ are the distinct numbers among the powers dh
1 , . . . , dh

` .

Lemma 3. Let γ1, . . . , γm ∈ Cp be distinct and satisfy |γµ−1|p < p−1/(p−1)

=: Rp (µ = 1, . . . ,m). Let (E(ν)) be a strictly increasing recurrence se-
quence of non-negative integers, and let δ1, . . . , δm ∈ Cp. If

(23)
m∑

µ=1

δµγE(ν)
µ = O(ϑE(ν))

holds for ν → ∞, with a fixed non-negative real number ϑ < 1, then δ1 =
· · · = δm = 0.
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Remark 4. Obviously, if γµ is as in Lemma 1, then |γµ− 1|p < Rp for any
prime p. Furthermore, it should be pointed out that, under the conditions
on the γ’s in Lemma 3, no quotient γµ/γµ′ (µ 6= µ′) can be a root of unity,
see [4, p.154, xiii)].

Proof. From Remark 3, and rewriting (22) a little, we know

E(ν) =
∑̀
λ=1

Gλ(ν)Dν
λ

with distinct non-zero algebraic integers D1, . . . , D` and with non-zero poly-
nomials Gλ having their coefficients in Q(D1, . . . , D`). Therefore we know
0 < |Dλ|p ≤ 1 (λ = 1, . . . , `), and we may assume w.l.o.g.

(24) 1 = |D1|p = · · · = |D`′ |p > |Dλ|p (λ = `′ + 1, . . . , `).

Denoting

A(ν) :=
`′∑

λ=1

Gλ(ν)Dν
λ, B(ν) :=

∑̀
λ=`′+1

Gλ(ν)Dν
λ,

we have |B(ν)|p → 0 as ν → ∞, by (24). Since |E(ν)|p ≤ 1 we may
suppose |A(ν)|p, |B(ν)|p ≤ 1 for every ν ∈ N0. Defining βµ := logp γµ

for µ = 1, . . . ,m, the β1, . . . , βm are distinct, and the inequalities |βµ|p ≤
|γµ − 1|p < Rp hold. The sum on the left-hand side of (23) is

m∑
µ=1

δµγE(ν)
µ =

m∑
µ=1

δµ expp(βµE(ν)) =
m∑

µ=1

δµ expp(βµA(ν))·expp(βµB(ν)).

W.l.o.g. we may suppose |δµ|p ≤ 1 (µ = 1, . . . ,m). We assume further
that at least one of the δ1, . . . , δm is non-zero, and derive a contradiction
according to the cases `′ = ` and `′ < `.

Case `′ = `. Then B(ν) = 0 and A(ν) = E(ν) for every ν. By the
Skolem-Lech-Mahler theorem, there is a ν0 with Σm

µ=1 δµγ
A(ν0)
µ 6= 0, say,

∣∣ m∑
µ=1

δµγA(ν0)
µ

∣∣
p

= p−v

with rational v ≥ 0.
Suppose now L ∈ N large enough, to be specified later. Then there is an

N ∈ N such that for any κ ∈ N0 the following inequalities hold

max(|Gλ(ν0 + Nκ)−Gλ(ν0)|p, |DNκ
λ − 1|p) < p−L (λ = 1, . . . , `).



530 Peter Bundschuh, Kumiko Nishioka

These imply

|A(ν0+Nκ)−A(ν0)|p ≤ max
1≤λ≤`

|(Gλ(ν0 + Nκ)DNκ
λ −Gλ(ν0)) ·Dν0

λ |p

≤ max
1≤λ≤`

max(|Gλ(ν0 + Nκ)−Gλ(ν0)|p, |Gλ(ν0)|p|DNκ
λ − 1|p)(25)

< c1p
−L,

where c1 > 0 depends only on G1, . . . , G`. Then for ν = ν0 + Nκ we get

∣∣ m∑
µ=1

δµγA(ν)
µ −

m∑
µ=1

δµγA(ν0)
µ

∣∣
p
≤ max

1≤µ≤m
| expp(βµ(A(ν)−A(ν0)))− 1|p

= max
1≤µ≤m

|βµ|p |A(ν)−A(ν0)|p < Rpc1p
−L,

by (25). Here the right-hand side is ≤ p−v if we take L large enough.
Therefore ∣∣ m∑

µ=1

δµγE(ν)
µ

∣∣
p

=
∣∣ m∑
µ=1

δµγA(ν)
µ

∣∣
p

= p−v

for all large ν of the form ν0+Nκ, κ ∈ N. Since this contradicts hypothesis
(23) of Lemma 3, we have δ1 = · · · = δm = 0 in the first case.

