On the local constancy of characters

Jonathan Korman

Communicated by S. Gindikin

Abstract

The character of an irreducible admissible representation of a p adic reductive group is known to be a constant function in some neighborhood of any regular semisimple element γ in the group. Under certain mild restrictions on γ, we give an explicit description of a neighborhood of γ on which the character is constant. Mathematical Subject Classification:Primary 22E50; Secondary 22E35, 20 G 25. Keywords and Phrases: Characters, reductive p-adic groups, Bruhat-Tits building.

Introduction

Let k be a p-adic field of characteristic zero, and let \mathbf{G} be a connected reductive algebraic group defined over k. We denote by G the group of k-rational points of \mathbf{G}, and by \mathfrak{g} the Lie algebra of G. Let π be an irreducible admissible representation of G, and let Θ_{π} be the (distribution) character of π. In [7] HarishChandra showed that Θ_{π} can be represented by a function (also denoted by Θ_{π}) which is locally integrable on G and locally constant on the set $G^{\text {reg }}$ of regular semisimple elements in G. Thus for any $\gamma \in G^{\text {reg }}$ there exists some neighborhood of γ on which the character is constant. In [8, Theorem 2, p. 483], R. Howe gave an elementary proof of Harish-Chandra's result for general linear groups. In this paper we give a precise version of local constancy (near compact regular semisimple tame elements) for all reductive groups. The outline of the approach given here follows the elementary argument of Howe.

Let $\mathfrak{g}_{x, r}$ (resp. $G_{x,|r|}$) be the Moy-Prasad lattices [10] in \mathfrak{g} (resp. open compact subgroups of G), normalized as in $[9, \S 1.2]$. Let $G_{c p t}$ denote the set of compact elements in G. For a maximal k-torus T, let T_{r} denote its filtration subgroups (Section 0). Let $\rho(\pi)$ denote the depth of $\pi[10, \S 5]$.

Fix a regular semisimple element γ and let $\mathbf{T}:=C_{\mathbf{G}}(\gamma)^{\circ}$ be the connected component of its centralizer; \mathbf{T} is a maximal k-torus in \mathbf{G}. We assume that it splits over some tamely ramified finite Galois extension E of k. Let T denote the group of k-rational points of \mathbf{T}. When $\gamma \in T \cap G_{c p t}$ we attach to it the nonnegative rational number $s(\gamma)$. Using the filtration subgroups T_{r} and the
parameter $s(\gamma)$, we characterize a neighborhood of γ on which the character Θ_{π} is constant. Whether or not this neighborhood of constancy is maximal is not addressed here.

The main result of this paper is the following (Theorem 4.1).
Theorem. Let $r=\max \{s(\gamma), \rho(\pi)\}+s(\gamma)$. The character Θ_{π} is constant on the set ${ }^{G}\left(\gamma T_{r+}\right)$.

We now give a brief sketch of the proof. Let K be any open compact subgroup of G. Decompose Θ_{π} into a countable sum of 'partial trace' operators Θ_{d}, according to the irreducible representations d of K (see Section 3). For $G=G L_{n}$, Howe proved [8, p. 499] the following key fact. If X is a compact subset of $G^{r e g}$, then Θ_{d} vanishes on X for all d not in a certain finite set F (which depends only on X). It follows (see proof of Theorem 4.1), that $\Theta_{\pi}(f)=\int_{X}\left(\sum_{d \in F} \Theta_{d}\right)(x) f(x) d x$ for all $f \in C_{c}^{\infty}(X)$. Hence Θ_{π} is represented on X by the locally constant function $\sum_{d \in F} \Theta_{d}$.

The main part of this paper is concerned with formulating an analogue of the above key fact for reductive groups (see Corollary 3.5).

The rational number $s(\gamma)$, defined in Section 1, is used (Corollary 3.5) to make a precise choice of a set X and a subgroup K. Corollary 3.5 characterizes a finite set F of representations, such that for all d not in F, Θ_{d} vanishes on X (see Remark 3.1 for the significance of this fact). Thus the representations $d \in F$ are those which play a role in understanding the character Θ_{π} near γ. The proof of this corollary relies on a special case (Corollary 2.7), in which we only consider 1-dimensional d. Such representations have an explicit description in terms of cosets in the lie algebra \mathfrak{g}. In Section 2, we develop the technical tools, using Moy-Prasad lattices, to handle these cosets. Once we have a characterization of the set F, we can make precise statements about the neighbourhood of constancy of the character near γ (Theorem 4.1).
Acknowledgments. I would like to thank Fiona Murnaghan, Jeff Adler, Stephen DeBacker, Ju-Lee Kim and Joe Repka for helpful conversations and comments. I would also like to thank the referees for their careful reading and detailed comments.

