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Cauchy–Rassias Stability of Lie JC∗ -Algebra Derivations
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Abstract. It is shown that every almost linear mapping h: A → B of
a unital Lie JC∗ -algebra A to a unital Lie JC∗ -algebra B is a Lie JC∗ -

algebra homomorphism when h(2nu ◦ y) = h(2nu) ◦ h(y) , h(3nu ◦ y) =

h(3nu)◦h(y) or h(qnu◦y) = h(qnu)◦h(y) for all y ∈ A , all unitary elements
u ∈ A and n = 0, 1, 2, · · · , and that every almost linear almost multiplicative

mapping h: A → B is a Lie JC∗ -algebra homomorphism when h(2x) =

2h(x) , h(3x) = 3h(x) or h(qx)qh(x) for all x ∈ A . Here the numbers 2, 3, q
depend on the functional equations given in the almost linear mappings or

in the almost linear almost multiplicative mappings. Moreover, we prove the

Cauchy–Rassias stability of Lie JC∗ -algebra homomorphisms in Lie JC∗ -
algebras, and of Lie JC∗ -algebra derivations in Lie JC∗ -algebras.
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1. Introduction

The original motivation to introduce the class of nonassociative algebras known
as Jordan algebras came from quantum mechanics (see [18]). Let L(H) be the
real vector space of all bounded self-adjoint linear operators on H , interpreted
as the (bounded) observables of the system. In 1932, Jordan observed that L(H)
is a (nonassociative) algebra via the anticommutator product x ◦ y := xy+yx

2 .
A commutative algebra X with product x ◦ y is called a Jordan algebra. A
unital Jordan C∗ -subalgebra of a C∗ -algebra, endowed with the anticommutator
product, is called a JC∗ -algebra.

A unital C∗ -algebra C , endowed with the Lie product [x, y] = xy−yx
2

on C , is called a Lie C∗ -algebra. A unital C∗ -algebra C , endowed with the Lie
product [·, ·] and the anticommutator product ◦ , is called a Lie JC∗ -algebra if
(C, ◦) is a JC∗ -algebra and (C, [·, ·]) is a Lie C∗ -algebra (see [5], [6]).
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Let X and Y be Banach spaces with norms || · || and ‖ · ‖ , respectively.
Consider f : X → Y to be a mapping such that f(tx) is continuous in t ∈ R for
each fixed x ∈ X . Assume that there exist constants θ ≥ 0 and p ∈ [0, 1) such
that

‖f(x + y)− f(x)− f(y)‖ ≤ θ(||x||p + ||y||p)

for all x, y ∈ X . Rassias [11] showed that there exists a unique R -linear mapping
T : X → Y such that

‖f(x)− T (x)‖ ≤ 2θ

2− 2p
||x||p

for all x ∈ X . Găvruta [1] generalized the Rassias’ result: Let G be an abelian
group and Y a Banach space. Denote by ϕ : G × G → [0,∞) a function such
that

ϕ̃(x, y) =
∞∑

j=0

2−jϕ(2jx, 2jy) < ∞

for all x, y ∈ G . Suppose that f : G → Y is a mapping satisfying

‖f(x + y)− f(x)− f(y)‖ ≤ ϕ(x, y)

for all x, y ∈ G . Then there exists a unique additive mapping T : G → Y such
that

‖f(x)− T (x)‖ ≤ 1
2
ϕ̃(x, x)

for all x ∈ G . C. Park [7] applied the Găvruta’s result to linear functional
equations in Banach modules over a C∗ -algebra.

Jun and Lee [2] proved the following: Denote by ϕ : X \{0}×X \{0} →
[0,∞) a function such that

ϕ̃(x, y) =
∞∑

j=0

3−jϕ(3jx, 3jy) < ∞

for all x, y ∈ X \ {0} . Suppose that f : X → Y is a mapping satisfying

‖2f(
x + y

2
)− f(x)− f(y)‖ ≤ ϕ(x, y)

for all x, y ∈ X \ {0} . Then there exists a unique additive mapping T : X → Y
such that

‖f(x)− f(0)− T (x)| ≤ 1
3
(ϕ̃(x,−x) + ϕ̃(−x, 3x))

for all x ∈ X \ {0} . C. Park and W. Park [9] applied the Jun and Lee’s result to
the Jensen’s equation in Banach modules over a C∗ -algebra.

Recently, Trif [17] proved the following: Let q := l(d−1)
d−l and r := − l

d−l .
Denote by ϕ : Xd → [0,∞) a function such that

ϕ̃(x1, · · · , xd) =
∞∑

j=0

q−jϕ(qjx1, · · · , qjxd) < ∞
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for all x1, · · · , xd ∈ X . Suppose that f : X → Y is a mapping satisfying

‖d d−2Cl−2f(
x1 + · · ·+ xd

d
) + d−2Cl−1

d∑
j=1

f(xj)

− l
∑

1≤j1<···<jl≤d

f(
xj1 + · · ·+ xjl

l
)‖ ≤ ϕ(x1, · · · , xd)

for all x1, · · · , xd ∈ X . Then there exists a unique additive mapping T : X → Y
such that

‖f(x)− f(0)− T (x)‖ ≤ 1
l · d−1Cl−1

ϕ̃(qx, rx, · · · , rx︸ ︷︷ ︸
d−1 times

)

for all x ∈ X . And C. Park [8] applied the Trif’s result to the Trif functional
equation in Banach modules over a C∗ -algebra. Several authors have investigated
functional equations (see [10]–[16]).

Throughout this paper, let q = l(d−1)
d−l and r = − l

d−l for positive integers
l, d with 2 ≤ l ≤ d − 1. Let A be a unital Lie JC∗ -algebra with norm || · || ,
unit e and unitary group U(A) = {u ∈ A | uu∗ = u∗u = e} , and B a unital Lie
JC∗ -algebra with norm ‖ · ‖ and unit e′ .

Using the stability methods of linear functional equations, we prove that
every almost linear mapping h : A → B is a Lie JC∗ -algebra homomorphism
when h(2nu ◦ y) = h(2nu) ◦ h(y), h(3nu ◦ y) = h(3nu) ◦ h(y) or h(qnu ◦ y) =
h(qnu) ◦ h(y) for all y ∈ A , all u ∈ U(A) and n = 0, 1, 2, · · · , and that every
almost linear almost multiplicative mapping h : A → B is a Lie JC∗ -algebra
homomorphism when h(2x) = 2h(x), h(3x) = 3h(x) or h(qx) = qh(x) for all
x ∈ A . We moreover prove the Cauchy–Rassias stability of Lie JC∗ -algebra
homomorphisms in unital Lie JC∗ -algebras, and of Lie JC∗ -algebra derivations
in unital Lie JC∗ -algebras.

2. Homomorphisms between Lie JC∗ -algebras

Definition 2.1. A C -linear mapping H : A → B is called a Lie JC∗ -algebra
homomorphism if H : A → B satisfies

H(x ◦ y) = H(x) ◦H(y),
H([x, y]) = [H(x),H(y)],

H(x∗) = H(x)∗

for all x, y ∈ A .

