Homomorphisms between Lie JC*-Algebras and Cauchy-Rassias Stability of Lie JC*-Algebra Derivations

Chun-Gil Park*

Communicated by A. Valette

Abstract

It is shown that every almost linear mapping $h: A \rightarrow B$ of a unital Lie JC*-algebra A to a unital Lie JC*-algebra B is a Lie JC*algebra homomorphism when $h\left(2^{n} u \circ y\right)=h\left(2^{n} u\right) \circ h(y), h\left(3^{n} u \circ y\right)=$ $h\left(3^{n} u\right) \circ h(y)$ or $h\left(q^{n} u \circ y\right)=h\left(q^{n} u\right) \circ h(y)$ for all $y \in A$, all unitary elements $u \in A$ and $n=0,1,2, \cdots$, and that every almost linear almost multiplicative mapping $h: A \rightarrow B$ is a Lie JC* ${ }^{*}$-algebra homomorphism when $h(2 x)=$ $2 h(x), h(3 x)=3 h(x)$ or $h(q x) q h(x)$ for all $x \in A$. Here the numbers $2,3, q$ depend on the functional equations given in the almost linear mappings or in the almost linear almost multiplicative mappings. Moreover, we prove the Cauchy-Rassias stability of Lie JC* ${ }^{*}$-algebra homomorphisms in Lie JC*algebras, and of Lie JC*-algebra derivations in Lie JC*-algebras. Mathematics Subject Classification: 17B40, 39B52, 46L05, 17 A36. Keywords and Phrases: Lie JC*-algebra homomorphism. Lie JC*-algebra derivation, stability, linear functional equation.

1. Introduction

The original motivation to introduce the class of nonassociative algebras known as Jordan algebras came from quantum mechanics (see [18]). Let $L(H)$ be the real vector space of all bounded self-adjoint linear operators on H, interpreted as the (bounded) observables of the system. In 1932, Jordan observed that $L(H)$ is a (nonassociative) algebra via the anticommutator product $x \circ y:=\frac{x y+y x}{2}$. A commutative algebra X with product $x \circ y$ is called a Jordan algebra. A unital Jordan C^{*}-subalgebra of a C^{*}-algebra, endowed with the anticommutator product, is called a $J C^{*}$-algebra.

A unital C^{*}-algebra C, endowed with the Lie product $[x, y]=\frac{x y-y x}{2}$ on C, is called a Lie C^{*}-algebra. A unital C^{*}-algebra C, endowed with the Lie product $[\cdot, \cdot]$ and the anticommutator product \circ, is called a Lie $J C^{*}$-algebra if (C, \circ) is a $J C^{*}$-algebra and $(C,[\cdot, \cdot])$ is a Lie C^{*}-algebra (see [5], [6]).

[^0]Let X and Y be Banach spaces with norms $\|\cdot\|$ and $\|\cdot\|$, respectively. Consider $f: X \rightarrow Y$ to be a mapping such that $f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in X$. Assume that there exist constants $\theta \geq 0$ and $p \in[0,1)$ such that

$$
\|f(x+y)-f(x)-f(y)\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}\right)
$$

for all $x, y \in X$. Rassias [11] showed that there exists a unique \mathbb{R}-linear mapping $T: X \rightarrow Y$ such that

$$
\|f(x)-T(x)\| \leq \frac{2 \theta}{2-2^{p}}\|x\|^{p}
$$

for all $x \in X$. Găvruta [1] generalized the Rassias' result: Let G be an abelian group and Y a Banach space. Denote by $\varphi: G \times G \rightarrow[0, \infty)$ a function such that

$$
\widetilde{\varphi}(x, y)=\sum_{j=0}^{\infty} 2^{-j} \varphi\left(2^{j} x, 2^{j} y\right)<\infty
$$

for all $x, y \in G$. Suppose that $f: G \rightarrow Y$ is a mapping satisfying

$$
\|f(x+y)-f(x)-f(y)\| \leq \varphi(x, y)
$$

for all $x, y \in G$. Then there exists a unique additive mapping $T: G \rightarrow Y$ such that

$$
\|f(x)-T(x)\| \leq \frac{1}{2} \widetilde{\varphi}(x, x)
$$

for all $x \in G$. C. Park [7] applied the Găvruta's result to linear functional equations in Banach modules over a C^{*}-algebra.

Jun and Lee [2] proved the following: Denote by $\varphi: X \backslash\{0\} \times X \backslash\{0\} \rightarrow$ $[0, \infty)$ a function such that

$$
\widetilde{\varphi}(x, y)=\sum_{j=0}^{\infty} 3^{-j} \varphi\left(3^{j} x, 3^{j} y\right)<\infty
$$

for all $x, y \in X \backslash\{0\}$. Suppose that $f: X \rightarrow Y$ is a mapping satisfying

$$
\left\|2 f\left(\frac{x+y}{2}\right)-f(x)-f(y)\right\| \leq \varphi(x, y)
$$

for all $x, y \in X \backslash\{0\}$. Then there exists a unique additive mapping $T: X \rightarrow Y$ such that

$$
\left||f(x)-f(0)-T(x)| \leq \frac{1}{3}(\widetilde{\varphi}(x,-x)+\widetilde{\varphi}(-x, 3 x))\right.
$$

for all $x \in X \backslash\{0\}$. C. Park and W. Park [9] applied the Jun and Lee's result to the Jensen's equation in Banach modules over a C^{*}-algebra.

Recently, Trif [17] proved the following: Let $q:=\frac{l(d-1)}{d-l}$ and $r:=-\frac{l}{d-l}$. Denote by $\varphi: X^{d} \rightarrow[0, \infty)$ a function such that

$$
\widetilde{\varphi}\left(x_{1}, \cdots, x_{d}\right)=\sum_{j=0}^{\infty} q^{-j} \varphi\left(q^{j} x_{1}, \cdots, q^{j} x_{d}\right)<\infty
$$

for all $x_{1}, \cdots, x_{d} \in X$. Suppose that $f: X \rightarrow Y$ is a mapping satisfying

$$
\begin{aligned}
& \| d_{d-2} C_{l-2} f\left(\frac{x_{1}+\cdots+x_{d}}{d}\right)+{ }_{d-2} C_{l-1} \sum_{j=1}^{d} f\left(x_{j}\right) \\
& -l \sum_{1 \leq j_{1}<\cdots<j_{l} \leq d} f\left(\frac{x_{j_{1}}+\cdots+x_{j_{l}}}{l}\right) \| \leq \varphi\left(x_{1}, \cdots, x_{d}\right)
\end{aligned}
$$

for all $x_{1}, \cdots, x_{d} \in X$. Then there exists a unique additive mapping $T: X \rightarrow Y$ such that

$$
\|f(x)-f(0)-T(x)\| \leq \frac{1}{l \cdot{ }_{d-1} C_{l-1}} \widetilde{\varphi}(q x, \underbrace{r x, \cdots, r x}_{d-1 \text { times }})
$$

for all $x \in X$. And C. Park [8] applied the Trif's result to the Trif functional equation in Banach modules over a C^{*}-algebra. Several authors have investigated functional equations (see [10]-[16]).

Throughout this paper, let $q=\frac{l(d-1)}{d-l}$ and $r=-\frac{l}{d-l}$ for positive integers l, d with $2 \leq l \leq d-1$. Let A be a unital Lie $J C^{*}$-algebra with norm $\|\cdot\|$, unit e and unitary group $U(A)=\left\{u \in A \mid u u^{*}=u^{*} u=e\right\}$, and B a unital Lie $J C^{*}$-algebra with norm $\|\cdot\|$ and unit e^{\prime}.

Using the stability methods of linear functional equations, we prove that every almost linear mapping $h: A \rightarrow B$ is a Lie $J C^{*}$-algebra homomorphism when $h\left(2^{n} u \circ y\right)=h\left(2^{n} u\right) \circ h(y), h\left(3^{n} u \circ y\right)=h\left(3^{n} u\right) \circ h(y)$ or $h\left(q^{n} u \circ y\right)=$ $h\left(q^{n} u\right) \circ h(y)$ for all $y \in A$, all $u \in U(A)$ and $n=0,1,2, \cdots$, and that every almost linear almost multiplicative mapping $h: A \rightarrow B$ is a Lie $J C^{*}$-algebra homomorphism when $h(2 x)=2 h(x), h(3 x)=3 h(x)$ or $h(q x)=q h(x)$ for all $x \in A$. We moreover prove the Cauchy-Rassias stability of Lie $J C^{*}$-algebra homomorphisms in unital Lie $J C^{*}$-algebras, and of Lie $J C^{*}$-algebra derivations in unital Lie $J C^{*}$-algebras.

2. Homomorphisms between Lie $J C^{*}$-algebras

Definition 2.1. A \mathbb{C}-linear mapping $H: A \rightarrow B$ is called a Lie $J C^{*}$-algebra homomorphism if $H: A \rightarrow B$ satisfies

$$
\begin{aligned}
H(x \circ y) & =H(x) \circ H(y), \\
H([x, y]) & =[H(x), H(y)], \\
H\left(x^{*}\right) & =H(x)^{*}
\end{aligned}
$$

for all $x, y \in A$.
Remark 2.1. A \mathbb{C}-linear mapping $H: A \rightarrow B$ is a C^{*}-algebra homomorphism if and only if the mapping $H: A \rightarrow B$ is a Lie $J C^{*}$-algebra homomorphism.

Assume that H is a Lie $J C^{*}$-algebra homomorphism. Then

$$
\begin{aligned}
H(x y) & =H([x, y]+x \circ y)=H([x, y])+H(x \circ y) \\
& =[H(x), H(y)]+H(x) \circ H(y)=H(x) H(y)
\end{aligned}
$$

for all $x, y \in A$. So H is a C^{*}-algebra homomorphism.
Assume that H is a C^{*}-algebra homomorphism. Then

$$
\begin{aligned}
& H\left([x, y]=H\left(\frac{x y-y x}{2}\right)=\frac{H(x) H(y)-H(y) H(x)}{2}=[H(x), H(y)],\right. \\
& H(x \circ y)=H\left(\frac{x y+y x}{2}\right)=\frac{H(x) H(y)+H(y) H(x)}{2}=H(x) \circ H(y)
\end{aligned}
$$

for all $x, y \in A$. So H is a Lie $J C^{*}$-algebra homomorphism.
We are going to investigate Lie $J C^{*}$-algebra homomorphisms between Lie $J C^{*}$-algebras associated with the Cauchy functional equation.