Case `′ < `. If B(ν) = 0 holds infinitely often, then the infinite set
{ν ∈ N0|Σ`

λ=`′+1 Gλ(ν)Dν
λ = 0} is a union of a finite set and of finitely

many (at least one) arithmetical progressions, by the Skolem-Lech-Mahler
theorem. This implies the existence of c, d ∈ N such that B(c+ dν̃) = 0 for
each ν̃ ∈ N0. Putting

Ẽ(ν̃) := E(c + dν̃) = A(c + dν̃)

we are back to the first case with Ẽ.
Therefore we may suppose from now on that B(ν) 6= 0 for all but finitely

many ν. Indeed, we may even assume w.l.o.g. B(ν) 6= 0 for any ν ∈ N0.
Next we transform a little the sum on the left-hand side of (23)

m∑
µ=1

δµγE(ν)
µ =

m∑
µ=1

δµ expp(βµA(ν))
∞∑

j=0

1
j!

βj
µB(ν)j

=
∞∑

j=0

1
j!

B(ν)j
m∑

µ=1

δµβj
µ expp(βµA(ν)).(26)

For every ν ∈ N0, at least one of the sums

(27)
m∑

µ=1

δµβj
µ expp(βµA(ν)) (j = 0, . . . ,m− 1)



Algebraic independence over Qp 531

is non-zero, by a Vandermonde argument, and since not all δ1, . . . , δm van-
ish. Therefore, for any ν ∈ N0, there exists j(ν) ∈ {0, . . . ,m− 1} such that
(27) vanishes for j = 0, . . . , j(ν)−1, but not for j = j(ν). Thus there exists
a j0 ∈ {0, . . . ,m − 1} such that the sum (27) vanishes for any ν ∈ N0 and
j = 0, . . . , j0 − 1 but

m∑
µ=1

δµβj0
µ expp(βµA(ν0)) 6= 0

for an appropriate ν0 ∈ N. With some rational w ≥ 0 we define∣∣ m∑
µ=1

δµβj0
µ expp(βµA(ν0))

∣∣
p

= p−w.

As we saw in the first case there exists N ∈ N such that

(28)
∣∣ m∑
µ=1

δµβj0
µ expp(βµA(ν0 + Nκ))

∣∣
p

= p−w

holds for every κ ∈ N0.
Replacing now the linear recurrence (E(ν)) by the new one (E∗(κ))κ∈N0 ,

where E∗(κ) := E(ν0 + Nκ), we find from (26)
m∑

µ=1

δµγE∗(κ)
µ =

∞∑
j=j0

1
j!

B(ν0 + Nκ)j
m∑

µ=1

δµβj
µ expp(βµA(ν0 + Nκ)).

Using (28) and |B(ν0 + Nκ)|p → 0 as κ →∞, the last equation yields

(29)
∣∣ m∑
µ=1

δµγE∗(κ)
µ

∣∣
p

=
∣∣ 1
j0!

B(ν0 + Nκ)j0
∣∣
p
· p−w

for every large κ. This equation, combined with hypothesis (23) in Lemma
3, shows that the case j0 = 0 is impossible. Hence we know m > 1 and
j0 ∈ {1, . . . ,m− 1}. Since

(30) |α|p ≥ ( α denα)−deg α

holds for any α ∈ Q× we find from our previous definition of B(ν)

|B(ν)|p =

∣∣∣∣∣ ∑̀
λ=`′+1

Gλ(ν)Dν
λ

∣∣∣∣∣
p

≥ c−ν
2

with some real c2 > 1 (independent of ν). Using this, (29) and (23) we find

c3ϑ
E∗(κ) ≥ |B(ν0 + Nκ)|j0p ≥ c

−(ν0+Nκ)j0
2

and thus

(31) E∗(κ)| log ϑ| ≤ c4 + j0N(log c2)κ ≤ c5κ
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for every large κ ∈ N0.
On the other hand, since `′ < `, there is a λ0 with 0 < |Dλ0 |p < 1. From

(30) follows Dλ0 > 1, thus at least one of the conjugates of Dλ0 (which
occur all among the D1, . . . , D`) must be larger than 1 in absolute value,
thus leading to

4 := max
1≤λ≤`

|Dλ| > 1.