Remark 2.1. A C -linear mapping H : A → B is a C∗ -algebra homomorphism
if and only if the mapping H : A → B is a Lie JC∗ -algebra homomorphism.

Assume that H is a Lie JC∗ -algebra homomorphism. Then

H(xy) = H([x, y] + x ◦ y) = H([x, y]) + H(x ◦ y)
= [H(x),H(y)] + H(x) ◦H(y) = H(x)H(y)
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for all x, y ∈ A . So H is a C∗ -algebra homomorphism.
Assume that H is a C∗ -algebra homomorphism. Then

H([x, y] = H(
xy − yx

2
) =

H(x)H(y)−H(y)H(x)
2

= [H(x),H(y)],

H(x ◦ y) = H(
xy + yx

2
) =

H(x)H(y) + H(y)H(x)
2

= H(x) ◦H(y)

for all x, y ∈ A . So H is a Lie JC∗ -algebra homomorphism.
We are going to investigate Lie JC∗ -algebra homomorphisms between

Lie JC∗ -algebras associated with the Cauchy functional equation.

Theorem 2.1. Let h : A → B be a mapping satisfying h(0) = 0 and
h(2nu ◦ y) = h(2nu) ◦ h(y) for all y ∈ A , all u ∈ U(A) and n = 0, 1, 2, · · · ,
for which there exists a function ϕ : A4 → [0,∞) such that

ϕ̃(x, y, z, w) :=
∞∑

j=0

2−jϕ(2jx, 2jy, 2jz, 2jw) < ∞, (2.i)

‖h(µx + µy + [z, w])− µh(x)− µh(y)− [h(z), h(w)]‖
≤ ϕ(x, y, z, w), (2.ii)

‖h(2nu∗)− h(2nu)∗‖ ≤ ϕ(2nu, 2nu, 0, 0) (2.iii)

for all µ ∈ T1 := {λ ∈ C | |λ| = 1} , all u ∈ U(A) , all x, y, z, w ∈ A and
n = 0, 1, 2, · · · . Assume that (2.iv) limn→∞

h(2ne)
2n = e′ . Then the mapping

h : A → B is a Lie JC∗ -algebra homomorphism.

Proof. Put z = w = 0 and µ = 1 ∈ T1 in (2.ii). It follows from Găvruta’s
Theorem [1] that there exists a unique additive mapping H : A → B such that

‖h(x)−H(x)‖ ≤ 1
2
ϕ̃(x, x, 0, 0) (2.0)

for all x ∈ A . The additive mapping H : A → B is given by

H(x) = lim
n→∞

1
2n

h(2nx) (2.1)

for all x ∈ A .
By the assumption, for each µ ∈ T1 ,

‖h(2nµx)− 2µh(2n−1x)‖ ≤ ϕ(2n−1x, 2n−1x, 0, 0)

for all x ∈ A . And one can show that

‖µh(2nx)− 2µh(2n−1x)‖ ≤ |µ| · ‖h(2nx)− 2h(2n−1x)‖ ≤ ϕ(2n−1x, 2n−1x, 0, 0)

for all µ ∈ T1 and all x ∈ A . So

‖h(2nµx)− µh(2nx)‖ ≤‖h(2nµx)− 2µh(2n−1x)‖+ ‖2µh(2n−1x)− µh(2nx)‖
≤ϕ(2n−1x, 2n−1x, 0, 0) + ϕ(2n−1x, 2n−1x, 0, 0)
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for all µ ∈ T1 and all x ∈ A . Thus 2−n‖h(2nµx) − µh(2nx)‖ → 0 as n → ∞
for all µ ∈ T1 and all x ∈ A . Hence

H(µx) = lim
n→∞

h(2nµx)
2n

= lim
n→∞

µh(2nx)
2n

= µH(x) (2.2)

for all µ ∈ T1 and all x ∈ A .
Now let λ ∈ C (λ 6= 0) and M an integer greater than 4|λ| . Then

| λ
M | < 1

4 < 1− 2
3 = 1

3 . By [3, Theorem 1], there exist three elements µ1, µ2, µ3 ∈
T1 such that 3 λ

M = µ1 + µ2 + µ3 . And H(x) = H(3 · 1
3x) = 3H( 1

3x) for all
x ∈ A . So H( 1

3x) = 1
3H(x) for all x ∈ A . Thus by (2.2)

H(λx) = H(
M

3
· 3 λ

M
x) = M ·H(

1
3
· 3 λ

M
x) =

M

3
H(3

λ

M
x)

=
M

3
H(µ1x + µ2x + µ3x) =

M

3
(H(µ1x) + H(µ2x) + H(µ3x))

=
M

3
(µ1 + µ2 + µ3)H(x) =

M

3
· 3 λ

M
H(x)

= λH(x)

for all x ∈ A . Hence

H(ζx + ηy) = H(ζx) + H(ηy) = ζH(x) + ηH(y)

for all ζ, η ∈ C(ζ, η 6= 0) and all x, y ∈ A . And H(0x) = 0 = 0H(x) for all
x ∈ A . So the unique additive mapping H : A → B is a C -linear mapping.

Since h(2nu ◦ y) = h(2nu) ◦ h(y) for all y ∈ A , all u ∈ U(A) and
n = 0, 1, 2, · · · ,

H(u ◦ y) = lim
n→∞

1
2n

h(2nu ◦ y) = lim
n→∞

1
2n

h(2nu) ◦ h(y) = H(u) ◦ h(y) (2.3)

for all y ∈ A and all u ∈ U(A). By the additivity of H and (2.3),

2nH(u ◦ y) = H(2nu ◦ y) = H(u ◦ (2ny)) = H(u) ◦ h(2ny)

for all y ∈ A and all u ∈ U(A). Hence

H(u ◦ y) =
1
2n

H(u) ◦ h(2ny) = H(u) ◦ 1
2n

h(2ny) (2.4)

for all y ∈ A and all u ∈ U(A). Taking the limit in (2.4) as n →∞ , we obtain

H(u ◦ y) = H(u) ◦H(y) (2.5)

for all y ∈ A and all u ∈ U(A). Since H is C -linear and each x ∈ A is
a finite linear combination of unitary elements (see [4, Theorem 4.1.7]), i.e.,
x =

∑m
j=1 λjuj (λj ∈ C, uj ∈ U(A)),

H(x ◦ y) = H(
m∑

j=1

λjuj ◦ y) =
m∑

j=1

λjH(uj ◦ y) =
m∑

j=1

λjH(uj) ◦H(y)

= H(
m∑

j=1

λjuj) ◦H(y) = H(x) ◦H(y)
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for all x, y ∈ A .
By (2.iv), (2.3) and (2.5),

H(y) = H(e ◦ y) = H(e) ◦ h(y) = e′ ◦ h(y) = h(y)

for all y ∈ A . So
H(y) = h(y)

for all y ∈ A .
It follows from (2.1) that

H(x) = lim
n→∞

h(22nx)
22n

(2.6)

for all x ∈ A . Let x = y = 0 in (2.ii). Then we get

‖h([z, w])− [h(z), h(w)]‖ ≤ ϕ(0, 0, z, w)

for all z, w ∈ A . So

1
22n

‖h([2nz, 2nw])− [h(2nz), h(2nw)]‖ ≤ 1
22n

ϕ(0, 0, 2nz, 2nw)