Theorem 2.1. Let $h: A \rightarrow B$ be a mapping satisfying $h(0)=0$ and $h\left(2^{n} u \circ y\right)=h\left(2^{n} u\right) \circ h(y)$ for all $y \in A$, all $u \in U(A)$ and $n=0,1,2, \cdots$, for which there exists a function $\varphi: A^{4} \rightarrow[0, \infty)$ such that

$$
\begin{align*}
& \widetilde{\varphi}(x, y, z, w):=\sum_{j=0}^{\infty} 2^{-j} \varphi\left(2^{j} x, 2^{j} y, 2^{j} z, 2^{j} w\right)<\infty, \tag{2.i}\\
&\|h(\mu x+\mu y+[z, w])-\mu h(x)-\mu h(y)-[h(z), h(w)]\| \\
& \leq \varphi(x, y, z, w), \tag{2.ii}\\
&\left\|h\left(2^{n} u^{*}\right)-h\left(2^{n} u\right)^{*}\right\| \leq \varphi\left(2^{n} u, 2^{n} u, 0,0\right) \tag{2.iii}
\end{align*}
$$

for all $\mu \in \mathbb{T}^{1}:=\{\lambda \in \mathbb{C}|\quad| \lambda \mid=1\}$, all $u \in U(A)$, all $x, y, z, w \in A$ and $n=0,1,2, \cdots$. Assume that (2.iv) $\lim _{n \rightarrow \infty} \frac{h\left(2^{n} e\right)}{2^{n}}=e^{\prime}$. Then the mapping $h: A \rightarrow B$ is a Lie $J C^{*}$-algebra homomorphism.
Proof. Put $z=w=0$ and $\mu=1 \in \mathbb{T}^{1}$ in (2.ii). It follows from Găvruta's Theorem [1] that there exists a unique additive mapping $H: A \rightarrow B$ such that

$$
\begin{equation*}
\|h(x)-H(x)\| \leq \frac{1}{2} \widetilde{\varphi}(x, x, 0,0) \tag{2.0}
\end{equation*}
$$

for all $x \in A$. The additive mapping $H: A \rightarrow B$ is given by

$$
\begin{equation*}
H(x)=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} h\left(2^{n} x\right) \tag{2.1}
\end{equation*}
$$

for all $x \in A$.
By the assumption, for each $\mu \in \mathbb{T}^{1}$,

$$
\left\|h\left(2^{n} \mu x\right)-2 \mu h\left(2^{n-1} x\right)\right\| \leq \varphi\left(2^{n-1} x, 2^{n-1} x, 0,0\right)
$$

for all $x \in A$. And one can show that

$$
\left\|\mu h\left(2^{n} x\right)-2 \mu h\left(2^{n-1} x\right)\right\| \leq|\mu| \cdot\left\|h\left(2^{n} x\right)-2 h\left(2^{n-1} x\right)\right\| \leq \varphi\left(2^{n-1} x, 2^{n-1} x, 0,0\right)
$$

for all $\mu \in \mathbb{T}^{1}$ and all $x \in A$. So

$$
\begin{aligned}
\left\|h\left(2^{n} \mu x\right)-\mu h\left(2^{n} x\right)\right\| & \leq\left\|h\left(2^{n} \mu x\right)-2 \mu h\left(2^{n-1} x\right)\right\|+\left\|2 \mu h\left(2^{n-1} x\right)-\mu h\left(2^{n} x\right)\right\| \\
& \leq \varphi\left(2^{n-1} x, 2^{n-1} x, 0,0\right)+\varphi\left(2^{n-1} x, 2^{n-1} x, 0,0\right)
\end{aligned}
$$

for all $\mu \in \mathbb{T}^{1}$ and all $x \in A$. Thus $2^{-n}\left\|h\left(2^{n} \mu x\right)-\mu h\left(2^{n} x\right)\right\| \rightarrow 0$ as $n \rightarrow \infty$ for all $\mu \in \mathbb{T}^{1}$ and all $x \in A$. Hence

$$
\begin{equation*}
H(\mu x)=\lim _{n \rightarrow \infty} \frac{h\left(2^{n} \mu x\right)}{2^{n}}=\lim _{n \rightarrow \infty} \frac{\mu h\left(2^{n} x\right)}{2^{n}}=\mu H(x) \tag{2.2}
\end{equation*}
$$

for all $\mu \in \mathbb{T}^{1}$ and all $x \in A$.
Now let $\lambda \in \mathbb{C}(\lambda \neq 0)$ and M an integer greater than $4|\lambda|$. Then $\left|\frac{\lambda}{M}\right|<\frac{1}{4}<1-\frac{2}{3}=\frac{1}{3}$. By [3, Theorem 1], there exist three elements $\mu_{1}, \mu_{2}, \mu_{3} \in$ \mathbb{T}^{1} such that $3 \frac{\lambda}{M}=\mu_{1}+\mu_{2}+\mu_{3}$. And $H(x)=H\left(3 \cdot \frac{1}{3} x\right)=3 H\left(\frac{1}{3} x\right)$ for all $x \in A$. So $H\left(\frac{1}{3} x\right)=\frac{1}{3} H(x)$ for all $x \in A$. Thus by (2.2)

$$
\begin{aligned}
H(\lambda x) & =H\left(\frac{M}{3} \cdot 3 \frac{\lambda}{M} x\right)=M \cdot H\left(\frac{1}{3} \cdot 3 \frac{\lambda}{M} x\right)=\frac{M}{3} H\left(3 \frac{\lambda}{M} x\right) \\
& =\frac{M}{3} H\left(\mu_{1} x+\mu_{2} x+\mu_{3} x\right)=\frac{M}{3}\left(H\left(\mu_{1} x\right)+H\left(\mu_{2} x\right)+H\left(\mu_{3} x\right)\right) \\
& =\frac{M}{3}\left(\mu_{1}+\mu_{2}+\mu_{3}\right) H(x)=\frac{M}{3} \cdot 3 \frac{\lambda}{M} H(x) \\
& =\lambda H(x)
\end{aligned}
$$

for all $x \in A$. Hence

$$
H(\zeta x+\eta y)=H(\zeta x)+H(\eta y)=\zeta H(x)+\eta H(y)
$$

for all $\zeta, \eta \in \mathbb{C}(\zeta, \eta \neq 0)$ and all $x, y \in A$. And $H(0 x)=0=0 H(x)$ for all $x \in A$. So the unique additive mapping $H: A \rightarrow B$ is a \mathbb{C}-linear mapping.

Since $h\left(2^{n} u \circ y\right)=h\left(2^{n} u\right) \circ h(y)$ for all $y \in A$, all $u \in U(A)$ and $n=0,1,2, \cdots$,

$$
\begin{equation*}
H(u \circ y)=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} h\left(2^{n} u \circ y\right)=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} h\left(2^{n} u\right) \circ h(y)=H(u) \circ h(y) \tag{2.3}
\end{equation*}
$$

for all $y \in A$ and all $u \in U(A)$. By the additivity of H and (2.3),

$$
2^{n} H(u \circ y)=H\left(2^{n} u \circ y\right)=H\left(u \circ\left(2^{n} y\right)\right)=H(u) \circ h\left(2^{n} y\right)
$$

for all $y \in A$ and all $u \in U(A)$. Hence

$$
\begin{equation*}
H(u \circ y)=\frac{1}{2^{n}} H(u) \circ h\left(2^{n} y\right)=H(u) \circ \frac{1}{2^{n}} h\left(2^{n} y\right) \tag{2.4}
\end{equation*}
$$

for all $y \in A$ and all $u \in U(A)$. Taking the limit in (2.4) as $n \rightarrow \infty$, we obtain

$$
\begin{equation*}
H(u \circ y)=H(u) \circ H(y) \tag{2.5}
\end{equation*}
$$

for all $y \in A$ and all $u \in U(A)$. Since H is \mathbb{C}-linear and each $x \in A$ is a finite linear combination of unitary elements (see [4, Theorem 4.1.7]), i.e., $x=\sum_{j=1}^{m} \lambda_{j} u_{j}\left(\lambda_{j} \in \mathbb{C}, u_{j} \in U(A)\right)$,

$$
\begin{aligned}
H(x \circ y) & =H\left(\sum_{j=1}^{m} \lambda_{j} u_{j} \circ y\right)=\sum_{j=1}^{m} \lambda_{j} H\left(u_{j} \circ y\right)=\sum_{j=1}^{m} \lambda_{j} H\left(u_{j}\right) \circ H(y) \\
& =H\left(\sum_{j=1}^{m} \lambda_{j} u_{j}\right) \circ H(y)=H(x) \circ H(y)
\end{aligned}
$$

for all $x, y \in A$.
By (2.iv), (2.3) and (2.5),

$$
H(y)=H(e \circ y)=H(e) \circ h(y)=e^{\prime} \circ h(y)=h(y)
$$

for all $y \in A$. So

$$
H(y)=h(y)
$$

for all $y \in A$.
It follows from (2.1) that

$$
\begin{equation*}
H(x)=\lim _{n \rightarrow \infty} \frac{h\left(2^{2 n} x\right)}{2^{2 n}} \tag{2.6}
\end{equation*}
$$

for all $x \in A$. Let $x=y=0$ in (2.ii). Then we get

$$
\|h([z, w])-[h(z), h(w)]\| \leq \varphi(0,0, z, w)
$$

for all $z, w \in A$. So

$$
\begin{align*}
\frac{1}{2^{2 n}}\left\|h\left(\left[2^{n} z, 2^{n} w\right]\right)-\left[h\left(2^{n} z\right), h\left(2^{n} w\right)\right]\right\| & \leq \frac{1}{2^{2 n}} \varphi\left(0,0,2^{n} z, 2^{n} w\right) \\
& \leq \frac{1}{2^{n}} \varphi\left(0,0,2^{n} z, 2^{n} w\right) \tag{2.7}
\end{align*}
$$