Notation and Conventions

Let k be a p-adic field (a finite extension of some \mathbb{Q}_{p}) with residue field $\mathbb{F}_{p^{n}}$. Let ν be a valuation on k normalized such that $\nu\left(k^{\times}\right)=\mathbb{Z}$.

For any algebraic extension field E of k, ν extends uniquely to a valuation (also denoted ν) of E.

We denote the ring of integers in E by R_{E} (write R for R_{k}), and the prime ideal in R_{E} by \wp_{E} (write \wp for \wp_{k}).

Let \mathbf{G} be a connected reductive group defined over k, and $\mathbf{G}(E)$ the group of E-rational points of \mathbf{G}. We denote by G the group of k-rational points of \mathbf{G}. Denote the Lie algebras of \mathbf{G} and $\mathbf{G}(E)$ by \mathfrak{g} and $\mathfrak{g}(E)$, respectively. Write \mathfrak{g} for the Lie algebra of k-rational points of \mathfrak{g}.

Let \mathcal{N} be the set of nilpotent elements in \mathfrak{g}. There are different notions of nilpotency, but since we assume that $\operatorname{char}(k)=0$, these notions all coincide.

Let Ad (resp. ad) denote the adjoint representation of \mathbf{G} (resp. \mathfrak{g}) on its

Lie algebra \mathfrak{g}. For elements $g \in G$ and $X \in \mathfrak{g}$ (resp. $x \in G$) we will sometimes write ${ }^{g} X$ (resp. ${ }^{g} x$) instead of $\operatorname{Ad}(g) X$ (resp. $g x g^{-1}$). For a subset S of \mathfrak{g} (resp. $G)$ let ${ }^{G} S$ denote the set $\left\{{ }^{g} s \mid g \in G\right.$ and $\left.s \in S\right\}$.

Let n denote the (absolute) rank of \mathbf{G}. We say that an element $g \in G$ is regular semisimple if the coefficient of t^{n} in $\operatorname{det}(t-1+\operatorname{Ad}(g))$ is nonzero. We denote the set of regular semisimple elements in G by $G^{\text {reg }}$. Similarly we say that an element $X \in \mathfrak{g}$ is regular semisimple if the coefficient of t^{n} in $\operatorname{det}(t-\operatorname{ad}(X))$ is nonzero. We denote the set of regular semisimple elements in \mathfrak{g} by $\mathfrak{g}^{\text {reg }}$. Let $G_{c p t}$ denotes the set of compact elements in G. For a subset S of G we will sometimes write $S_{c p t}$ for $S \cap G_{c p t}$.

For a subset S of \mathfrak{g} (resp. G) let $[S]$ denote the characteristic function of S on \mathfrak{g} (resp. G).

For any compact group K, let K^{\wedge} denote the set of equivalence classes of irreducible, continuous representations of K.

Let π be an irreducible admissible representation of G. We denote by Θ_{π} the character of π thought of as a locally constant function on the set $G^{r e g}$. Let $\rho(\pi)$ denote the depth of $\pi[10, \S 5]$.

0. Preliminaries

0.1. Apartments and buildings. For a finite extension E of k, let $\mathcal{B}(\mathbf{G}, E)$ denote the extended Bruhat-Tits building of \mathbf{G} over E; write $\mathcal{B}(G)$ for $\mathcal{B}(\mathbf{G}, k)$. It is known (e.g. [13]) that if E is a tamely ramified finite Galois extension of k then $\mathcal{B}(\mathbf{G}, k)$ can be embedded into $\mathcal{B}(\mathbf{G}, E)$ and its image is equal to the set of Galois fixed points in $\mathcal{B}(\mathbf{G}, E)$. If \mathbf{T} is a maximal k-torus in \mathbf{G} that splits over E, let $\mathcal{A}(\mathbf{T}, E)$ be the corresponding apartment over E. Let $\mathbf{X}^{*}(\mathbf{T}, E)$ (resp. $\left.\mathbf{X}_{*}(\mathbf{T}, E)\right)$ denote the group of E-rational characters (resp. cocharacters) of \mathbf{T}.