≤ 1
2n

ϕ(0, 0, 2nz, 2nw) (2.7)

for all z, w ∈ A . By (2.i), (2.6), and (2.7),

H([z, w]) = lim
n→∞

h(22n[z, w])
22n

= lim
n→∞

h([2nz, 2nw])
22n

= lim
n→∞

1
22n

[h(2nz), h(2nw)] = lim
n→∞

[
h(2nz)

2n
,
h(2nw)

2n
]

= [H(z),H(w)]

for all z, w ∈ A .
By (2.i) and (2.iii), we get

H(u∗) = lim
n→∞

h(2nu∗)
2n

= lim
n→∞

h(2nu)∗

2n
= ( lim

n→∞

h(2nu)
2n

)∗

= H(u)∗

for all u ∈ U(A). Since H : A → B is C -linear and each x ∈ A is a finite linear
combination of unitary elements, i.e., x =

∑m
j=1 λjuj (λj ∈ C, uj ∈ U(A)),

H(x∗) = H(
m∑

j=1

λju
∗
j ) =

m∑
j=1

λjH(u∗j ) =
m∑

j=1

λjH(uj)∗

= (
m∑

j=1

λjH(uj))∗ = H(
m∑

j=1

λjuj)∗ = H(x)∗

for all x ∈ A .
Therefore, the mapping h : A → B is a Lie JC∗ -algebra homomorphism,

as desired.
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Corollary 2.2. Let h : A → B be a mapping satisfying h(0) = 0 and
h(2nu ◦ y) = h(2nu) ◦ h(y) for all y ∈ A , all u ∈ U(A) and n = 0, 1, 2, · · · , for
which there exist constants θ ≥ 0 and p ∈ [0, 1) such that

‖h(µx + µy + [z, w])−µh(x)− µh(y)− [h(z), h(w)]‖
≤ θ(||x||p + ||y||p + ||z||p + ||w||p),

‖h(2nu∗)− h(2nu)∗‖ ≤ 2 · 2npθ

for all µ ∈ T1 , all u ∈ U(A) , all x, y, z, w ∈ A and n = 0, 1, 2, · · · . Assume
that limn→∞

h(2ne)
2n = e′ . Then the mapping h : A → B is a Lie JC∗ -algebra

homomorphism.

Proof. Define ϕ(x, y, z, w) = θ(||x||p + ||y||p + ||z||p + ||w||p), and apply
Theorem 2.1.

Theorem 2.3. Let h : A → B be a mapping satisfying h(0) = 0 and
h(2nu ◦ y) = h(2nu) ◦ h(y) for all y ∈ A , all u ∈ U(A) and n = 0, 1, 2, · · · ,
for which there exists a function ϕ : A4 → [0,∞) satisfying (2.i), (2.iii) and
(2.iv) such that

‖h(µx + µy + [z, w])− µh(x)− µh(y)− [h(z), h(w)]‖ ≤ ϕ(x, y, z, w) (2.v)

for µ = 1, i , and all x, y, z, w ∈ A . If h(tx) is continuous in t ∈ R for each
fixed x ∈ A , then the mapping h : A → B is a Lie JC∗ -algebra homomorphism.

Proof. Put z = w = 0 and µ = 1 in (2.v). By the same reasoning as in
the proof of Theorem 2.1, there exists a unique additive mapping H : A → B
satisfying (2.0). The additive mapping H : A → B is given by

H(x) = lim
n→∞

1
2n

h(2nx)

for all x ∈ A . By the same reasoning as in the proof of [11, Theorem], the
additive mapping H : A → B is R -linear.

Put y = z = w = 0 and µ = i in (2.v). By the same method as in the
proof of Theorem 2.1, one can obtain that

H(ix) = lim
n→∞

h(2nix)
2n

= lim
n→∞

ih(2nx)
2n

= iH(x)

for all x ∈ A . For each element λ ∈ C , λ = s + it , where s, t ∈ R . So

H(λx) = H(sx + itx) = sH(x) + tH(ix) = sH(x) + itH(x) = (s + it)H(x)
= λH(x)

for all λ ∈ C and all x ∈ A . So

H(ζx + ηy) = H(ζx) + H(ηy) = ζH(x) + ηH(y)

for all ζ, η ∈ C , and all x, y ∈ A . Hence the additive mapping H : A → B is
C -linear.

The rest of the proof is the same as in the proof of Theorem 2.1.
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Theorem 2.4. Let h : A → B be a mapping satisfying h(2x) = 2h(x) for all
x ∈ A for which there exists a function ϕ : A4 → [0,∞) satisfying (2.i), (2.ii),
(2.iii) and (2.iv) such that

‖h(2nu ◦ y)− h(2nu) ◦ h(y)‖ ≤ ϕ(u, y, 0, 0) (2.vi)

for all y ∈ A , all u ∈ U(A) and n = 0, 1, 2, · · · . Then the mapping h : A → B
is a Lie JC∗ -algebra homomorphism.

Proof. By the same reasoning as in the proof of Theorem 2.1, there exists a
unique C -linear mapping H : A → B satisfying (2.0).

By (2.vi) and the assumption that h(2x) = 2h(x) for all x ∈ A ,

‖h(2nu ◦ y)− h(2nu) ◦ h(y)‖ =
1

4m
‖h(2m2nu ◦ 2my)− h(2m2nu) ◦ h(2my)‖

≤ 1
4m

ϕ(2mu, 2my, 0, 0) ≤ 1
2m

ϕ(2mu, 2my, 0, 0),

which tends to zero as m →∞ by (2.i). So

h(2nu ◦ y) = h(2nu) ◦ h(y)

for all y ∈ A , all u ∈ U(A) and n = 0, 1, 2, · · · . But by (2.1),

H(x) = lim
n→∞

1
2n

h(2nx) = h(x)

for all x ∈ A .
The rest of the proof is the same as in the proof of Theorem 2.1.

Now we are going to investigate Lie JC∗ -algebra homomorphisms be-
tween Lie JC∗ -algebras associated with the Jensen functional equation.