for all $z, w \in A$. By (2.i), (2.6), and (2.7),

$$
\begin{aligned}
H([z, w]) & =\lim _{n \rightarrow \infty} \frac{h\left(2^{2 n}[z, w]\right)}{2^{2 n}}=\lim _{n \rightarrow \infty} \frac{h\left(\left[2^{n} z, 2^{n} w\right]\right)}{2^{2 n}} \\
& =\lim _{n \rightarrow \infty} \frac{1}{2^{2 n}}\left[h\left(2^{n} z\right), h\left(2^{n} w\right)\right]=\lim _{n \rightarrow \infty}\left[\frac{h\left(2^{n} z\right)}{2^{n}}, \frac{h\left(2^{n} w\right)}{2^{n}}\right] \\
& =[H(z), H(w)]
\end{aligned}
$$

for all $z, w \in A$.
By (2.i) and (2.iii), we get

$$
\begin{aligned}
H\left(u^{*}\right) & =\lim _{n \rightarrow \infty} \frac{h\left(2^{n} u^{*}\right)}{2^{n}}=\lim _{n \rightarrow \infty} \frac{h\left(2^{n} u\right)^{*}}{2^{n}}=\left(\lim _{n \rightarrow \infty} \frac{h\left(2^{n} u\right)}{2^{n}}\right)^{*} \\
& =H(u)^{*}
\end{aligned}
$$

for all $u \in U(A)$. Since $H: A \rightarrow B$ is \mathbb{C}-linear and each $x \in A$ is a finite linear combination of unitary elements, i.e., $x=\sum_{j=1}^{m} \lambda_{j} u_{j}\left(\lambda_{j} \in \mathbb{C}, u_{j} \in U(A)\right)$,

$$
\begin{aligned}
H\left(x^{*}\right) & =H\left(\sum_{j=1}^{m} \overline{\lambda_{j}} u_{j}^{*}\right)=\sum_{j=1}^{m} \overline{\lambda_{j}} H\left(u_{j}^{*}\right)=\sum_{j=1}^{m} \overline{\lambda_{j}} H\left(u_{j}\right)^{*} \\
& =\left(\sum_{j=1}^{m} \lambda_{j} H\left(u_{j}\right)\right)^{*}=H\left(\sum_{j=1}^{m} \lambda_{j} u_{j}\right)^{*}=H(x)^{*}
\end{aligned}
$$

for all $x \in A$.
Therefore, the mapping $h: A \rightarrow B$ is a Lie $J C^{*}$-algebra homomorphism, as desired.

Corollary 2.2. Let $h: A \rightarrow B$ be a mapping satisfying $h(0)=0$ and $h\left(2^{n} u \circ y\right)=h\left(2^{n} u\right) \circ h(y)$ for all $y \in A$, all $u \in U(A)$ and $n=0,1,2, \cdots$, for which there exist constants $\theta \geq 0$ and $p \in[0,1)$ such that

$$
\begin{aligned}
&\|h(\mu x+\mu y+[z, w])-\mu h(x)-\mu h(y)-[h(z), h(w)]\| \\
& \leq \theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}+\|w\|^{p}\right), \\
&\left\|h\left(2^{n} u^{*}\right)-h\left(2^{n} u\right)^{*}\right\| \leq 2 \cdot 2^{n p} \theta
\end{aligned}
$$

for all $\mu \in \mathbb{T}^{1}$, all $u \in U(A)$, all $x, y, z, w \in A$ and $n=0,1,2, \cdots$. Assume that $\lim _{n \rightarrow \infty} \frac{h\left(2^{n} e\right)}{2^{n}}=e^{\prime}$. Then the mapping $h: A \rightarrow B$ is a Lie JC*-algebra homomorphism.
Proof. Define $\varphi(x, y, z, w)=\theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}+\|w\|^{p}\right)$, and apply Theorem 2.1.

Theorem 2.3. Let $h: A \rightarrow B$ be a mapping satisfying $h(0)=0$ and $h\left(2^{n} u \circ y\right)=h\left(2^{n} u\right) \circ h(y)$ for all $y \in A$, all $u \in U(A)$ and $n=0,1,2, \cdots$, for which there exists a function $\varphi: A^{4} \rightarrow[0, \infty)$ satisfying (2.i), (2.iii) and (2.iv) such that

$$
\begin{equation*}
\|h(\mu x+\mu y+[z, w])-\mu h(x)-\mu h(y)-[h(z), h(w)]\| \leq \varphi(x, y, z, w) \tag{2.v}
\end{equation*}
$$

for $\mu=1, i$, and all $x, y, z, w \in A$. If $h(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in A$, then the mapping $h: A \rightarrow B$ is a Lie JC*-algebra homomorphism.
Proof. Put $z=w=0$ and $\mu=1$ in (2.v). By the same reasoning as in the proof of Theorem 2.1, there exists a unique additive mapping $H: A \rightarrow B$ satisfying (2.0). The additive mapping $H: A \rightarrow B$ is given by

$$
H(x)=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} h\left(2^{n} x\right)
$$

for all $x \in A$. By the same reasoning as in the proof of [11, Theorem], the additive mapping $H: A \rightarrow B$ is \mathbb{R}-linear.

Put $y=z=w=0$ and $\mu=i$ in (2.v). By the same method as in the proof of Theorem 2.1, one can obtain that

$$
H(i x)=\lim _{n \rightarrow \infty} \frac{h\left(2^{n} i x\right)}{2^{n}}=\lim _{n \rightarrow \infty} \frac{i h\left(2^{n} x\right)}{2^{n}}=i H(x)
$$

for all $x \in A$. For each element $\lambda \in \mathbb{C}, \lambda=s+i t$, where $s, t \in \mathbb{R}$. So

$$
\begin{aligned}
H(\lambda x) & =H(s x+i t x)=s H(x)+t H(i x)=s H(x)+i t H(x)=(s+i t) H(x) \\
& =\lambda H(x)
\end{aligned}
$$

for all $\lambda \in \mathbb{C}$ and all $x \in A$. So

$$
H(\zeta x+\eta y)=H(\zeta x)+H(\eta y)=\zeta H(x)+\eta H(y)
$$

for all $\zeta, \eta \in \mathbb{C}$, and all $x, y \in A$. Hence the additive mapping $H: A \rightarrow B$ is \mathbb{C}-linear.

The rest of the proof is the same as in the proof of Theorem 2.1.

Theorem 2.4. Let $h: A \rightarrow B$ be a mapping satisfying $h(2 x)=2 h(x)$ for all $x \in A$ for which there exists a function $\varphi: A^{4} \rightarrow[0, \infty)$ satisfying (2.i), (2.ii), (2.iii) and (2.iv) such that

$$
\begin{equation*}
\left\|h\left(2^{n} u \circ y\right)-h\left(2^{n} u\right) \circ h(y)\right\| \leq \varphi(u, y, 0,0) \tag{2.vi}
\end{equation*}
$$

for all $y \in A$, all $u \in U(A)$ and $n=0,1,2, \cdots$. Then the mapping $h: A \rightarrow B$ is a Lie JC*-algebra homomorphism.
Proof. By the same reasoning as in the proof of Theorem 2.1, there exists a unique \mathbb{C}-linear mapping $H: A \rightarrow B$ satisfying (2.0).

By (2.vi) and the assumption that $h(2 x)=2 h(x)$ for all $x \in A$,

$$
\begin{aligned}
\left\|h\left(2^{n} u \circ y\right)-h\left(2^{n} u\right) \circ h(y)\right\| & =\frac{1}{4^{m}}\left\|h\left(2^{m} 2^{n} u \circ 2^{m} y\right)-h\left(2^{m} 2^{n} u\right) \circ h\left(2^{m} y\right)\right\| \\
& \leq \frac{1}{4^{m}} \varphi\left(2^{m} u, 2^{m} y, 0,0\right) \leq \frac{1}{2^{m}} \varphi\left(2^{m} u, 2^{m} y, 0,0\right)
\end{aligned}
$$

which tends to zero as $m \rightarrow \infty$ by (2.i). So

$$
h\left(2^{n} u \circ y\right)=h\left(2^{n} u\right) \circ h(y)
$$

for all $y \in A$, all $u \in U(A)$ and $n=0,1,2, \cdots$. But by (2.1),

$$
H(x)=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} h\left(2^{n} x\right)=h(x)
$$

for all $x \in A$.
The rest of the proof is the same as in the proof of Theorem 2.1.
Now we are going to investigate Lie $J C^{*}$-algebra homomorphisms between Lie $J C^{*}$-algebras associated with the Jensen functional equation.

Theorem 2.5. Let $h: A \rightarrow B$ be a mapping satisfying $h(0)=0$ and $h\left(3^{n} u \circ y\right)=h\left(3^{n} u\right) \circ h(y)$ for all $y \in A$, all $u \in U(A)$ and $n=0,1,2, \cdots$, for which there exists a function $\varphi:(A \backslash\{0\})^{4} \rightarrow[0, \infty)$ such that

$$
\begin{align*}
& \widetilde{\varphi}(x, y, z, w):=\sum_{j=0}^{\infty} 3^{-j} \varphi\left(3^{j} x, 3^{j} y, 3^{j} z, 3^{j} w\right)<\infty \tag{2.vii}\\
&\left\|2 h\left(\frac{\mu x+\mu y+[z, w]}{2}\right)-\mu h(x)-\mu h(y)-[h(z), h(w)]\right\| \\
& \leq \varphi(x, y, z, w), \tag{2.viii}\\
&\left\|h\left(3^{n} u^{*}\right)-h\left(3^{n} u\right)^{*}\right\| \leq \varphi\left(3^{n} u, 3^{n} u, 0,0\right) \tag{2.ix}
\end{align*}
$$

for all $\mu \in \mathbb{T}^{1}$, all $u \in U(A)$, all $x, y, z, w \in A$ and $n=0,1,2, \cdots$. Assume that $\lim _{n \rightarrow \infty} \frac{h\left(3^{n} e\right)}{3^{n}}=e^{\prime}$. Then the mapping $h: A \rightarrow B$ is a Lie JC*-algebra homomorphism.