It is known in the tame case $[1, \S 1.9]$ that there is a Galois equivariant embedding of $\mathcal{B}(\mathbf{T}, E)$ into $\mathcal{B}(\mathbf{G}, E)$, which in turn induces an embedding of $\mathcal{B}(\mathbf{T}, k)$ into $\mathcal{B}(\mathbf{G}, k)$. Such embeddings are only unique modulo translations by elements of $\mathbf{X}_{*}(\mathbf{T}, k) \otimes \mathbb{R}$, however their images are all the same and are equal to the set $\mathcal{A}(\mathbf{T}, E) \cap \mathcal{B}(\mathbf{G}, k)$. From now on we fix a T-equivariant embedding $i: \mathcal{B}(\mathbf{T}, k) \longrightarrow \mathcal{B}(\mathbf{G}, k)$, and use it to regard $\mathcal{B}(\mathbf{T}, k)$ as a subset of $\mathcal{B}(\mathbf{G}, k)$; write x for $i(x)$.

Notation. We write $\mathcal{A}(\mathbf{T}, k)$ for $\mathcal{A}(\mathbf{T}, E) \cap \mathcal{B}(\mathbf{G}, k)$. This is well defined independent of the choice of $E[15]$. Moreover, $\mathcal{A}(\mathbf{T}, k)$ is the set of Galois fixed points in $\mathcal{A}(\mathbf{T}, E)$.

We remark that the image of $\mathcal{B}(\mathbf{T}, E)$ in $\mathcal{B}(\mathbf{G}, E)$ is the apartment $\mathcal{A}(\mathbf{T}, E)$, while the image of $\mathcal{B}(\mathbf{T}, k)$ in $\mathcal{B}(\mathbf{G}, k)$ is the set $\mathcal{A}(\mathbf{T}, k)$.
0.2. Moy-Prasad filtrations. Regarding \mathbf{G} as a group over E, Moy and Prasad (see [10] and [11]) define lattices in $\mathfrak{g}(E)$ and subgroups of $\mathbf{G}(E)$.

We can and will normalize (with respect to the normalized valuation ν) the indexing $(x, r) \in \mathcal{B}(\mathbf{G}, E) \times \mathbb{R}$ of these lattices and subgroups as in [9, §1.2]. We will denote the (normalized) lattices by $\mathfrak{g}(E)_{x, r}$, and the (normalized) subgroups by $\mathbf{G}(E)_{x,|r|}$.

If ϖ_{E} is a uniformizing element of E, and $e=e(E / k)$ is the ramification index of E over k, then these normalized lattices (resp. subgroups) satisfy ϖ_{E}
$\mathfrak{g}(E)_{x, r}=\mathfrak{g}(E)_{x, r+\frac{1}{e}}$. Write $\mathfrak{g}_{x, r}$ (resp. $\left.G_{x,|r|}\right)$ for $\mathfrak{g}(k)_{x, r}$ (resp. $\left.\mathbf{G}(k)_{x,|r|}\right)$.
The above normalization was chosen to have the following property [1, 1.4.1]: when E is a tamely ramified Galois extension of k and $x \in \mathcal{B}(\mathbf{G}, k) \subset$ $\mathcal{B}(\mathbf{G}, E)$, we have

$$
\begin{equation*}
\left.\mathfrak{g}_{x, r}=\mathfrak{g}(E)_{x, r} \cap \mathfrak{g}, \quad \text { and (for } r>0\right) \quad G_{x, r}=\mathbf{G}(E)_{x, r} \cap G . \tag{1}
\end{equation*}
$$

We will also use the following notation. Let $r \in \mathbf{R}$ and $x \in \mathcal{B}(G)$.

- $\mathfrak{g}_{x, r+}=\cup_{s>r} \mathfrak{g}_{x, s}$ and $G_{x,|r|+}=\cup_{s>|r|} G_{x, s}$.
- $G_{r}=\cup_{x \in \mathcal{B}(G)} G_{x, r}$ and $G_{r+}=\cup_{s>r} G_{s}$ for $r \geq 0$.

The lattices $\mathfrak{g}_{x, r+}$ (resp. groups $G_{x,|r|+}$) have analogous properties to those of $\mathfrak{g}_{x, r}$ (resp. $G_{x,|r|}$). The set G_{0} is the set of compact elements $G_{c p t}$. We remark that $G_{c p t} \subset \mathbf{G}(E)_{c p t} \cap G$, and in general they need not be equal [3, §2.2.3].

Lemma 0.1. Let γ be a compact regular semisimple element, and consider the maximal k-torus $\mathbf{T}:=C_{\mathbf{G}}(\gamma)^{\circ}$. Suppose that \mathbf{T} splits over a tamely ramified finite Galois extension E of k. Then γ fixes $\mathcal{B}(\mathbf{T}, k)$ pointwise.