Theorem 2.5. Let h : A → B be a mapping satisfying h(0) = 0 and
h(3nu ◦ y) = h(3nu) ◦ h(y) for all y ∈ A , all u ∈ U(A) and n = 0, 1, 2, · · · ,
for which there exists a function ϕ : (A \ {0})4 → [0,∞) such that

ϕ̃(x, y, z, w) :=
∞∑

j=0

3−jϕ(3jx, 3jy, 3jz, 3jw) < ∞, (2.vii)

‖2h(
µx + µy + [z, w]

2
)− µh(x)− µh(y)−[h(z), h(w)]‖

≤ ϕ(x, y, z, w), (2.viii)
‖h(3nu∗)− h(3nu)∗‖ ≤ϕ(3nu, 3nu, 0, 0) (2.ix)

for all µ ∈ T1 , all u ∈ U(A) , all x, y, z, w ∈ A and n = 0, 1, 2, · · · . Assume
that limn→∞

h(3ne)
3n = e′ . Then the mapping h : A → B is a Lie JC∗ -algebra

homomorphism.
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Proof. Put z = w = 0 and µ = 1 ∈ T1 in (2.viii). It follows from Jun
and Lee’s Theorem [2, Theorem 1] that there exists a unique additive mapping
H : A → B such that

‖h(x)−H(x)‖ ≤ 1
3
(ϕ̃(x,−x, 0, 0) + ϕ̃(−x, 3x, 0, 0))

for all x ∈ A \ {0} . The additive mapping H : A → B is given by

H(x) = lim
n→∞

1
3n

h(3nx)

for all x ∈ A .
By the assumption, for each µ ∈ T1 ,

‖2h(3nµx)− µh(2 · 3n−1x)− µh(4 · 3n−1x)‖ ≤ ϕ(2 · 3n−1x, 4 · 3n−1x, 0, 0)

for all x ∈ A \ {0} . And one can show that

‖µh(2 · 3n−1x) + µh(4 · 3n−1x)− 2µh(3nx)‖
≤ |µ| · ‖h(2 · 3n−1x) + h(4 · 3n−1x)− 2h(3nx)‖
≤ ϕ(2 · 3n−1x, 4 · 3n−1x, 0, 0)

for all µ ∈ T1 and all x ∈ A \ {0} . So

‖h(3nµx)− µh(3nx)‖ =‖h(3nµx)− 1
2
µh(2 · 3n−1x)− 1

2
µh(4 · 3n−1x)

+
1
2
µh(2 · 3n−1x) +

1
2
µh(4 · 3n−1x)− µh(3nx)‖

≤1
2
‖2h(3nµx)− µh(2 · 3n−1x)− µh(4 · 3n−1x)‖

+
1
2
‖µh(2 · 3n−1x) + µh(4 · 3n−1x)− 2µh(3nx)‖

≤2
2
ϕ(2 · 3n−1x, 4 · 3n−1x, 0, 0)

for all µ ∈ T1 and all x ∈ A \ {0} . Thus 3−n‖h(3nµx) − µh(3nx)‖ → 0 as
n →∞ for all µ ∈ T1 and all x ∈ A \ {0} . Hence

H(µx) = lim
n→∞

h(3nµx)
3n

= lim
n→∞

µh(3nx)
3n

= µH(x)

for all µ ∈ T1 and all x ∈ A \ {0} .
By the same reasoning as in the proof of Theorem 2.1, the unique additive

mapping H : A → B is a C -linear mapping.
By a similar method to the proof of Theorem 2.1, one can show that the

mapping h : A → B is a Lie JC∗ -algebra homomorphism.
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Corollary 2.6. Let h : A → B be a mapping satisfying h(0) = 0 and
h(3nu ◦ y) = h(3nu) ◦ h(y) for all y ∈ A , all u ∈ U(A) and n = 0, 1, 2, · · · , for
which there exist constants θ ≥ 0 and p ∈ [0, 1) such that

‖2h(
µx + µy + [z, w]

2
)−µh(x)− µh(y)− [h(z), h(w)]‖

≤ θ(||x||p + ||y||p + ||z||p + ||w||p),
‖h(3nu∗)− h(3nu)∗‖ ≤ 2 · 3npθ

for all µ ∈ T1 , all u ∈ U(A) , all x, y, z, w ∈ A\{0} and n = 0, 1, 2, · · · . Assume
that limn→∞

h(3ne)
3n = e′ . Then the mapping h : A → B is a Lie JC∗ -algebra

homomorphism.
Proof. Define ϕ(x, y, z, w) = θ(||x||p + ||y||p + ||z||p + ||w||p), and apply
Theorem 2.5.

One can obtain similar results to Theorems 2.3 and 2.4 for the Jensen
functional equation.

Finally, we are going to investigate Lie JC∗ -algebra homomorphisms
between Lie JC∗ -algebras associated with the Trif functional equation.

Theorem 2.7. Let h : A → B be a mapping satisfying h(0) = 0 and
h(qnu ◦ y) = h(qnu) ◦ h(y) for all y ∈ A , all u ∈ U(A) and n = 0, 1, 2, · · · ,
for which there exists a function ϕ : Ad+2 → [0,∞) such that

ϕ̃(x1, · · · , xd, z, w) :=
∞∑

j=0

q−jϕ(qjx1, · · · ,qjxd, q
jz, qjw) < ∞, (2.x)

‖d d−2Cl−2h(
µx1 + · · ·+ µxd

d
+

[z, w]
d d−2Cl−2

)+d−2Cl−1

d∑
j=1

µh(xj)

−l
∑

1≤j1<···<jl≤d

µh(
xj1 + · · ·+ xjl

l
)− [h(z), h(w)]‖ (2.xi)

≤ϕ(x1, · · · , xd, z, w),
‖h(qnu∗)− h(qnu)∗‖ ≤ϕ(qnu, · · · , qnu︸ ︷︷ ︸

d times

, 0, 0) (2.xii)

for all µ ∈ T1 , all u ∈ U(A) , all x1, · · · , xd, z, w ∈ A and n = 0, 1, 2, · · · .
Assume that limn→∞

h(qne)
qn = e′ . Then the mapping h : A → B is a Lie JC∗ -

algebra homomorphism.
Proof. Put z = w = 0 and µ = 1 ∈ T1 in (2.xi). It follows from Trif’s
Theorem [17, Theorem 3.1] that there exists a unique additive mapping H :
A → B such that

‖h(x)−H(x)‖ ≤ 1
l · d−1Cl−1

ϕ̃(qx, rx, · · · , rx︸ ︷︷ ︸
d−1 times

, 0, 0)

for all x ∈ A . The additive mapping H : A → B is given by

H(x) = lim
n→∞

1
qn

h(qnx)

for all x ∈ A .
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Put x1 = · · · = xd = x and z = w = 0 in (2.xi). For each µ ∈ T1 ,

‖d d−2Cl−2(h(µx)− µh(x))‖ ≤ ϕ(x, · · · , x︸ ︷︷ ︸
d times

, 0, 0)

for all x ∈ A . So

q−n‖d d−2Cl−2(h(µqnx)− µh(qnx))‖ ≤ q−nϕ(qnx, · · · , qnx︸ ︷︷ ︸
d times

, 0, 0)

for all x ∈ A . By (2.x),

q−n‖d d−2Cl−2(h(µqnx)− µh(qnx))‖ → 0

as n →∞ for all µ ∈ T1 and all x ∈ A . Thus

q−n‖h(µqnx)− µh(qnx)‖ → 0

as n →∞ for all µ ∈ T1 and all x ∈ A . Hence

H(µx) = lim
n→∞

h(qnµx)
qn

= lim
n→∞

µh(qnx)
qn

= µH(x)

for all µ ∈ T1 and all x ∈ A .
By the same reasoning as in the proof of Theorem 2.1, the unique additive

mapping H : A → B is a C -linear mapping.
By a similar method to the proof of Theorem 2.1, one can show that the

mapping h : A → B is a Lie JC∗ -algebra homomorphism.