Proof. Put $z=w=0$ and $\mu=1 \in \mathbb{T}^{1}$ in (2.viii). It follows from Jun and Lee's Theorem [2, Theorem 1] that there exists a unique additive mapping $H: A \rightarrow B$ such that

$$
\|h(x)-H(x)\| \leq \frac{1}{3}(\widetilde{\varphi}(x,-x, 0,0)+\widetilde{\varphi}(-x, 3 x, 0,0))
$$

for all $x \in A \backslash\{0\}$. The additive mapping $H: A \rightarrow B$ is given by

$$
H(x)=\lim _{n \rightarrow \infty} \frac{1}{3^{n}} h\left(3^{n} x\right)
$$

for all $x \in A$.
By the assumption, for each $\mu \in \mathbb{T}^{1}$,

$$
\left\|2 h\left(3^{n} \mu x\right)-\mu h\left(2 \cdot 3^{n-1} x\right)-\mu h\left(4 \cdot 3^{n-1} x\right)\right\| \leq \varphi\left(2 \cdot 3^{n-1} x, 4 \cdot 3^{n-1} x, 0,0\right)
$$

for all $x \in A \backslash\{0\}$. And one can show that

$$
\begin{aligned}
\| \mu h\left(2 \cdot 3^{n-1} x\right) & +\mu h\left(4 \cdot 3^{n-1} x\right)-2 \mu h\left(3^{n} x\right) \| \\
& \leq|\mu| \cdot\left\|h\left(2 \cdot 3^{n-1} x\right)+h\left(4 \cdot 3^{n-1} x\right)-2 h\left(3^{n} x\right)\right\| \\
& \leq \varphi\left(2 \cdot 3^{n-1} x, 4 \cdot 3^{n-1} x, 0,0\right)
\end{aligned}
$$

for all $\mu \in \mathbb{T}^{1}$ and all $x \in A \backslash\{0\}$. So

$$
\begin{aligned}
\left\|h\left(3^{n} \mu x\right)-\mu h\left(3^{n} x\right)\right\|= & \| h\left(3^{n} \mu x\right)-\frac{1}{2} \mu h\left(2 \cdot 3^{n-1} x\right)-\frac{1}{2} \mu h\left(4 \cdot 3^{n-1} x\right) \\
& +\frac{1}{2} \mu h\left(2 \cdot 3^{n-1} x\right)+\frac{1}{2} \mu h\left(4 \cdot 3^{n-1} x\right)-\mu h\left(3^{n} x\right) \| \\
\leq & \frac{1}{2}\left\|2 h\left(3^{n} \mu x\right)-\mu h\left(2 \cdot 3^{n-1} x\right)-\mu h\left(4 \cdot 3^{n-1} x\right)\right\| \\
& +\frac{1}{2}\left\|\mu h\left(2 \cdot 3^{n-1} x\right)+\mu h\left(4 \cdot 3^{n-1} x\right)-2 \mu h\left(3^{n} x\right)\right\| \\
\leq & \frac{2}{2} \varphi\left(2 \cdot 3^{n-1} x, 4 \cdot 3^{n-1} x, 0,0\right)
\end{aligned}
$$

for all $\mu \in \mathbb{T}^{1}$ and all $x \in A \backslash\{0\}$. Thus $3^{-n}\left\|h\left(3^{n} \mu x\right)-\mu h\left(3^{n} x\right)\right\| \rightarrow 0$ as $n \rightarrow \infty$ for all $\mu \in \mathbb{T}^{1}$ and all $x \in A \backslash\{0\}$. Hence

$$
H(\mu x)=\lim _{n \rightarrow \infty} \frac{h\left(3^{n} \mu x\right)}{3^{n}}=\lim _{n \rightarrow \infty} \frac{\mu h\left(3^{n} x\right)}{3^{n}}=\mu H(x)
$$

for all $\mu \in \mathbb{T}^{1}$ and all $x \in A \backslash\{0\}$.
By the same reasoning as in the proof of Theorem 2.1, the unique additive mapping $H: A \rightarrow B$ is a \mathbb{C}-linear mapping.

By a similar method to the proof of Theorem 2.1, one can show that the mapping $h: A \rightarrow B$ is a Lie $J C^{*}$-algebra homomorphism.

Corollary 2.6. Let $h: A \rightarrow B$ be a mapping satisfying $h(0)=0$ and $h\left(3^{n} u \circ y\right)=h\left(3^{n} u\right) \circ h(y)$ for all $y \in A$, all $u \in U(A)$ and $n=0,1,2, \cdots$, for which there exist constants $\theta \geq 0$ and $p \in[0,1)$ such that

$$
\begin{aligned}
\| 2 h\left(\frac{\mu x+\mu y+[z, w]}{2}\right)- & \mu h(x)-\mu h(y)-[h(z), h(w)] \| \\
& \leq \theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}+\|w\|^{p}\right), \\
\left\|h\left(3^{n} u^{*}\right)-h\left(3^{n} u\right)^{*}\right\| & \leq 2 \cdot 3^{n p} \theta
\end{aligned}
$$

for all $\mu \in \mathbb{T}^{1}$, all $u \in U(A)$, all $x, y, z, w \in A \backslash\{0\}$ and $n=0,1,2, \cdots$. Assume that $\lim _{n \rightarrow \infty} \frac{h\left(3^{n} e\right)}{3^{n}}=e^{\prime}$. Then the mapping $h: A \rightarrow B$ is a Lie JC*-algebra homomorphism.
Proof. Define $\varphi(x, y, z, w)=\theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}+\|w\|^{p}\right)$, and apply Theorem 2.5.

One can obtain similar results to Theorems 2.3 and 2.4 for the Jensen functional equation.

Finally, we are going to investigate Lie $J C^{*}$-algebra homomorphisms between Lie $J C^{*}$-algebras associated with the Trif functional equation.

Theorem 2.7. Let $h: A \rightarrow B$ be a mapping satisfying $h(0)=0$ and $h\left(q^{n} u \circ y\right)=h\left(q^{n} u\right) \circ h(y)$ for all $y \in A$, all $u \in U(A)$ and $n=0,1,2, \cdots$, for which there exists a function $\varphi: A^{d+2} \rightarrow[0, \infty)$ such that

$$
\begin{align*}
& \widetilde{\varphi}\left(x_{1}, \cdots, x_{d}, z, w\right):=\sum_{j=0}^{\infty} q^{-j} \varphi\left(q^{j} x_{1}, \cdots, q^{j} x_{d}, q^{j} z, q^{j} w\right)<\infty, \tag{2.x}\\
& \| d_{d-2} C_{l-2} h\left(\frac{\mu x_{1}+\cdots+\mu x_{d}}{d}+\frac{[z, w]}{d_{d-2} C_{l-2}}\right)+{ }_{d-2} C_{l-1} \sum_{j=1}^{d} \mu h\left(x_{j}\right) \\
& -l \sum_{1 \leq j_{1}<\cdots<j_{l} \leq d} \mu h\left(\frac{x_{j_{1}}+\cdots+x_{j_{l}}}{l}\right)-[h(z), h(w)] \| \tag{2.xi}\\
& \leq \varphi\left(x_{1}, \cdots, x_{d}, z, w\right), \\
& \left\|h\left(q^{n} u^{*}\right)-h\left(q^{n} u\right)^{*}\right\| \leq \varphi(\underbrace{q^{n} u, \cdots, q^{n} u}_{d \text { times }}, 0,0) \tag{2.xii}
\end{align*}
$$

for all $\mu \in \mathbb{T}^{1}$, all $u \in U(A)$, all $x_{1}, \cdots, x_{d}, z, w \in A$ and $n=0,1,2, \cdots$. Assume that $\lim _{n \rightarrow \infty} \frac{h\left(q^{n} e\right)}{q^{n}}=e^{\prime}$. Then the mapping $h: A \rightarrow B$ is a Lie JC*algebra homomorphism.
Proof. Put $z=w=0$ and $\mu=1 \in \mathbb{T}^{1}$ in (2.xi). It follows from Trif's Theorem [17, Theorem 3.1] that there exists a unique additive mapping H : $A \rightarrow B$ such that

$$
\|h(x)-H(x)\| \leq \frac{1}{l \cdot{ }_{d-1} C_{l-1}} \widetilde{\varphi}(q x, \underbrace{r x, \cdots, r x}_{d-1 \text { times }}, 0,0)
$$

for all $x \in A$. The additive mapping $H: A \rightarrow B$ is given by

$$
H(x)=\lim _{n \rightarrow \infty} \frac{1}{q^{n}} h\left(q^{n} x\right)
$$

for all $x \in A$.

Put $x_{1}=\cdots=x_{d}=x$ and $z=w=0$ in (2.xi). For each $\mu \in \mathbb{T}^{1}$,

$$
\left\|d_{d-2} C_{l-2}(h(\mu x)-\mu h(x))\right\| \leq \varphi(\underbrace{x, \cdots, x}_{d \text { times }}, 0,0)
$$

for all $x \in A$. So

$$
q^{-n}\left\|d_{d-2} C_{l-2}\left(h\left(\mu q^{n} x\right)-\mu h\left(q^{n} x\right)\right)\right\| \leq q^{-n} \varphi(\underbrace{q^{n} x, \cdots, q^{n} x}_{d \text { times }}, 0,0)
$$

for all $x \in A$. By (2.x),

$$
q^{-n}\left\|d_{d-2} C_{l-2}\left(h\left(\mu q^{n} x\right)-\mu h\left(q^{n} x\right)\right)\right\| \rightarrow 0
$$

as $n \rightarrow \infty$ for all $\mu \in \mathbb{T}^{1}$ and all $x \in A$. Thus

$$
q^{-n}\left\|h\left(\mu q^{n} x\right)-\mu h\left(q^{n} x\right)\right\| \rightarrow 0
$$

as $n \rightarrow \infty$ for all $\mu \in \mathbb{T}^{1}$ and all $x \in A$. Hence

$$
H(\mu x)=\lim _{n \rightarrow \infty} \frac{h\left(q^{n} \mu x\right)}{q^{n}}=\lim _{n \rightarrow \infty} \frac{\mu h\left(q^{n} x\right)}{q^{n}}=\mu H(x)
$$

for all $\mu \in \mathbb{T}^{1}$ and all $x \in A$.
By the same reasoning as in the proof of Theorem 2.1, the unique additive mapping $H: A \rightarrow B$ is a \mathbb{C}-linear mapping.

By a similar method to the proof of Theorem 2.1, one can show that the mapping $h: A \rightarrow B$ is a Lie $J C^{*}$-algebra homomorphism.