Estimating the positive E∗(κ) from below, at least for infinitely many κ,
(31) leads now quickly to the desired contradiction.

The precise conclusion is as follows. The representation of E(ν) from
the very beginning of our proof and our definition of E∗(κ) leads us to

E∗(κ) = E(ν0 + Nκ) =
∑̀
λ=1

Gλ(ν0 + Nκ)Dν0
λ (DN

λ )κ =:
˜̀∑

λ=1

G̃λ(κ)D̃κ
λ,

where the non-zero D̃1, . . . , D̃˜̀ are the distinct among the DN
1 , . . . , DN

` . To
this representation of the recurrence (E∗(κ))κ∈N0 we apply Kubota’s result
[7, Corollary 3(ii)], and we deduce the existence of a constant c6 > 0 such
that

E∗(κ) ≥ c6κ
d4Nκ

holds for infinitely many κ, where d := max{deg G̃λ | |D̃λ| = 4N} ∈ N0.
Thus Lemma 3 is completely proved.

5. Sketch of proof of Theorem 2

Let d1, . . . , dm ∈ N \ {1} be distinct; w.l.o.g. we may suppose d1 > · · · >
dm > 1. Since Corollary 2 allows us to assume m > 1, we may further
assume inductively that the

fdi
(ατ ) (τ = 1, . . . , t; i = 1, . . . ,m− 1)

are algebraically independent. For each t′ ∈ {1, . . . , t} we have to prove
that the fdm(ατ ) (τ = 1, . . . , t′) are algebraically independent over the field

K := Qp(fd1(α1), . . . , fd1(αt), . . . , fdm−1(α1), . . . , fdm−1(αt)).

We suppose fd1(α1), . . . , fdm(αt′) to be algebraically dependent over K,
whereas, (if t′ > 1) every t′ − 1 of these are algebraically independent.
Then there exists a polynomial

F ∈ Zp[fd1(α1), . . . , fdm−1(αt)][x1, . . . , xt′ ] \ {0}

with minimal total degree such that

F (fdm(α1), . . . , fdm(αt′)) = 0.
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We may assume |α1|p ≤ · · · ≤ |αs′ |p < |αs′+1|p = · · · = |αt′ |p. If a ∈
Zp[fd1(α1), . . . , fdm−1(αt)] then, with σ(k) and n ≥ k as in section 2,

|aσ(k) − a|p ≤ ( max
1≤τ≤t

|ατ |p)dk
m−1 = O

(
|αt′ |2dk

m
p

)
taking dm−1 > dm into account. Hence, we have (11) with s′, t′ instead of
s, t and can continue in the same way as in section 2.
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[4] F.Q. Gouvêa, p-adic Numbers. Springer-Verlag, Berlin et al., 1993.

[5] G. Hansel, Une démonstration simple du théorème de Skolem-Mahler-Lech. Theoret. Com-
put. Sci. 43 (1986), 91–98.

[6] N. Koblitz, p-adic Numbers, p-adic Analysis, and Zeta-Functions, 2nd ed. Springer-Verlag,

New York, 1984.
[7] K.K. Kubota, On the algebraic independence of holomorphic solutions of certain functional

equations and their values. Math. Ann. 227 (1977), 9–50.
[8] D. Lampert, Algebraic p-adic Expansions. J. Number Theory 23 (1986), 279–284.

[9] K. Nishioka, p-adic transcendental numbers. Proc. Amer. Math. Soc. 108 (1990), 39–41.

[10] K. Nishioka, Mahler Functions and Transcendence. LNM 1631, Springer-Verlag, Berlin et
al., 1996.

[11] A.B. Shidlovskii, Transcendental Numbers. De Gruyter, Berlin et al., 1989.

[12] T.N. Shorey, R. Tijdeman, Exponential Diophantine Equations. Cambridge Univ. Press,
1986.

Peter Bundschuh

Mathematisches Institut
Universität zu Köln
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