Corollary 2.8. Let h : A → B be a mapping satisfying h(0) = 0 and
h(qnu ◦ y) = h(qnu) ◦ h(y) for all y ∈ A , all u ∈ U(A) and n = 0, 1, 2, · · · , for
which there exist constants θ ≥ 0 and p ∈ [0, 1) such that

‖d d−2Cl−2h(
µx1 + · · ·+ µxd

d
+

[z, w]
d d−2Cl−2

) + d−2Cl−1

d∑
j=1

µh(xj)

−l
∑

1≤j1<···<jl≤d

µh(
xj1 + · · ·+ xjl

l
)− [h(z), h(w)]‖

≤ θ(
d∑

j=1

||xj ||p + ||z||p + ||w||p),

‖h(qnu∗)− h(qnu)∗‖ ≤ dqnpθ

for all µ ∈ T1 , all u ∈ U(A) , all x1, · · · , xd, z, w ∈ A and n = 0, 1, 2, · · · .
Assume that limn→∞

h(qne)
qn = e′ . Then the mapping h : A → B is a Lie JC∗ -

algebra homomorphism.

Proof. Define ϕ(x1, · · · , xd, z, w) = θ(
∑d

j=1 ||xj ||p + ||z||p + ||w||p), and apply
Theorem 2.7.

One can obtain similar results to Theorems 2.3 and 2.4 for the Trif
functional equation.
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3. Stability of Lie JC∗ -algebra homomorphisms in Lie JC∗ -algebras

We are going to show the Cauchy–Rassias stability of Lie JC∗ -algebra homo-
morphisms in Lie JC∗ -algebras associated with the Cauchy functional equation.

Theorem 3.1. Let h : A → B be a mapping with h(0) = 0 for which there
exists a function ϕ : A6 → [0,∞) such that

ϕ̃(x, y, z, w, a, b) :=
∞∑

j=0

2−jϕ(2jx, 2jy, 2jz, 2jw, 2ja, 2jb) < ∞, (3.i)

‖h(µx + µy + [z, w] + a ◦ b)− µh(x)− µh(y)− [h(z), h(w)]− h(a) ◦ h(b)‖
≤ ϕ(x, y, z, w, a, b), (3.ii)

‖h(2nu∗)− h(2nu)∗‖ ≤ ϕ(2nu, 2nu, 0, 0, 0, 0) (3.iii)

for all µ ∈ T1 , all u ∈ U(A) , n = 0, 1, 2, · · · , and all x, y, z, w, a, b ∈ A . Then
there exists a unique Lie JC∗ -algebra homomorphism H : A → B such that

‖h(x)−H(x)‖ ≤ 1
2
ϕ̃(x, x, 0, 0, 0, 0) (3.iv)

for all x ∈ A .

Proof. Put z = w = a = b = 0 and µ = 1 ∈ T1 in (3.ii). It follows from
Găvruta’s Theorem [1] that there exists a unique additive mapping H : A → B
satisfying (3.iv). The additive mapping H : A → B is given by

H(x) = lim
n→∞

1
2n

h(2nx)

for all x ∈ A .
The rest of the proof is similar to the proof of Theorem 2.1.

Corollary 3.2. Let h : A → B be a mapping with h(0) = 0 for which there
exist constants θ ≥ 0 and p ∈ [0, 1) such that

‖h(µx + µy + [z, w] + a ◦ b)− µh(x)− µh(y)− [h(z), h(w)]− h(a) ◦ h(b)‖
≤ θ(||x||p + ||y||p + ||z||p + ||w||p + ||a||p + ||b||p),

‖h(2nu∗)− h(2nu)∗‖ ≤ 2 · 2npθ

for all µ ∈ T1 , all u ∈ U(A) , n = 0, 1, 2, · · · , and all x, y, z, w, a, b ∈ A . Then
there exists a unique Lie JC∗ -algebra homomorphism H : A → B such that

‖h(x)−H(x)‖ ≤ 2θ

2− 2p
||x||p

for all x ∈ A .

Proof. Define ϕ(x, y, z, w, a, b) = θ(||x||p+||y||p+||z||p+||w||p+||a||p+||b||p),
and apply Theorem 3.1.
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Theorem 3.3. Let h : A → B be a mapping with h(0) = 0 for which there
exists a function ϕ : A6 → [0,∞) satisfying (3.i) and (3.iii) such that

‖h(µx + µy + [z, w] + a ◦ b)− µh(x)− µh(y)−[h(z), h(w)]− h(a) ◦ h(b)‖
≤ ϕ(x, y, z, w, a, b)

for µ = 1, i , and all x, y, z, w, a, b ∈ A . If h(tx) is continuous in t ∈ R for
each fixed x ∈ A , then there exists a unique Lie JC∗ -algebra homomorphism
H : A → B satisfying (3.iv).

Proof. The proof is similar to the proof of Theorem 2.3.

We are going to show the Cauchy–Rassias stability of Lie JC∗ -algebra
homomorphisms in Lie JC∗ -algebras associated with the Jensen functional equa-
tion.

Theorem 3.4. Let h : A → B be a mapping with h(0) = 0 for which there
exists a function ϕ : (A \ {0})6 → [0,∞) such that

ϕ̃(x, y, z, w, a, b) =
∞∑

j=0

3−jϕ(3jx, 3jy, 3jz, 3jw, 3ja, 3jb) < ∞, (3.v)

‖2h(
µx + µy + [z, w] + a ◦ b

2
)− µh(x)− µh(y)− [h(z), h(w)]− h(a) ◦ h(b)‖

≤ ϕ(x, y, z, w, a, b), (3.vi)
‖h(3nu∗)− h(3nu)∗‖ ≤ϕ(3nu, 3nu, 0, 0, 0, 0) (3.vii)

for all µ ∈ T1 , all u ∈ U(A) , n = 0, 1, 2, · · · , and all x, y, z, w, a, b ∈ A \ {0} .
Then there exists a unique Lie JC∗ -algebra homomorphism H : A → B such
that

‖h(x)−H(x)‖ ≤ 1
3
(ϕ̃(x,−x, 0, 0, 0, 0) + ϕ̃(−x, 3x, 0, 0, 0, 0)) (3.viii)

for all x ∈ A \ {0} .
Proof. Put z = w = a = b = 0 and µ = 1 ∈ T1 in (3.vi). It follows from Jun
and Lee’s Theorem [2, Theorem 1] that there exists a unique additive mapping
H : A → B satisfying (3.viii). The additive mapping H : A → B is given by

H(x) = lim
n→∞

1
3n

h(3nx)

for all x ∈ A .
The rest of the proof is similar to the proof of Theorem 2.5.