Proof. Recall that γ acts on $\mathcal{A}(\mathbf{T}, E)$ by translations [14, $\S 1]$. Since γ belongs to a compact subgroup, it has a fixed point $x \in \mathcal{B}(\mathbf{G}, E)$.

If γ acts on $\mathcal{A}(\mathbf{T}, E)$ by a nontrivial translation, then for any $y \in \mathcal{A}(\mathbf{T}, E)$ there is an $n \in \mathbb{N}$ such that $d(x, y) \neq d\left(x, \gamma^{n} \cdot y\right)$. This contradicts the fact that the action preserves distances. So γ must act trivially on $\mathcal{A}(\mathbf{T}, E)$. In particular, γ fixes $\mathcal{A}(\mathbf{T}, k)$, and hence $\mathcal{B}(\mathbf{T}, k)$, pointwise.
0.3. Root decomposition. Let \mathbf{T} be a maximal k-torus in \mathbf{G} that splits over a tamely ramified finite Galois extension E of k. Let $\Phi(\mathbf{T}, E)$ denote the set of roots of \mathbf{G} with respect to E and \mathbf{T}, and let $\Psi(\mathbf{T}, E)$ denote the corresponding set of affine roots of \mathbf{G} with respect to E, \mathbf{T} and ν. When \mathbf{T} is k-split, we also write $\Phi(\mathbf{T})$ for $\Phi(\mathbf{T}, k)$ (resp. $\Psi(\mathbf{T})$ for $\Psi(\mathbf{T}, k))$. If $\psi \in \Psi(\mathbf{T}, E)$, let $\dot{\psi} \in \Phi(\mathbf{T}, E)$ be the gradient of ψ, and let $\mathfrak{g}(E)_{\dot{\psi}} \subset \mathfrak{g}(E)$ be the root space corresponding to $\dot{\psi}$. We denote the root lattice in $\mathfrak{g}(E)_{\dot{\psi}}$ corresponding to ψ by $\mathfrak{g}(E)_{\psi}[10,3.2]$.

For $x \in \mathcal{A}(\mathbf{T}, E)$ and $r \in \mathbb{R}$, let $\mathfrak{t}(E)_{r}:=\mathfrak{t}(E) \cap \mathfrak{g}(E)_{x, r}$ and $\mathfrak{t}(E)_{r+}:=$ $\mathfrak{t}(E) \cap \mathfrak{g}(E)_{x, r+}$. Note that $\mathfrak{t}(E)_{r}$ and $\mathfrak{t}(E)_{r+}$ are defined independent of the choice of $x \in \mathcal{A}(\mathbf{T}, E)$. Similarly one defines the subgroups $\mathbf{T}(E)_{r}$ and $\mathbf{T}(E)_{r+}$ for $r \geq 0$; they have analogous properties. Note that using our conventions we will sometimes denote $\mathbf{T}(E)_{0}$ by $\mathbf{T}(E)_{c p t}$.

An alternative description is [9, §2.1]: for $r \in \mathbb{R}$,

$$
\mathfrak{t}(E)_{r}=\left\{\Gamma \in \mathfrak{t}(E) \mid \nu(d \chi(\Gamma)) \geq r \text { for all } \chi \in \mathbf{X}^{*}(\mathbf{T}, E)\right\}
$$

and for $r>0$,

$$
\mathbf{T}(E)_{r}=\left\{t \in \mathbf{T}(E) \mid \nu(\chi(t)-1) \geq r \text { for all } \chi \in \mathbf{X}^{*}(\mathbf{T}, E)\right\}
$$

Since G splits over E, we have

$$
\begin{aligned}
\mathfrak{g}(E)_{x, r} & =\mathfrak{t}(E)_{r} \oplus \sum_{\psi \in \Psi(\mathbf{T}, E), \psi(x) \geq r} \mathfrak{g}(E)_{\psi} \\
\mathfrak{g}(E)_{x, r+} & =\mathfrak{t}(E)_{r+} \oplus \sum_{\psi \in \Psi(\mathbf{T}, E), \psi(x)>r} \mathfrak{g}(E)_{\psi}
\end{aligned}
$$

Let $\mathfrak{t}:=\operatorname{Lie}(T)$, and define $\mathfrak{t}^{\perp}:=(\operatorname{Ad}(\gamma)-1) \mathfrak{g}$. We have the following decomposition [7, §18]

$$
\begin{equation*}
\mathfrak{g}=\mathfrak{t} \oplus \mathfrak{t}^{\perp} . \tag{2}
\end{equation*}
$$

We write $X=Y+Z$ with respect to this decomposition; when convenient, we also write X_{t} for Y.