Corollary 2.8. Let $h: A \rightarrow B$ be a mapping satisfying $h(0)=0$ and $h\left(q^{n} u \circ y\right)=h\left(q^{n} u\right) \circ h(y)$ for all $y \in A$, all $u \in U(A)$ and $n=0,1,2, \cdots$, for which there exist constants $\theta \geq 0$ and $p \in[0,1)$ such that

$$
\begin{aligned}
& \| d_{d-2} C_{l-2} h\left(\frac{\mu x_{1}+\cdots+\mu x_{d}}{d}+\right.\left.\frac{[z, w]}{d_{d-2} C_{l-2}}\right)+{ }_{d-2} C_{l-1} \sum_{j=1}^{d} \mu h\left(x_{j}\right) \\
&-l \sum_{1 \leq j_{1}<\cdots<j_{l} \leq d} \mu h\left(\frac{x_{j_{1}}+\cdots+x_{j_{l}}}{l}\right)-[h(z), h(w)] \| \\
& \leq \theta\left(\sum_{j=1}^{d}\left\|x_{j}\right\|^{p}+\|z\|^{p}+\|w\|^{p}\right) \\
&\left\|h\left(q^{n} u^{*}\right)-h\left(q^{n} u\right)^{*}\right\| \leq d q^{n p} \theta
\end{aligned}
$$

for all $\mu \in \mathbb{T}^{1}$, all $u \in U(A)$, all $x_{1}, \cdots, x_{d}, z, w \in A$ and $n=0,1,2, \cdots$. Assume that $\lim _{n \rightarrow \infty} \frac{h\left(q^{n} e\right)}{q^{n}}=e^{\prime}$. Then the mapping $h: A \rightarrow B$ is a Lie JC*algebra homomorphism.
Proof. Define $\varphi\left(x_{1}, \cdots, x_{d}, z, w\right)=\theta\left(\sum_{j=1}^{d}\left\|x_{j}\right\|^{p}+\|z\|^{p}+\|w\|^{p}\right)$, and apply Theorem 2.7.

One can obtain similar results to Theorems 2.3 and 2.4 for the Trif functional equation.

3. Stability of Lie $J C^{*}$-algebra homomorphisms in Lie $J C^{*}$-algebras

We are going to show the Cauchy-Rassias stability of Lie $J C^{*}$-algebra homomorphisms in Lie $J C^{*}$-algebras associated with the Cauchy functional equation.

Theorem 3.1. Let $h: A \rightarrow B$ be a mapping with $h(0)=0$ for which there exists a function $\varphi: A^{6} \rightarrow[0, \infty)$ such that

$$
\begin{align*}
& \widetilde{\varphi}(x, y, z, w, a, b):=\sum_{j=0}^{\infty} 2^{-j} \varphi\left(2^{j} x, 2^{j} y, 2^{j} z, 2^{j} w, 2^{j} a, 2^{j} b\right)<\infty \tag{3.i}\\
& \| h(\mu x+\mu y+[z, w]+a \circ b)-\mu h(x)-\mu h(y)-[h(z), h(w)]-h(a) \circ h(b) \| \\
& \leq \varphi(x, y, z, w, a, b) \tag{3.ii}\\
&\left\|h\left(2^{n} u^{*}\right)-h\left(2^{n} u\right)^{*}\right\| \leq \varphi\left(2^{n} u, 2^{n} u, 0,0,0,0\right) \tag{3.iii}
\end{align*}
$$

for all $\mu \in \mathbb{T}^{1}$, all $u \in U(A), n=0,1,2, \cdots$, and all $x, y, z, w, a, b \in A$. Then there exists a unique Lie $J C^{*}$-algebra homomorphism $H: A \rightarrow B$ such that

$$
\begin{equation*}
\|h(x)-H(x)\| \leq \frac{1}{2} \widetilde{\varphi}(x, x, 0,0,0,0) \tag{3.iv}
\end{equation*}
$$

for all $x \in A$.
Proof. Put $z=w=a=b=0$ and $\mu=1 \in \mathbb{T}^{1}$ in (3.ii). It follows from Găvruta's Theorem [1] that there exists a unique additive mapping $H: A \rightarrow B$ satisfying (3.iv). The additive mapping $H: A \rightarrow B$ is given by

$$
H(x)=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} h\left(2^{n} x\right)
$$

for all $x \in A$.
The rest of the proof is similar to the proof of Theorem 2.1.
Corollary 3.2. Let $h: A \rightarrow B$ be a mapping with $h(0)=0$ for which there exist constants $\theta \geq 0$ and $p \in[0,1)$ such that

$$
\begin{aligned}
\| h(\mu x+\mu y+[z, w]+a \circ b) & -\mu h(x)-\mu h(y)-[h(z), h(w)]-h(a) \circ h(b) \| \\
& \leq \theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}+\|w\|^{p}+\|a\|^{p}+\|b\|^{p}\right), \\
\left\|h\left(2^{n} u^{*}\right)-h\left(2^{n} u\right)^{*}\right\| & \leq 2 \cdot 2^{n p} \theta
\end{aligned}
$$

for all $\mu \in \mathbb{T}^{1}$, all $u \in U(A), n=0,1,2, \cdots$, and all $x, y, z, w, a, b \in A$. Then there exists a unique Lie $J C^{*}$-algebra homomorphism $H: A \rightarrow B$ such that

$$
\|h(x)-H(x)\| \leq \frac{2 \theta}{2-2^{p}}\|x\|^{p}
$$

for all $x \in A$.
Proof. Define $\varphi(x, y, z, w, a, b)=\theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}+\|w\|^{p}+\|a\|^{p}+\|b\|^{p}\right)$, and apply Theorem 3.1.

Theorem 3.3. Let $h: A \rightarrow B$ be a mapping with $h(0)=0$ for which there exists a function $\varphi: A^{6} \rightarrow[0, \infty)$ satisfying (3.i) and (3.iii) such that

$$
\begin{aligned}
& \| h(\mu x+\mu y+[z, w]+a \circ b)-\mu h(x)-\mu h(y)- {[h(z), h(w)]-h(a) \circ h(b) \| } \\
& \leq \varphi(x, y, z, w, a, b)
\end{aligned}
$$

for $\mu=1, i$, and all $x, y, z, w, a, b \in A$. If $h(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in A$, then there exists a unique Lie $J C^{*}$-algebra homomorphism $H: A \rightarrow B$ satisfying (3.iv).
Proof. The proof is similar to the proof of Theorem 2.3.
We are going to show the Cauchy-Rassias stability of Lie $J C^{*}$-algebra homomorphisms in Lie $J C^{*}$-algebras associated with the Jensen functional equation.

Theorem 3.4. Let $h: A \rightarrow B$ be a mapping with $h(0)=0$ for which there exists a function $\varphi:(A \backslash\{0\})^{6} \rightarrow[0, \infty)$ such that

$$
\begin{gather*}
\widetilde{\varphi}(x, y, z, w, a, b)=\sum_{j=0}^{\infty} 3^{-j} \varphi\left(3^{j} x, 3^{j} y, 3^{j} z, 3^{j} w, 3^{j} a, 3^{j} b\right)<\infty,(3 . v) \\
\left\|2 h\left(\frac{\mu x+\mu y+[z, w]+a \circ b}{2}\right)-\mu h(x)-\mu h(y)-[h(z), h(w)]-h(a) \circ h(b)\right\| \\
\leq \varphi(x, y, z, w, a, b), \tag{3.vi}
\end{gather*}
$$

for all $\mu \in \mathbb{T}^{1}$, all $u \in U(A), n=0,1,2, \cdots$, and all $x, y, z, w, a, b \in A \backslash\{0\}$. Then there exists a unique Lie $J C^{*}$-algebra homomorphism $H: A \rightarrow B$ such that

$$
\begin{equation*}
\|h(x)-H(x)\| \leq \frac{1}{3}(\widetilde{\varphi}(x,-x, 0,0,0,0)+\widetilde{\varphi}(-x, 3 x, 0,0,0,0)) \tag{3.viii}
\end{equation*}
$$

for all $x \in A \backslash\{0\}$.
Proof. Put $z=w=a=b=0$ and $\mu=1 \in \mathbb{T}^{1}$ in (3.vi). It follows from Jun and Lee's Theorem [2, Theorem 1] that there exists a unique additive mapping $H: A \rightarrow B$ satisfying (3.viii). The additive mapping $H: A \rightarrow B$ is given by

$$
H(x)=\lim _{n \rightarrow \infty} \frac{1}{3^{n}} h\left(3^{n} x\right)
$$

for all $x \in A$.
The rest of the proof is similar to the proof of Theorem 2.5.
Corollary 3.5. Let $h: A \rightarrow B$ be a mapping with $h(0)=0$ for which there exist constants $\theta \geq 0$ and $p \in[0,1)$ such that

$$
\begin{aligned}
\| 2 h\left(\frac{\mu x+\mu y+[z, w]+a \circ b}{2}\right) & -\mu h(x)-\mu h(y)-[h(z), h(w)]-h(a) \circ h(b) \| \\
& \leq \theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}+\|w\|^{p}+\|a\|^{p}+\|b\|^{p}\right) \\
\left\|h\left(3^{n} u^{*}\right)-h\left(3^{n} u\right)^{*}\right\| & \leq 2 \cdot 3^{n p} \theta
\end{aligned}
$$

for all $\mu \in \mathbb{T}^{1}$, all $u \in U(A), n=0,1,2, \cdots$, and all $x, y, z, w, a, b \in A \backslash\{0\}$. Then there exists a unique Lie $J C^{*}$-algebra homomorphism $H: A \rightarrow B$ such that

$$
\|h(x)-H(x)\| \leq \frac{3+3^{p}}{3-3^{p}} \theta\|x\|^{p}
$$

for all $x \in A \backslash\{0\}$.
Proof. Define $\varphi(x, y, z, w, a, b)=\theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}+\|w\|^{p}+\|a\|^{p}+\|b\|^{p}\right)$, and apply Theorem 3.4.

One can obtain a similar result to Theorem 3.3 for the Jensen functional equation.

Now we are going to show the Cauchy-Rassias stability of Lie JC*algebra homomorphisms in Lie $J C^{*}$-algebras associated with the Trif functional equation.