Corollary 3.5. Let h : A → B be a mapping with h(0) = 0 for which there
exist constants θ ≥ 0 and p ∈ [0, 1) such that

‖2h(
µx + µy + [z, w] + a ◦ b

2
)− µh(x)− µh(y)− [h(z), h(w)]− h(a) ◦ h(b)‖

≤ θ(||x||p + ||y||p + ||z||p + ||w||p + ||a||p + ||b||p),
‖h(3nu∗)− h(3nu)∗‖ ≤ 2 · 3npθ
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for all µ ∈ T1 , all u ∈ U(A) , n = 0, 1, 2, · · · , and all x, y, z, w, a, b ∈ A \ {0} .
Then there exists a unique Lie JC∗ -algebra homomorphism H : A → B such
that

‖h(x)−H(x)‖ ≤ 3 + 3p

3− 3p
θ||x||p

for all x ∈ A \ {0} .
Proof. Define ϕ(x, y, z, w, a, b) = θ(||x||p+||y||p+||z||p+||w||p+||a||p+||b||p),
and apply Theorem 3.4.

One can obtain a similar result to Theorem 3.3 for the Jensen functional
equation.

Now we are going to show the Cauchy–Rassias stability of Lie JC∗ -
algebra homomorphisms in Lie JC∗ -algebras associated with the Trif functional
equation.

Theorem 3.6. Let h : A → B be a mapping with h(0) = 0 for which there
exists a function ϕ : Ad+4 → [0,∞) such that

ϕ̃(x1, · · · , xd, z, w, a, b) :=
∞∑

j=0

q−jϕ(qjx1, · · · ,qjxd, q
jz, qjw, qja, qjb)

< ∞, (3.ix)

‖d d−2Cl−2h(
µx1 + · · ·+ µxd

d
+

[z, w] + a ◦ b

d d−2Cl−2
) + d−2Cl−1

d∑
j=1

µh(xj)

−l
∑

1≤j1<···<jl≤d

µh(
xj1 + · · ·+ xjl

l
)− [h(z),h(w)]− h(a) ◦ h(b)‖ (3.x)

≤ ϕ(x1, · · · , xd, z, w, a, b),
‖h(qnu∗)− h(qnu)∗‖ ≤ ϕ(qnu, · · · , qnu︸ ︷︷ ︸

d times

,0, 0, 0, 0) (3.xi)

for all µ ∈ T1 , all u ∈ U(A) , n = 0, 1, 2, · · · , and all x1, · · · , xd, z, w, a, b ∈ A .
Then there exists a unique Lie JC∗ -algebra homomorphism H : A → B such
that

‖h(x)−H(x)‖ ≤ 1
l · d−1Cl−1

ϕ̃(qx, rx, · · · , rx︸ ︷︷ ︸
d−1 times

, 0, 0, 0, 0) (3.xii)

for all x ∈ A .

Proof. Put z = w = a = b = 0 and µ = 1 ∈ T1 in (3.x). It follows from
Trif’s Theorem [17, Theorem 3.1] that there exists a unique additive mapping
H : A → B satisfying (3.xii). The additive mapping H : A → B is given by

H(x) = lim
n→∞

1
qn

h(qnx)

for all x ∈ A .
The rest of the proof is similar to the proof of Theorem 2.7.
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Corollary 3.7. Let h : A → B be a mapping with h(0) = 0 for which there
exist constants θ ≥ 0 and p ∈ [0, 1) such that

‖d d−2Cl−2h(
µx1 + · · ·+ µxd

d
+

[z, w] + a ◦ b

d d−2Cl−2
) + d−2Cl−1

d∑
j=1

µh(xj)

−l
∑

1≤j1<···<jl≤d

µh(
xj1 + · · ·+ xjl

l
)−[h(z), h(w)]− h(a) ◦ h(b)‖

≤ θ(
d∑

j=1

||xj ||p+||z||p + ||w||p + ||a||p + ||b||p),

‖h(qnu∗)− h(qnu)∗‖ ≤ dqnpθ

for all µ ∈ T1 , all u ∈ U(A) , n = 0, 1, 2, · · · , and all x1, · · · , xd, z, w, a, b ∈ A .
Then there exists a unique Lie JC∗ -algebra homomorphism H : A → B such
that

‖h(x)−H(x)‖ ≤ q1−p(qp + (d− 1)rp)θ
l d−1Cl−1(q1−p − 1)

||x||p

for all x ∈ A .

Proof. Define ϕ(x1, · · · , xd, z, w, a, b) = θ(
∑d

j=1 ||xj ||p+||z||p+||w||p+||a||p+
||b||p), and apply Theorem 3.6.

One can obtain a similar result to Theorem 3.3 for the Trif functional
equation.

4. Stability of Lie JC∗ -algebra derivations in Lie JC∗ -algebras

Definition 4.1. A C -linear mapping D : A → A is called a Lie JC∗ -algebra
derivation if D : A → A satisfies

D(x ◦ y) = (Dx) ◦ y + x ◦ (Dy),
D([x, y]) = [Dx, y] + [x,Dy],

D(x∗) = D(x)∗

for all x, y ∈ A .

Remark 4.1. A C -linear mapping D : A → A is a C∗ -algebra derivation if
and only if the mapping D : A → A is a Lie JC∗ -algebra derivation.

Assume that D is a Lie JC∗ -algebra derivation. Then

D(xy) = D([x, y] + x ◦ y) = D([x, y]) + D(x ◦ y)
= [Dx, y] + [x,Dy] + (Dx) ◦ y + x ◦ (Dy) = (Dx)y + x(Dy)

for all x, y ∈ A . So D is a C∗ -algebra derivation.
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Assume that D is a C∗ -algebra derivation. Then

D([x, y]) = D(
xy − yx

2
) =

(Dx)y + x(Dy)− (Dy)x− y(Dx)
2

= [Dx, y] + [x,Dy],

D(x ◦ y) = D(
xy + yx

2
) =

(Dx)y + x(Dy) + (Dy)x + y(Dx)
2

= (Dx) ◦ y + x ◦ (Dy)

for all x, y ∈ A . So H is a Lie JC∗ -algebra derivation.
We are going to show the Cauchy–Rassias stability of Lie JC∗ -algebra

derivations in Lie JC∗ -algebras associated with the Cauchy functional equation.

Theorem 4.1. Let h : A → A be a mapping with h(0) = 0 for which there
exists a function ϕ : A6 → [0,∞) satisfying (3.i) and (3.iii) such that

‖h(µx + µy + [z, w] + a ◦ b)− µh(x)− µh(y)− [h(z), w]− [z, h(w)]
− h(a) ◦ b− a ◦ h(b)‖ ≤ ϕ(x, y, z, w, a, b) (4.i)

for all µ ∈ T1 and all x, y, z, w, a, b ∈ A . Then there exists a unique Lie JC∗ -
algebra derivation D : A → A such that

‖h(x)−D(x)‖ ≤ 1
2
ϕ̃(x, x, 0, 0, 0, 0) (4.ii)

for all x ∈ A .