Fix $x \in \mathcal{B}(\mathbf{T}, k) \subset \mathcal{B}(\mathbf{G}, k)$ and $r \in \mathbb{R}$. Write \mathfrak{t}_{r} for $\mathfrak{t} \cap \mathfrak{g}_{x, r}$ (resp. \mathfrak{t}_{r+} for $\mathfrak{t} \cap \mathfrak{g}_{x, r+}$); as mentioned earlier, these definitions are independent of x. Define $\mathfrak{t}_{x, r}^{\perp}:=\mathfrak{t}^{\perp} \cap \mathfrak{g}_{x, r}$ (resp. $\mathfrak{t}_{x, r+}^{\perp}:=\mathfrak{t}^{\perp} \cap \mathfrak{g}_{x, r+}$). We have [1, 1.9.3],

$$
\begin{align*}
\mathfrak{g}_{x, r} & =\mathfrak{t}_{r} \oplus \mathfrak{t}_{x, r}^{\perp}, \\
\mathfrak{g}_{x, r+} & =\mathfrak{t}_{r+} \oplus \mathfrak{t}_{x, r+}^{\perp} \tag{3}
\end{align*}
$$

0.4. Hypotheses.

(HB) There is a nondegenerate G-invariant symmetric bilinear form B on \mathfrak{g} such that we can identify $\mathfrak{g}_{x, r}^{*}$ with $\mathfrak{g}_{x, r}$ via the map $\Omega: \mathfrak{g} \rightarrow \mathfrak{g}^{*}$ defined by $\Omega(X)(Y)=B(X, Y)$.

Groups satisfying the above hypothesis are discussed in [4, §4].
Fix $r \in \mathbb{R}_{>0}$ and $x \in \mathcal{B}(\mathbf{G}, k)$. For any $r \leq t \leq 2 r$ the group $\left(G_{x, r} / G_{x, t}\right)$ is abelian. By hypothesis (HB), there exists a ($G_{x, 0}$-equivariant) isomorphism (see [1, §1.7] or [12, p.16])

$$
\begin{equation*}
\left(G_{x, r} / G_{x, t}\right)^{\wedge} \cong \mathfrak{g}_{x,(-t)+} / \mathfrak{g}_{x,(-r)+} \tag{4}
\end{equation*}
$$

1. Regular depth

From now on let $\gamma \in G^{r e g}$, and assume that the k-torus $\mathbf{T}:=C_{\mathbf{G}}(\gamma)^{\circ}$ splits over a tamely ramified finite Galois extension E of k. We attach to γ the following rational number $s(\gamma)$.

Definition 1.1. For each $\alpha \in \Phi(\mathbf{T}, E)$ let $s_{\alpha}(\gamma):=\nu(\alpha(\gamma)-1)$ and define $s(\gamma):=\max \left\{s_{\alpha}(\gamma) \mid \alpha \in \Phi(\mathbf{T}, E)\right\}$.

Remark 1.2. Note that $s(\gamma)$ is not the same as the depth of γ (as defined in [2]). But for good elements [1, §2.2], these two notions agree.

Remark 1.3. A priori $s(\gamma) \in \mathbb{Q} \cup\{+\infty\}$, but since γ is regular, $\alpha(\gamma) \neq 1$ for all $\alpha \in \Phi(\mathbf{T}, E)$ and so $s(\gamma) \in \mathbb{Q}$. If γ is compact then $s(\gamma) \geq 0$. Also note that $s(\gamma z)=s(\gamma)$ for all z in the center $Z(G)$ of G and that $s\left(g \gamma g^{-1}\right)=s(\gamma)$ for all $g \in G$.

We will need the following basic properties of $s(\gamma)$.

Lemma 1.4. \quad Suppose $\gamma \in T_{\text {cpt }}$ and $\gamma^{\prime} \in T_{s(\gamma)+}$.

1. $s\left(\gamma \gamma^{\prime}\right)=s(\gamma)$ and for $\alpha \in \Phi(\mathbf{T}, E)$, we have $\left|\alpha\left(\gamma \gamma^{\prime}\right)-1\right|=|\alpha(\gamma)-1|$.
2. $\gamma \gamma^{\prime} \in T_{\text {cpt }}$.