Theorem 3.6. Let $h: A \rightarrow B$ be a mapping with $h(0)=0$ for which there exists a function $\varphi: A^{d+4} \rightarrow[0, \infty)$ such that

$$
\begin{gather*}
\widetilde{\varphi}\left(x_{1}, \cdots, x_{d}, z, w, a, b\right):=\sum_{j=0}^{\infty} q^{-j} \varphi\left(q^{j} x_{1}, \cdots, q^{j} x_{d}, q^{j} z, q^{j} w, q^{j} a, q^{j} b\right) \\
<\infty, \tag{3.ix}\\
\| d_{d-2} C_{l-2} h\left(\frac{\mu x_{1}+\cdots+\mu x_{d}}{d}+\frac{[z, w]+a \circ b}{d_{d-2} C_{l-2}}\right)+{ }_{d-2} C_{l-1} \sum_{j=1}^{d} \mu h\left(x_{j}\right) \\
-l \sum_{1 \leq j_{1}<\cdots<j_{l} \leq d} \mu h\left(\frac{x_{j_{1}}+\cdots+x_{j_{l}}}{l}\right)-[h(z), h(w)]-h(a) \circ h(b) \| \tag{3.x}\\
\quad \leq \varphi\left(x_{1}, \cdots, x_{d}, z, w, a, b\right), \\
\left\|h\left(q^{n} u^{*}\right)-h\left(q^{n} u\right)^{*}\right\| \leq \varphi(\underbrace{q^{n} u, \cdots, q^{n} u}_{d \text { times }}, 0,0,0,0) \tag{3.xi}
\end{gather*}
$$

for all $\mu \in \mathbb{T}^{1}$, all $u \in U(A), n=0,1,2, \cdots$, and all $x_{1}, \cdots, x_{d}, z, w, a, b \in A$. Then there exists a unique Lie $J C^{*}$-algebra homomorphism $H: A \rightarrow B$ such that

$$
\begin{equation*}
\|h(x)-H(x)\| \leq \frac{1}{l \cdot{ }_{d-1} C_{l-1}} \widetilde{\varphi}(q x, \underbrace{r x, \cdots, r x}_{d-1 \text { times }}, 0,0,0,0) \tag{3.xii}
\end{equation*}
$$

for all $x \in A$.
Proof. Put $z=w=a=b=0$ and $\mu=1 \in \mathbb{T}^{1}$ in (3.x). It follows from Trif's Theorem [17, Theorem 3.1] that there exists a unique additive mapping $H: A \rightarrow B$ satisfying (3.xii). The additive mapping $H: A \rightarrow B$ is given by

$$
H(x)=\lim _{n \rightarrow \infty} \frac{1}{q^{n}} h\left(q^{n} x\right)
$$

for all $x \in A$.
The rest of the proof is similar to the proof of Theorem 2.7.

Corollary 3.7. Let $h: A \rightarrow B$ be a mapping with $h(0)=0$ for which there exist constants $\theta \geq 0$ and $p \in[0,1)$ such that

$$
\begin{gathered}
\| d_{d-2} C_{l-2} h\left(\frac{\mu x_{1}+\cdots+\mu x_{d}}{d}+\frac{[z, w]+a \circ b}{d_{d-2} C_{l-2}}\right)+{ }_{d-2} C_{l-1} \sum_{j=1}^{d} \mu h\left(x_{j}\right) \\
-l \sum_{1 \leq j_{1}<\cdots<j_{l} \leq d} \mu h\left(\frac{x_{j_{1}}+\cdots+x_{j_{l}}}{l}\right)-[h(z), h(w)]-h(a) \circ h(b) \| \\
\leq \theta\left(\sum_{j=1}^{d}\left\|x_{j}\right\|^{p}+\|z\|^{p}+\|w\|^{p}+\|a\|^{p}+\|b\|^{p}\right), \\
\left\|h\left(q^{n} u^{*}\right)-h\left(q^{n} u\right)^{*}\right\| \leq d q^{n p} \theta
\end{gathered}
$$

for all $\mu \in \mathbb{T}^{1}$, all $u \in U(A), n=0,1,2, \cdots$, and all $x_{1}, \cdots, x_{d}, z, w, a, b \in A$. Then there exists a unique Lie $J C^{*}$-algebra homomorphism $H: A \rightarrow B$ such that

$$
\|h(x)-H(x)\| \leq \frac{q^{1-p}\left(q^{p}+(d-1) r^{p}\right) \theta}{l_{d-1} C_{l-1}\left(q^{1-p}-1\right)}\|x\|^{p}
$$

for all $x \in A$.
Proof. Define $\varphi\left(x_{1}, \cdots, x_{d}, z, w, a, b\right)=\theta\left(\sum_{j=1}^{d}\left\|x_{j}\right\|^{p}+\|z\|^{p}+\|w\|^{p}+\|a\|^{p}+\right.$ $\|b\|^{p}$), and apply Theorem 3.6.

One can obtain a similar result to Theorem 3.3 for the Trif functional equation.

4. Stability of Lie $J C^{*}$-algebra derivations in Lie $J C^{*}$-algebras

Definition 4.1. A \mathbb{C}-linear mapping $D: A \rightarrow A$ is called a Lie $J C^{*}$-algebra derivation if $D: A \rightarrow A$ satisfies

$$
\begin{aligned}
D(x \circ y) & =(D x) \circ y+x \circ(D y), \\
D([x, y]) & =[D x, y]+[x, D y], \\
D\left(x^{*}\right) & =D(x)^{*}
\end{aligned}
$$

for all $x, y \in A$.
Remark 4.1. A \mathbb{C}-linear mapping $D: A \rightarrow A$ is a C^{*}-algebra derivation if and only if the mapping $D: A \rightarrow A$ is a Lie $J C^{*}$-algebra derivation.

Assume that D is a Lie $J C^{*}$-algebra derivation. Then

$$
\begin{aligned}
D(x y) & =D([x, y]+x \circ y)=D([x, y])+D(x \circ y) \\
& =[D x, y]+[x, D y]+(D x) \circ y+x \circ(D y)=(D x) y+x(D y)
\end{aligned}
$$

for all $x, y \in A$. So D is a C^{*}-algebra derivation.

Assume that D is a C^{*}-algebra derivation. Then

$$
\begin{aligned}
D([x, y]) & =D\left(\frac{x y-y x}{2}\right)=\frac{(D x) y+x(D y)-(D y) x-y(D x)}{2} \\
& =[D x, y]+[x, D y], \\
D(x \circ y) & =D\left(\frac{x y+y x}{2}\right)=\frac{(D x) y+x(D y)+(D y) x+y(D x)}{2} \\
& =(D x) \circ y+x \circ(D y)
\end{aligned}
$$

for all $x, y \in A$. So H is a Lie $J C^{*}$-algebra derivation.
We are going to show the Cauchy-Rassias stability of Lie $J C^{*}$-algebra derivations in Lie $J C^{*}$-algebras associated with the Cauchy functional equation.

Theorem 4.1. Let $h: A \rightarrow A$ be a mapping with $h(0)=0$ for which there exists a function $\varphi: A^{6} \rightarrow[0, \infty)$ satisfying (3.i) and (3.iii) such that

$$
\begin{align*}
\| h(\mu x+\mu y+[z, w]+a \circ b) & -\mu h(x)-\mu h(y)-[h(z), w]-[z, h(w)] \\
& -h(a) \circ b-a \circ h(b) \| \leq \varphi(x, y, z, w, a, b) \tag{4.i}
\end{align*}
$$

for all $\mu \in \mathbb{T}^{1}$ and all $x, y, z, w, a, b \in A$. Then there exists a unique Lie $J C^{*}$ algebra derivation $D: A \rightarrow A$ such that

$$
\begin{equation*}
\|h(x)-D(x)\| \leq \frac{1}{2} \widetilde{\varphi}(x, x, 0,0,0,0) \tag{4.ii}
\end{equation*}
$$

for all $x \in A$.
Proof. Put $z=w=a=b=0$ in (4.i). By the same reasoning as in the proof of Theorem 2.1, there exists a unique \mathbb{C}-linear involutive mapping $D: A \rightarrow A$ satisfying (4.ii). The \mathbb{C}-linear mapping $D: A \rightarrow A$ is given by

$$
\begin{equation*}
D(x)=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} h\left(2^{n} x\right) \tag{4.1}
\end{equation*}
$$

for all $x \in A$.
It follows from (4.1) that

$$
\begin{equation*}
D(x)=\lim _{n \rightarrow \infty} \frac{h\left(2^{2 n} x\right)}{2^{2 n}} \tag{4.2}
\end{equation*}
$$

for all $x \in A$. Let $x=y=a=b=0$ in (4.i). Then we get

$$
\|h([z, w])-[h(z), w]-[z, h(w)]\| \leq \varphi(0,0, z, w, 0,0)
$$

for all $z, w \in A$. Since

$$
\frac{1}{2^{2 n}} \varphi\left(0,0,2^{n} z, 2^{n} w, 0,0\right) \leq \frac{1}{2^{n}} \varphi\left(0,0,2^{n} z, 2^{n} w, 0,0\right)
$$

$$
\begin{align*}
\frac{1}{2^{2 n}}\left\|h\left(\left[2^{n} z, 2^{n} w\right]\right)-\left[h\left(2^{n} z\right), 2^{n} w\right]-\left[2^{n} z, h\left(2^{n} w\right)\right]\right\| & \leq \frac{1}{2^{2 n}} \varphi\left(0,0,2^{n} z, 2^{n} w, 0,0\right) \\
\leq & \frac{1}{2^{n}} \varphi\left(0,0,2^{n} z, 2^{n} w, 0,0\right) \tag{4.3}
\end{align*}
$$

for all $z, w \in A$. By (3.i), (4.2), and (4.3),

$$
\begin{aligned}
D([z, w]) & =\lim _{n \rightarrow \infty} \frac{h\left(2^{2 n}[z, w]\right)}{2^{2 n}}=\lim _{n \rightarrow \infty} \frac{h\left(\left[2^{n} z, 2^{n} w\right]\right)}{2^{2 n}} \\
& =\lim _{n \rightarrow \infty}\left(\left[\frac{h\left(2^{n} z\right)}{2^{n}}, \frac{2^{n} w}{2^{n}}\right]+\left[\frac{2^{n} z}{2^{n}}, \frac{h\left(2^{n} w\right)}{2^{n}}\right]\right) \\
& =[D(z), w]+[z, D(w)]
\end{aligned}
$$

for all $z, w \in A$.
Similarly, one can obtain that

$$
\begin{aligned}
D(a \circ b) & =\lim _{n \rightarrow \infty} \frac{h\left(2^{2 n} a \circ b\right)}{2^{2 n}}=\lim _{n \rightarrow \infty} \frac{h\left(\left(2^{n} a\right) \circ\left(2^{n} b\right)\right)}{2^{2 n}} \\
& =\lim _{n \rightarrow \infty}\left(\left(\frac{h\left(2^{n} a\right)}{2^{n}}\right) \circ\left(\frac{2^{n} b}{2^{n}}\right)+\left(\frac{2^{n} a}{2^{n}} \circ\left(\frac{h\left(2^{n} b\right)}{2^{n}}\right)\right)\right. \\
& =(D a) \circ b+a \circ(D b)
\end{aligned}
$$

for all $a, b \in A$. Hence the \mathbb{C}-linear mapping $D: A \rightarrow A$ is a Lie $J C^{*}$-algebra derivation satisfying (4.ii), as desired.