Proof. Put z = w = a = b = 0 in (4.i). By the same reasoning as in the proof
of Theorem 2.1, there exists a unique C -linear involutive mapping D : A → A
satisfying (4.ii). The C -linear mapping D : A → A is given by

D(x) = lim
n→∞

1
2n

h(2nx) (4.1)

for all x ∈ A .
It follows from (4.1) that

D(x) = lim
n→∞

h(22nx)
22n

(4.2)

for all x ∈ A . Let x = y = a = b = 0 in (4.i). Then we get

‖h([z, w])− [h(z), w]− [z, h(w)]‖ ≤ ϕ(0, 0, z, w, 0, 0)

for all z, w ∈ A . Since

1
22n

ϕ(0, 0, 2nz, 2nw, 0, 0) ≤ 1
2n

ϕ(0, 0, 2nz, 2nw, 0, 0),
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1
22n

‖h([2nz, 2nw])− [h(2nz), 2nw]− [2nz, h(2nw)]‖ ≤ 1
22n

ϕ(0, 0, 2nz, 2nw, 0, 0)

≤ 1
2n

ϕ(0, 0, 2nz, 2nw, 0, 0) (4.3)

for all z, w ∈ A . By (3.i), (4.2), and (4.3),

D([z, w]) = lim
n→∞

h(22n[z, w])
22n

= lim
n→∞

h([2nz, 2nw])
22n

= lim
n→∞

([
h(2nz)

2n
,
2nw

2n
] + [

2nz

2n
,
h(2nw)

2n
])

= [D(z), w] + [z,D(w)]

for all z, w ∈ A .
Similarly, one can obtain that

D(a ◦ b) = lim
n→∞

h(22na ◦ b)
22n

= lim
n→∞

h((2na) ◦ (2nb))
22n

= lim
n→∞

(
(
h(2na)

2n
) ◦ (

2nb

2n
) + (

2na

2n
◦ (

h(2nb)
2n

)
)

= (Da) ◦ b + a ◦ (Db)

for all a, b ∈ A . Hence the C -linear mapping D : A → A is a Lie JC∗ -algebra
derivation satisfying (4.ii), as desired.

Corollary 4.2. Let h : A → A be a mapping with h(0) = 0 for which there
exist constants θ ≥ 0 and p ∈ [0, 1) such that

‖h(µx + µy + [z, w] + a ◦ b)− µh(x)− µh(y)− [h(z), w]− [z, h(w)]
− h(a) ◦ b− a ◦ h(B)‖
≤ θ(‖x‖p + ‖y‖p + ‖z‖p + ‖w‖p + ‖a‖p + ‖b‖p),

‖h(2nu∗)− h(2nu)∗‖ ≤ 2 · 2npθ

for all µ ∈ T1 , all u ∈ U(A) , n = 0, 1, 2, · · · , and all x, y, z, w, a, b ∈ A . Then
there exists a unique Lie JC∗ -algebra derivation D : A → A such that

‖h(x)−D(x)‖ ≤ 2θ

2− 2p
‖x‖p

for all x ∈ A .

Proof. Define ϕ(x, y, z, w, a, b) = θ(‖x‖p +‖y‖p +‖z‖p +‖w‖p +‖a‖p +‖b‖p),
and apply Theorem 4.1.

Theorem 4.3. Let h : A → A be a mapping with h(0) = 0 for which there
exists a function ϕ : A6 → [0,∞) satisfying (3.i) and (3.iii) such that

‖h(µx + µy + [z, w] + a ◦ b)− µh(x)− µh(y)− [h(z), w]− [z, h(w)]
− h(a) ◦ b− a ◦ h(b)‖ ≤ ϕ(x, y, z, w, a, b)
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for µ = 1, i , and all x, y, z, w, a, b ∈ A . If h(tx) is continuous in t ∈ R for each
fixed x ∈ A , then there exists a unique Lie JC∗ -algebra derivation D : A → A
satisfying (4.ii).

Proof. By the same reasoning as in the proof of Theorem 2.3, there exists a
unique C -linear mapping D : A → A satisfying (4.ii).

The rest of the proof is the same as in the proofs of Theorems 2.1, 3.1
and 4.1.

We are going to show the Cauchy–Rassias stability of Lie JC∗ -algebra
derivations in Lie JC∗ -algebras associated with the Jensen functional equation.

Theorem 4.4. Let h : A → A be a mapping with h(0) = 0 for which there
exists a function ϕ : (A \ {0})6 → [0,∞) satisfying (3.v) and (3.vii) such that

‖2h(
µx + µy + [z, w] + a ◦ b

2
)− µh(x)− µh(y)− [h(z), w]− [z, h(w)]

− h(a) ◦ b− a ◦ h(b)‖ ≤ ϕ(x, y, z, w, a, b)(4.iii)

for all µ ∈ T1 and all x, y, z, w, a, b ∈ A \ {0} . Then there exists a unique Lie
JC∗ -algebra derivation D : A → A such that

‖h(x)−D(x)‖ ≤ 1
3
(ϕ̃(x,−x, 0, 0, 0, 0) + ϕ̃(−x, 3x, 0, 0, 0, 0)) (4.iv)

for all x ∈ A \ {0} .
Proof. Put z = w = a = b = 0 in (4.iii). By the same reasoning as in
the proof of Theorem 2.5, there exists a unique C -linear involutive mapping
D : A → A satisfying (4.iv). The C -linear mapping D : A → A is given by

D(x) = lim
n→∞

1
3n

h(3nx) (4.4)

for all x ∈ A .
It follows from (4.4) that

D(x) = lim
n→∞

h(32nx)
32n

(4.5)

for all x ∈ A . Let x = y = a = b = 0 in (4.iii). Then we get

‖2h(
[z, w]

2
)− [h(z), w]− [z, h(w)]‖ ≤ ϕ(0, 0, z, w, 0, 0)

for all z, w ∈ A . Since

1
32n

ϕ(0, 0, 3nz, 3nw, 0, 0) ≤ 1
3n

ϕ(0, 0, 3nz, 3nw, 0, 0),

1
32n

‖2h(
1
2
[3nz, 3nw])− [h(3nz), 3nw]− [3nz, h(3nw)]‖ ≤ 1

32n
ϕ(0, 0, 3nz, 3nw, 0, 0)

≤ 1
3n

ϕ(0, 0,3nz, 3nw, 0, 0) (4.6)
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for all z, w ∈ A . By (3.v), (4.5), and (4.6),

2D(
[z, w]

2
) = lim

n→∞

2h( 32n

2 [z, w])
32n

= lim
n→∞

2h( 1
2 [3nz, 3nw])

32n

= lim
n→∞

([
h(3nz)

3n
,
3nw

3n
] + [

3nz

3n
,
h(3nw)

3n
])

= [D(z), w] + [z,D(w)]

for all z, w ∈ A . But since D is C -linear,

D([z, w]) = 2D(
[z, w]

2
) = [D(z), w] + [z,D(w)]

for all z, w ∈ A .
Similarly, one can obtain that

2D(
a ◦ b

2
) = lim

n→∞

2h( 32n

2 a ◦ b)
32n

= lim
n→∞

2h( 1
2 (3na) ◦ (3nb))

32n

= lim
n→∞

(
(
h(3na)

3n
) ◦ (

3nb

3n
) + (

3na

3n
◦ (

h(3nb)
3n

)
)

= (Da) ◦ b + a ◦ (Db)

for all a, b ∈ A . So

D(a ◦ b) = 2D(
a ◦ b

2
) = (Da) ◦ b + a ◦ (Db)

for all a, b ∈ A . Hence the C -linear mapping D : A → A is a Lie JC∗ -algebra
derivation satisfying (4.iv), as desired.