Proof. 1. Fix $r>s(\gamma) \geq 0$ such that $T_{r}=T_{s(\gamma)+}$. With this notation $\gamma^{\prime} \in T_{r}$. By the alternative description of T_{r}, for any $\chi \in \mathbf{X}^{*}(\mathbf{T}, E)$, $\chi\left(\gamma^{\prime}\right)=1+\mu^{\prime}$ where $\nu\left(\mu^{\prime}\right) \geq r$. Thus for any $\alpha \in \Phi(\mathbf{T}, E), \alpha\left(\gamma^{\prime}\right)=1+\lambda^{\prime}$ where $\nu\left(\lambda^{\prime}\right) \geq r$.
Note that since each $\alpha \in \Phi(\mathbf{T}, E)$ is continuous, $\alpha\left(T(E)_{c p t}\right) \subset R_{E}^{\times}$. Since $\gamma \in T_{c p t} \subset T(E)_{c p t}$ we get that $\alpha(\gamma)$ is a unit.
Now $\alpha\left(\gamma \gamma^{\prime}\right)-1=\alpha(\gamma) \alpha\left(\gamma^{\prime}\right)-1=\alpha(\gamma)\left(1+\lambda^{\prime}\right)-1=(\alpha(\gamma)-1)+\alpha(\gamma) \lambda^{\prime}$. Using $\nu(\alpha(\gamma)-1)=: s_{\alpha}(\gamma), \alpha(\gamma)$ is a unit, and $\nu\left(\lambda^{\prime}\right) \geq r>s(\gamma) \geq s_{\alpha}(\gamma)$, we have $\nu\left(\alpha\left(\gamma \gamma^{\prime}\right)-1\right)=\nu(\alpha(\gamma)-1)$) (or equivalently $\left.\left|\alpha\left(\gamma \gamma^{\prime}\right)-1\right|=\mid \alpha(\gamma)-1\right) \mid$) for all $\alpha \in \Phi(\mathbf{T}, E)$. Thus $s\left(\gamma \gamma^{\prime}\right):=\max _{\alpha}\left\{\nu\left(\alpha\left(\gamma \gamma^{\prime}\right)-1\right)\right\}=\max _{\alpha}\{\nu(\alpha(\gamma)-1)\}=$: $s(\gamma)$.
2. Since γ and γ^{\prime} are in $T_{c p t}$, so is their product.

Corollary 1.5. Let $\gamma \in T$ be a compact regular semisimple element. Then $\gamma T_{s(\gamma)+} \subset G^{r e g}$.

Proof. For $t \in T \cap G^{r e g}$, following [7, §18], define

$$
\left.D_{G / T}(t):=\operatorname{det}(\operatorname{Ad}(t)-1)\right)\left.\right|_{\mathfrak{g} / \mathfrak{t}}=\prod_{\alpha \in \Phi(\mathbf{T}, E)}(\alpha(t)-1) .
$$

Then $t \in T \cap G^{\text {reg }} \Leftrightarrow D_{G / T}(t) \neq 0 \Leftrightarrow\left|D_{G / T}(t)\right| \neq 0$. Using Lemma 1.4 with $\gamma \in T \cap G_{c p t}$ and $\gamma^{\prime} \in T_{s(\gamma)+}$, we get $\left|D_{G / T}\left(\gamma \gamma^{\prime}\right)\right|=\prod_{\alpha}\left|\alpha\left(\gamma \gamma^{\prime}\right)-1\right|=\prod_{\alpha}|\alpha(\gamma)-1|=$ $\left|D_{G / T}(\gamma)\right| \neq 0$.

2. Some Technical Lemmas

The next lemma will generalize the following example.
Example 2.1. $\quad \mathbf{G}=\mathbf{G L}_{\mathbf{2}}, \mathbf{T}$ a k-split maximal torus. Choose $x_{0} \in \mathcal{B}(\mathbf{G}, k)$ so that $G_{x_{0}, 0}=G L_{2}(R)$. Any $X \in \mathcal{N} \cap\left(\mathfrak{g}_{x_{0}, r} \backslash \mathfrak{g}_{x_{0}, r+}\right)$ is of the form ${ }^{k}\left(\begin{array}{ll}0 & x \\ 0 & 0\end{array}\right)$, for some $k \in G_{x_{0}, 0}$ (see [5, 9.2.1]). Thus

$$
\begin{aligned}
X & =\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
0 & x \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{-1} \\
& =\frac{x}{a d-b c}\left(\begin{array}{ll}
-a c & a^{2} \\
-c^{2} & a c
\end{array}\right) .
\end{aligned}
$$

Write $X=Y+Z$ as in (2) and note that the depth of X with respect to the filtration $\left\{\mathfrak{g}_{x_{0}, r}\right\}_{r \in \mathbb{R}}$ of \mathfrak{g} is controlled by Z. This is the case since $\max \left\{\nu\left(a^{2}\right), \nu\left(-c^{2}\right)\right\} \geq \nu(a c)$ and $a d-b c \in R^{\times}$.