Corollary 4.2. Let $h: A \rightarrow A$ be a mapping with $h(0)=0$ for which there exist constants $\theta \geq 0$ and $p \in[0,1)$ such that

$$
\begin{aligned}
\| h(\mu x+\mu y+[z, w]+a \circ b) & -\mu h(x)-\mu h(y)-[h(z), w]-[z, h(w)] \\
& -h(a) \circ b-a \circ h(B) \| \\
& \leq \theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}+\|w\|^{p}+\|a\|^{p}+\|b\|^{p}\right), \\
\left\|h\left(2^{n} u^{*}\right)-h\left(2^{n} u\right)^{*}\right\| & \leq 2 \cdot 2^{n p} \theta
\end{aligned}
$$

for all $\mu \in \mathbb{T}^{1}$, all $u \in U(A), n=0,1,2, \cdots$, and all $x, y, z, w, a, b \in A$. Then there exists a unique Lie $J C^{*}$-algebra derivation $D: A \rightarrow A$ such that

$$
\|h(x)-D(x)\| \leq \frac{2 \theta}{2-2^{p}}\|x\|^{p}
$$

for all $x \in A$.
Proof. Define $\varphi(x, y, z, w, a, b)=\theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}+\|w\|^{p}+\|a\|^{p}+\|b\|^{p}\right)$, and apply Theorem 4.1.

Theorem 4.3. Let $h: A \rightarrow A$ be a mapping with $h(0)=0$ for which there exists a function $\varphi: A^{6} \rightarrow[0, \infty)$ satisfying (3.i) and (3.iii) such that

$$
\begin{aligned}
\| h(\mu x+\mu y+[z, w]+a \circ b) & -\mu h(x)-\mu h(y)-[h(z), w]-[z, h(w)] \\
& -h(a) \circ b-a \circ h(b) \| \leq \varphi(x, y, z, w, a, b)
\end{aligned}
$$

for $\mu=1, i$, and all $x, y, z, w, a, b \in A$. If $h(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in A$, then there exists a unique Lie $J C^{*}$-algebra derivation $D: A \rightarrow A$ satisfying (4.ii).
Proof. By the same reasoning as in the proof of Theorem 2.3, there exists a unique \mathbb{C}-linear mapping $D: A \rightarrow A$ satisfying (4.ii).

The rest of the proof is the same as in the proofs of Theorems 2.1, 3.1 and 4.1.

We are going to show the Cauchy-Rassias stability of Lie $J C^{*}$-algebra derivations in Lie $J C^{*}$-algebras associated with the Jensen functional equation.

Theorem 4.4. Let $h: A \rightarrow A$ be a mapping with $h(0)=0$ for which there exists a function $\varphi:(A \backslash\{0\})^{6} \rightarrow[0, \infty)$ satisfying (3.v) and (3.vii) such that

$$
\begin{aligned}
\| 2 h\left(\frac{\mu x+\mu y+[z, w]+a \circ b}{2}\right) & -\mu h(x)-\mu h(y)-[h(z), w]-[z, h(w)] \\
& -h(a) \circ b-a \circ h(b) \| \leq \varphi(x, y, z, w, a, b \nmid 4 . i i i)
\end{aligned}
$$

for all $\mu \in \mathbb{T}^{1}$ and all $x, y, z, w, a, b \in A \backslash\{0\}$. Then there exists a unique Lie $J C^{*}$-algebra derivation $D: A \rightarrow A$ such that

$$
\begin{equation*}
\|h(x)-D(x)\| \leq \frac{1}{3}(\widetilde{\varphi}(x,-x, 0,0,0,0)+\widetilde{\varphi}(-x, 3 x, 0,0,0,0)) \tag{4.iv}
\end{equation*}
$$

for all $x \in A \backslash\{0\}$.
Proof. Put $z=w=a=b=0$ in (4.iii). By the same reasoning as in the proof of Theorem 2.5 , there exists a unique \mathbb{C}-linear involutive mapping $D: A \rightarrow A$ satisfying (4.iv). The \mathbb{C}-linear mapping $D: A \rightarrow A$ is given by

$$
\begin{equation*}
D(x)=\lim _{n \rightarrow \infty} \frac{1}{3^{n}} h\left(3^{n} x\right) \tag{4.4}
\end{equation*}
$$

for all $x \in A$.
It follows from (4.4) that

$$
\begin{equation*}
D(x)=\lim _{n \rightarrow \infty} \frac{h\left(3^{2 n} x\right)}{3^{2 n}} \tag{4.5}
\end{equation*}
$$

for all $x \in A$. Let $x=y=a=b=0$ in (4.iii). Then we get

$$
\left\|2 h\left(\frac{[z, w]}{2}\right)-[h(z), w]-[z, h(w)]\right\| \leq \varphi(0,0, z, w, 0,0)
$$

for all $z, w \in A$. Since

$$
\begin{align*}
& \frac{1}{3^{2 n}} \varphi\left(0,0,3^{n} z, 3^{n} w, 0,0\right) \leq \frac{1}{3^{n}} \varphi\left(0,0,3^{n} z, 3^{n} w, 0,0\right) \\
& \frac{1}{3^{2 n}}\left\|2 h\left(\frac{1}{2}\left[3^{n} z, 3^{n} w\right]\right)-\left[h\left(3^{n} z\right), 3^{n} w\right]-\left[3^{n} z, h\left(3^{n} w\right)\right]\right\| \leq \frac{1}{3^{2 n}} \varphi\left(0,0,3^{n} z, 3^{n} w, 0,0\right) \\
& \leq \frac{1}{3^{n}} \varphi\left(0,0,3^{n} z, 3^{n} w, 0,0\right) \tag{4.6}
\end{align*}
$$

for all $z, w \in A$. By (3.v), (4.5), and (4.6),

$$
\begin{aligned}
2 D\left(\frac{[z, w]}{2}\right) & =\lim _{n \rightarrow \infty} \frac{2 h\left(\frac{3^{2 n}}{2}[z, w]\right)}{3^{2 n}}=\lim _{n \rightarrow \infty} \frac{2 h\left(\frac{1}{2}\left[3^{n} z, 3^{n} w\right]\right)}{3^{2 n}} \\
& =\lim _{n \rightarrow \infty}\left(\left[\frac{h\left(3^{n} z\right)}{3^{n}}, \frac{3^{n} w}{3^{n}}\right]+\left[\frac{3^{n} z}{3^{n}}, \frac{h\left(3^{n} w\right)}{3^{n}}\right]\right) \\
& =[D(z), w]+[z, D(w)]
\end{aligned}
$$

for all $z, w \in A$. But since D is \mathbb{C}-linear,

$$
D([z, w])=2 D\left(\frac{[z, w]}{2}\right)=[D(z), w]+[z, D(w)]
$$

for all $z, w \in A$.
Similarly, one can obtain that

$$
\begin{aligned}
2 D\left(\frac{a \circ b}{2}\right) & =\lim _{n \rightarrow \infty} \frac{2 h\left(\frac{3^{2 n}}{2} a \circ b\right)}{3^{2 n}}=\lim _{n \rightarrow \infty} \frac{2 h\left(\frac{1}{2}\left(3^{n} a\right) \circ\left(3^{n} b\right)\right)}{3^{2 n}} \\
& =\lim _{n \rightarrow \infty}\left(\left(\frac{h\left(3^{n} a\right)}{3^{n}}\right) \circ\left(\frac{3^{n} b}{3^{n}}\right)+\left(\frac{3^{n} a}{3^{n}} \circ\left(\frac{h\left(3^{n} b\right)}{3^{n}}\right)\right)\right. \\
& =(D a) \circ b+a \circ(D b)
\end{aligned}
$$

for all $a, b \in A$. So

$$
D(a \circ b)=2 D\left(\frac{a \circ b}{2}\right)=(D a) \circ b+a \circ(D b)
$$

for all $a, b \in A$. Hence the \mathbb{C}-linear mapping $D: A \rightarrow A$ is a Lie $J C^{*}$-algebra derivation satisfying (4.iv), as desired.

Corollary 4.5. Let $h: A \rightarrow A$ be a mapping with $h(0)=0$ for which there exist constants $\theta \geq 0$ and $p \in[0,1)$ such that

$$
\begin{aligned}
\| 2 h\left(\frac{\mu x+\mu y+[z, w]+a \circ b}{2}\right) & -\mu h(x)-\mu h(y)-[h(z), w]-[z, h(w)] \\
-h(a) \circ b-a \circ h(b) \| & \leq \theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}+\|w\|^{p}+\|a\|^{p}+\|b\|^{p}\right), \\
\left\|h\left(3^{n} u^{*}\right)-h\left(3^{n} u\right)^{*}\right\| & \leq 2 \cdot 3^{n p} \theta
\end{aligned}
$$

for all $\mu \in \mathbb{T}^{1}$, all $u \in U(A), n=0,1,2, \cdots$, and all $x, y, z, w, a, b \in A \backslash\{0\}$. Then there exists a unique Lie $J C^{*}$-algebra derivation $D: A \rightarrow A$ such that

$$
\|h(x)-D(x)\| \leq \frac{3+3^{p}}{3-3^{p}} \theta\|x\|^{p}
$$

for all $x \in A \backslash\{0\}$.
Proof. Define $\varphi(x, y, z, w, a, b)=\theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}+\|w\|^{p}+\|a\|^{p}+\|b\|^{p}\right)$, and apply Theorem 4.4.

One can obtain a similar result to Theorem 4.3 for the Jensen functional equation.

Finally, we are going to show the Cauchy-Rassias stability of Lie JC*algebra derivations in Lie $J C^{*}$-algebras associated with the Trif functional equation.