Corollary 4.5. Let h : A → A be a mapping with h(0) = 0 for which there
exist constants θ ≥ 0 and p ∈ [0, 1) such that

‖2h(
µx + µy + [z, w] + a ◦ b

2
)− µh(x)− µh(y)− [h(z), w]− [z, h(w)]

−h(a) ◦ b− a ◦ h(b)‖ ≤ θ(‖x‖p + ‖y‖p + ‖z‖p + ‖w‖p + ‖a‖p + ‖b‖p),
‖h(3nu∗)− h(3nu)∗‖ ≤ 2 · 3npθ

for all µ ∈ T1 , all u ∈ U(A) , n = 0, 1, 2, · · · , and all x, y, z, w, a, b ∈ A \ {0} .
Then there exists a unique Lie JC∗ -algebra derivation D : A → A such that

‖h(x)−D(x)‖ ≤ 3 + 3p

3− 3p
θ‖x‖p

for all x ∈ A \ {0} .
Proof. Define ϕ(x, y, z, w, a, b) = θ(‖x‖p +‖y‖p +‖z‖p +‖w‖p +‖a‖p +‖b‖p),
and apply Theorem 4.4.

One can obtain a similar result to Theorem 4.3 for the Jensen functional
equation.

Finally, we are going to show the Cauchy–Rassias stability of Lie JC∗ -
algebra derivations in Lie JC∗ -algebras associated with the Trif functional equa-
tion.
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Theorem 4.6. Let h : A → A be a mapping with h(0) = 0 for which there
exists a function ϕ : Ad+4 → [0,∞) satisfying (3.ix) and (3.xi) such that

‖d d−2Cl−2h(
µx1 + · · ·+ µxd

d
+

[z, w] + a ◦ b

d d−2Cl−2
) + d−2Cl−1

d∑
j=1

µh(xj)

−l
∑

1≤j1<···<jl≤d

µh(
xj1 + · · ·+ xjl

l
)− [h(z), w]− [z, h(w)] (4.v)

−h(a) ◦ b− a ◦ h(b)‖ ≤ ϕ(x1, · · · , xd, z, w, a, b)

for all µ ∈ T1 and all x1, · · · , xd, z, w, a, b ∈ A . Then there exists a unique Lie
JC∗ -algebra derivation D : A → A such that

‖h(x)−D(x)‖ ≤ 1
l · d−1Cl−1

ϕ̃(qx, rx, · · · , rx︸ ︷︷ ︸
d−1 times

, 0, 0, 0, 0) (4.vi)

for all x ∈ A .

Proof. Put z = w = a = b = 0 in (4.v). By the same reasoning as in the proof
of Theorem 2.7, there exists a unique C -linear involutive mapping D : A → A
satisfying (4.vi). The C -linear mapping D : A → A is given by

D(x) = lim
n→∞

1
qn

h(qnx) (4.7)

for all x ∈ A .
It follows from (4.7) that

D(x) = lim
n→∞

h(q2nx)
q2n

(4.8)

for all x ∈ A . Let x1 = · · · = xd = a = b = 0 in (4.v). Then we get

‖d d−2Cl−2h(
[z, w]

d d−2Cl−2
)− [h(z), w]− [z, h(w)]‖ ≤ ϕ(0, · · · , 0︸ ︷︷ ︸

d times

, z, w, 0, 0)

for all z, w ∈ A . Since

1
q2n

ϕ(0, · · · , 0︸ ︷︷ ︸
d times

, qnz, qnw, 0, 0) ≤ 1
qn

ϕ(0, · · · , 0︸ ︷︷ ︸
d times

, qnz, qnw, 0, 0),

1
q2n

‖dd−2Cl−2h(
1

dd−2Cl−2
[qnz, qnw])− [h(qnz), qnw]− [qnz, h(qnw)]‖

≤ 1
q2n

ϕ(0, · · · , 0︸ ︷︷ ︸
d times

, qnz, qnw, 0, 0) ≤ 1
qn

ϕ(0, · · · , 0︸ ︷︷ ︸
d times

, qnz, qnw, 0, 0) (4.9)
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for all z, w ∈ A . By (3.ix), (4.8), and (4.9),

dd−2Cl−2D(
[z, w]

dd−2Cl−2
) = lim

n→∞

dd−2Cl−2h( q2n

dd−2Cl−2
[z, w])

q2n

= lim
n→∞

dd−2Cl−2h( 1
dd−2Cl−2

[qnz, qnw])

q2n
= lim

n→∞
([

h(qnz)
qn

,
qnw

qn
] + [

qnz

qn
,
h(qnw)

qn
])

= [D(z), w] + [z,D(w)]for all z, w ∈ A.

But since D is C -linear, vglue-8pt

D([z, w]) = d d−2Cl−2D([z, w]
d d−2Cl−2) = [D(z), w] + [z,D(w)] for all z, w ∈ A.

Similarly, one can obtain that D(a ◦ b) = (Da) ◦ b + a ◦ (Db) for all a, b ∈ A .
Hence the C -linear mapping D:A → A is a Lie JC∗ -algebra derivation satisfying
(4.vi), as desired.

Corollary 4.7. Let h : A → A be a mapping with h(0) = 0 for which there
exist constants θ ≥ 0 and p ∈ [0, 1) such that

‖d d−2Cl−2h(
µx1 + · · ·+ µxd

d
+

[z, w] + a ◦ b

d d−2Cl−2
) + d−2Cl−1

d∑
j=1

µh(xj)

−l
∑

1≤j1<···<jl≤d

µh(
xj1 + · · ·+ xjl

l
)− [h(z), w]− [z, h(w)]− h(a) ◦ b

−a ◦ h(b)‖ ≤ θ(
d∑

j=1

‖xj‖p + ‖z‖p + ‖w‖p + ‖a‖p + ‖b‖p),

‖h(qnu∗)− h(qnu)∗‖ ≤ dqnpθ

for all µ ∈ T1 , all u ∈ U(A) , n = 0, 1, · · · , and all x1, · · · , xd, z, w, a, b ∈ A .
Then there exists a unique Lie JC∗ -algebra derivation D : A → A such that

‖h(x)−D(x)‖ ≤ q1−p(qp + (d− 1)rp)θ
l d−1Cl−1(q1−p − 1)

‖x‖p

for all x ∈ A .

Proof. Define ϕ(x1, · · · , xd, z, w, a, b) = θ(
∑d

j=1 ‖xj‖p +‖z‖p +‖w‖p +‖a‖p +
‖b‖p), and apply Theorem 4.6.

One can obtain a similar result to Theorem 4.3 for the Trif functional
equation.
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