Lemma 2.2. Fix $x \in \mathcal{B}(\mathbf{T}, k)$ and $r \in \mathbb{R}$. For $X \in \mathcal{N} \cap\left(\mathfrak{g}_{x, r} \backslash \mathfrak{g}_{x, r+}\right)$, write $X=Y+Z$ as in (2). Then $Z \in \mathfrak{g}_{x, r} \backslash \mathfrak{g}_{x, r+}$.

Proof. We first prove the case when the maximal k-torus \mathbf{T} is k-split and then reduce the general case to this case.

Split case. Assume \mathbf{T} is k-split. Note that $\mathfrak{t}^{\perp}=\oplus_{\alpha \in \Phi(\mathbf{T})} \mathfrak{g}_{\alpha}$. Fix a system of simple roots Δ in $\Phi(\mathbf{T})$ and choose a Chevalley basis for \mathfrak{g} as in [1, $\S 1.2]$. Such a basis contains elements H_{b} and E_{b} in \mathfrak{g} for each $b \in \Phi(\mathbf{T})$. If \mathbf{G} is semisimple, then the set $\left\{H_{b} \mid b \in \Delta\right\} \cup\left\{E_{b} \mid b \in \Phi(\mathbf{T})\right\}$ is a basis for \mathfrak{g}. These elements also satisfy the commutation relations listed in [1, 1.2.1]. With respect to this choice of Chevalley basis, the adjoint representation is determined by the following formulas [1, 1.2.5]:

$$
\left\{\begin{array}{rll}
\operatorname{Ad}\left(e_{b}(\lambda)\right) E_{c} & =\left\{\begin{array}{lll}
E_{b} & \text { if } & c=b \\
E_{c}+\lambda H_{b}-\lambda^{2} E_{b} & \text { if } & c=-b \\
\sum_{i \geq 0} M_{b, c ; i} \lambda^{i} E_{i b+c} & \text { if } & c \neq \pm b
\end{array}\right. \tag{5}\\
\operatorname{Ad}(t) E_{c} & =c(t) E_{c} & \\
\operatorname{Ad}\left(e_{b}(\lambda) H\right. & =H-d b(H) \lambda E_{b} & \\
\operatorname{Ad}(t) H & =H &
\end{array}\right.
$$

for all $H \in \operatorname{Lie}(T)$, all $t \in T$ and all $\lambda \in k$. Here e_{b} is the unique map $e_{b}: \mathbf{A d d} \longrightarrow \mathbf{G}$ such that $\mathrm{d} e_{b}(1)=E_{b}\left(d e_{b}\right.$ is the derivative of $\left.e_{b}\right)$; and $M_{b, c ; i}$ are constants with $M_{b, c ; 0}=1$.

Let B be the Borel subgroup associated to Δ (with Levi decomposition $B=T N$ and opposite Borel $\bar{B}=T \bar{N})$. We have $\mathfrak{g}=\mathfrak{t} \oplus \mathfrak{n} \oplus \overline{\mathfrak{n}}$, where $\mathfrak{n}:=\operatorname{Lie}(N)$ and $\overline{\mathfrak{n}}:=\operatorname{Lie}(\bar{N})$. Note that $\mathfrak{n} \oplus \overline{\mathfrak{n}}=\oplus_{\alpha \in \Phi(\mathbf{T})} \mathfrak{g}_{\alpha}=\mathfrak{t}^{\perp}$. Recall that $G_{x, 0}$ acts on $\mathfrak{g}_{x, r}$ (and on $\mathfrak{g}_{x, r+}$).

Given $X \in \mathcal{N} \cap\left(\mathfrak{g}_{x, r} \backslash \mathfrak{g}_{x, r+}\right)$, we can use [2, Proposition 3.5.1] (with T playing the role of M) to conclude that there exists a group element $n \in N \cap G_{x, 0}$ such that $\left({ }^{n} X\right)_{\mathfrak{t}} \in \mathfrak{t}_{r+}\left(\right.$ where ${ }^{n} X$ denotes $\left.\operatorname{Ad}(n) X\right)$.

Write $X=Y+Z$ as in (2) and assume for a contradiction that $Z \in \mathfrak{g}_{x, r+}$. Since $X \in \mathfrak{g}_{x, r} \backslash \mathfrak{g}_{x, r+}$, the assumption implies that $Y \in \mathfrak{t} \cap\left(\mathfrak{g}_{x, r} \backslash \mathfrak{g}_{x, r+}\right)=\mathfrak{t}_{r} \backslash \mathfrak{t}_{r+}$.