Theorem 4.6. Let $h: A \rightarrow A$ be a mapping with $h(0)=0$ for which there exists a function $\varphi: A^{d+4} \rightarrow[0, \infty)$ satisfying (3.ix) and (3.xi) such that

$$
\begin{array}{r}
\| d_{d-2} C_{l-2} h\left(\frac{\mu x_{1}+\cdots+\mu x_{d}}{d}+\frac{[z, w]+a \circ b}{d_{d-2} C_{l-2}}\right)+{ }_{d-2} C_{l-1} \sum_{j=1}^{d} \mu h\left(x_{j}\right) \\
-l \sum_{1 \leq j_{1}<\cdots<j_{l} \leq d} \mu h\left(\frac{x_{j_{1}}+\cdots+x_{j_{l}}}{l}\right)-[h(z), w]-[z, h(w)] \tag{4.v}\\
\quad-h(a) \circ b-a \circ h(b) \| \leq \varphi\left(x_{1}, \cdots, x_{d}, z, w, a, b\right)
\end{array}
$$

for all $\mu \in \mathbb{T}^{1}$ and all $x_{1}, \cdots, x_{d}, z, w, a, b \in A$. Then there exists a unique Lie $J C^{*}$-algebra derivation $D: A \rightarrow A$ such that

$$
\begin{equation*}
\|h(x)-D(x)\| \leq \frac{1}{l \cdot d-1 C_{l-1}} \widetilde{\varphi}(q x, \underbrace{r x, \cdots, r x}_{d-1 \text { times }}, 0,0,0,0) \tag{4.vi}
\end{equation*}
$$

for all $x \in A$.
Proof. Put $z=w=a=b=0$ in (4.v). By the same reasoning as in the proof of Theorem 2.7, there exists a unique \mathbb{C}-linear involutive mapping $D: A \rightarrow A$ satisfying (4.vi). The \mathbb{C}-linear mapping $D: A \rightarrow A$ is given by

$$
\begin{equation*}
D(x)=\lim _{n \rightarrow \infty} \frac{1}{q^{n}} h\left(q^{n} x\right) \tag{4.7}
\end{equation*}
$$

for all $x \in A$.
It follows from (4.7) that

$$
\begin{equation*}
D(x)=\lim _{n \rightarrow \infty} \frac{h\left(q^{2 n} x\right)}{q^{2 n}} \tag{4.8}
\end{equation*}
$$

for all $x \in A$. Let $x_{1}=\cdots=x_{d}=a=b=0$ in (4.v). Then we get

$$
\left\|d_{d-2} C_{l-2} h\left(\frac{[z, w]}{d_{d-2} C_{l-2}}\right)-[h(z), w]-[z, h(w)]\right\| \leq \varphi(\underbrace{0, \cdots, 0}_{d \text { times }}, z, w, 0,0)
$$

for all $z, w \in A$. Since

$$
\begin{gather*}
\frac{1}{q^{2 n}} \varphi(\underbrace{0, \cdots, 0}_{d \text { times }}, q^{n} z, q^{n} w, 0,0) \leq \frac{1}{q^{n}} \varphi(\underbrace{0, \cdots, 0}_{d \text { times }}, q^{n} z, q^{n} w, 0,0), \\
\frac{1}{q^{2 n}}\left\|d_{d-2} C_{l-2} h\left(\frac{1}{d_{d-2} C_{l-2}}\left[q^{n} z, q^{n} w\right]\right)-\left[h\left(q^{n} z\right), q^{n} w\right]-\left[q^{n} z, h\left(q^{n} w\right)\right]\right\| \\
\leq \frac{1}{q^{2 n}} \varphi(\underbrace{0, \cdots, 0}_{d \text { times }}, q^{n} z, q^{n} w, 0,0) \leq \frac{1}{q^{n}} \varphi(\underbrace{0, \cdots, 0}_{d \text { times }}, q^{n} z, q^{n} w, 0,0) \tag{4.9}
\end{gather*}
$$

for all $z, w \in A$. By (3.ix), (4.8), and (4.9),

$$
\begin{aligned}
d_{d-2} C_{l-2} D\left(\frac{[z, w]}{d_{d-2} C_{l-2}}\right) & =\lim _{n \rightarrow \infty} \frac{d_{d-2} C_{l-2} h\left(\frac{q^{2 n}}{d_{d-2} C_{l-2}}[z, w]\right)}{q^{2 n}} \\
=\lim _{n \rightarrow \infty} \frac{d_{d-2} C_{l-2} h\left(\frac{1}{d_{d-2} C_{l-2}}\left[q^{n} z, q^{n} w\right]\right)}{q^{2 n}} & =\lim _{n \rightarrow \infty}\left(\left[\frac{h\left(q^{n} z\right)}{q^{n}}, \frac{q^{n} w}{q^{n}}\right]+\left[\frac{q^{n} z}{q^{n}}, \frac{h\left(q^{n} w\right)}{q^{n}}\right]\right) \\
& =[D(z), w]+[z, D(w)] \text { for all } z, w \in A .
\end{aligned}
$$

But since D is \mathbb{C}-linear, vglue-8pt

$$
\frac{D([z, w])=d_{d-2} C_{l-2} D([z, w]}{\left.d_{d-2} C_{l-2}\right)=[D(z), w]+[z, D(w)] \text { for all } z, w \in A .}
$$

Similarly, one can obtain that $D(a \circ b)=(D a) \circ b+a \circ(D b)$ for all $a, b \in A$. Hence the \mathbb{C}-linear mapping $D: A \rightarrow A$ is a Lie $J C^{*}$-algebra derivation satisfying (4.vi), as desired.

Corollary 4.7. Let $h: A \rightarrow A$ be a mapping with $h(0)=0$ for which there exist constants $\theta \geq 0$ and $p \in[0,1)$ such that

$$
\begin{gathered}
\| d_{d-2} C_{l-2} h\left(\frac{\mu x_{1}+\cdots+\mu x_{d}}{d}+\frac{[z, w]+a \circ b}{d_{d-2} C_{l-2}}\right)+{ }_{d-2} C_{l-1} \sum_{j=1}^{d} \mu h\left(x_{j}\right) \\
-l \sum_{1 \leq j_{1}<\cdots<j_{l} \leq d} \mu h\left(\frac{x_{j_{1}}+\cdots+x_{j_{l}}}{l}\right)-[h(z), w]-[z, h(w)]-h(a) \circ b \\
-a \circ h(b) \| \leq \theta\left(\sum_{j=1}^{d}\left\|x_{j}\right\|^{p}+\|z\|^{p}+\|w\|^{p}+\|a\|^{p}+\|b\|^{p}\right) \\
\left\|h\left(q^{n} u^{*}\right)-h\left(q^{n} u\right)^{*}\right\| \leq d q^{n p} \theta
\end{gathered}
$$

for all $\mu \in \mathbb{T}^{1}$, all $u \in U(A), n=0,1, \cdots$, and all $x_{1}, \cdots, x_{d}, z, w, a, b \in A$. Then there exists a unique Lie $J C^{*}$-algebra derivation $D: A \rightarrow A$ such that

$$
\|h(x)-D(x)\| \leq \frac{q^{1-p}\left(q^{p}+(d-1) r^{p}\right) \theta}{l_{d-1} C_{l-1}\left(q^{1-p}-1\right)}\|x\|^{p}
$$

for all $x \in A$.
Proof. Define $\varphi\left(x_{1}, \cdots, x_{d}, z, w, a, b\right)=\theta\left(\sum_{j=1}^{d}\left\|x_{j}\right\|^{p}+\|z\|^{p}+\|w\|^{p}+\|a\|^{p}+\right.$ $\|b\|^{p}$), and apply Theorem 4.6.

One can obtain a similar result to Theorem 4.3 for the Trif functional equation.

References

[1] Găvruta, P., A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431436.
[2] Jun, K., and Y. Lee, A generalization of the Hyers-Ulam-Rassias stability of Jensen's equation, J. Math. Anal. Appl. 238 (1999), 305-315.
[3] Kadison, R. V., and G. Pedersen, Means and convex combinations of unitary operators, Math. Scand. 57 (1985), 249-266.
[4] Kadison, R. V., and J.R. Ringrose, "Fundamentals of the Theory of Operator Algebras: Elementary Theory," Academic Press, 1983.
[5] Oh, S., C. Park, and Y. Shin, Quantum n-space and Poisson n-space, Comm. Algebra 30 (2002), 4197-4209.
[6] -, A Poincaré-Birkhoff-Witt theorem for Poisson enveloping algebras, Comm. Algebra 30 (2002), 4867-4887.
[7] Park, C., On the stability of the linear mapping in Banach modules, J. Math. Anal. Appl. 275 (2002), 711-720.
[8] -, Modified Trif's functional equations in Banach modules over a C^{*} algebra and approximate algebra homomorphisms, J. Math. Anal. Appl. 278 (2003), 93-108.
[9] Park, C., and W. Park, On the Jensen's equation in Banach modules, Taiwanese J. Math. 6 (2002), 523-531.
[10] Rassias, J. M., On approximation of approximately linear mappings by linear mappings, J. Funct. Anal. 46 (1982), 126-130.
[11] Rassias, Th. M. On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
[12] - On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62 (2000), 23-130.
[13] -, The problem of S.M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl. 246 (2000), 352-378.
[14] -, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000), 264-284.
[15] Rassias, Th.M., and P. S̆emrl, On the behavior of mappings which do not satisfy Hyers-Ulam stability, Proc. Amer. Math. Soc. 114 (1992), 989-993.
[16] -, On the Hyers-Ulam stability of linear mappings, J. Math. Anal. Appl. 173 (1993), 325-338.
[17] Trif, T., On the stability of a functional equation deriving from an inequality of Popoviciu for convex functions, J. Math. Anal. Appl. 272 (2002), 604-616.
[18] Upmeier, H. "Jordan Algebras in Analysis, Operator Theory, and Quantum Mechanics," Amer. Math. Soc., 1987.

Chun-Gil Park
Department of Mathematics
Chungnam National University
Daejeon 305-764
South Korea
cgpark@cnu.ac.kr

Received March 13, 2004
and in final form December 7, 2004

[^0]: * Supported by grant No. R05-2003-000-10006-0 from the Basic Research Program of the Korea Science \& Engineering Foundation.