Using the properties (5) of the Chevalley basis, one can easily check that the set $\left(\mathfrak{t}_{r} \backslash \mathfrak{t}_{r+}\right) \oplus \mathfrak{n}$ is preserved under the action of $\operatorname{Ad}\left(e_{b}(\lambda)\right)$ for all $b \in \Phi^{+}(\mathbf{T})$, where $\Phi^{+}(\mathbf{T})$ are the positive roots with respect to Δ. Since $\left\{e_{b}(\lambda) \mid b \in \Phi^{+}(\mathbf{T})\right\}$ generates N, we conclude that ${ }^{n} Y \in\left(\mathfrak{t}_{r} \backslash \mathfrak{t}_{r+}\right) \oplus \mathfrak{n}$, and hence that $\left({ }^{n} Y\right)_{\mathfrak{t}} \in \mathfrak{t}_{r} \backslash \mathfrak{t}_{r+}$.

On the other hand we have ${ }^{n} X={ }^{n} Y+{ }^{n} Z$, where ${ }^{n} Z \in \mathfrak{g}_{x, r+}$. Taking the \mathfrak{t} components, we get, $\left({ }^{n} X\right)_{\mathfrak{t}}=\left({ }^{n} Y\right)_{\mathfrak{t}}+\left({ }^{n} Z\right)_{\mathfrak{t}}$, with $\left({ }^{n} Z\right)_{\mathfrak{t}} \in \mathfrak{t}_{r+}$. Since $\left({ }^{n} X\right)_{\mathfrak{t}} \in \mathfrak{t}_{r+}$, we conclude that $\left({ }^{n} Y\right)_{\mathfrak{t}} \in \mathfrak{t}_{r+}$. This contradicts $\left({ }^{n} Y\right)_{\mathfrak{t}} \in \mathfrak{t}_{r} \backslash \mathfrak{t}_{r+}$.

Hence $Z \in \mathfrak{g}_{x, r} \backslash \mathfrak{g}_{x, r+}$ (note that from the decomposition (3) it is clear that $\left.Z \in \mathfrak{g}_{x, r}\right)$.

General case. We now assume \mathbf{T} is an E-split maximal k-torus. Define $\mathfrak{t}(E)^{\perp}:=(\operatorname{Ad}(\gamma)-1) \mathfrak{g}(E)$. We have the following analogue of (2)

$$
\begin{equation*}
\mathfrak{g}(E)=\mathfrak{t}(E) \oplus \mathfrak{t}(E)^{\perp} \tag{6}
\end{equation*}
$$

Note that $\mathfrak{t} \subset \mathfrak{t}(E)$ and $\mathfrak{t}^{\perp} \subset \mathfrak{t}(E)^{\perp}$. So the decomposition $X=Y+Z($ as in (2)) for $X \in \mathfrak{g}$ is the same whether viewed in \mathfrak{g} or in $\mathfrak{g}(E)$.

Since $X \in \mathfrak{g}_{x, r} \backslash \mathfrak{g}_{x, r+}$, equations (1) imply that $X \in\left(\mathfrak{g}(E)_{x, r} \backslash \mathfrak{g}(E)_{x, r+}\right) \cap$ \mathfrak{g}. Since $X \in \mathcal{N} \subset \boldsymbol{\mathcal { N }}(E)$ (where $\boldsymbol{\mathcal { N }}(E)$ is the set of nilpotent elements in $\mathfrak{g}(E)$), we have that $X \in \boldsymbol{\mathcal { N }}(E) \cap\left(\mathfrak{g}(E)_{x, r} \backslash \mathfrak{g}(E)_{x, r+}\right)$. Now since \mathbf{T} splits over E we can regard \mathbf{G} over E as a split group and hence apply all the constructions of the split case above. So by the considerations of the split case above we conclude that $Z \in \mathfrak{g}(E)_{x, r} \backslash \mathfrak{g}(E)_{x, r+}$. Intersecting with \mathfrak{g} gives $Z \in \mathfrak{g}_{x, r} \backslash \mathfrak{g}_{x, r+}$.

From now on we assume that γ is also compact. Recall that this implies that $s(\gamma) \geq 0$ (see Remark 1.3).

Lemma 2.3. Let $t \in \mathbb{R}$ and $x \in \mathcal{B}(\mathbf{T}, k)$. If $Z \in \mathfrak{t}^{\perp} \cap\left(\mathfrak{g}_{x,-t} \backslash \mathfrak{g}_{x,(-t)+}\right)$ then ${ }^{\gamma} Z-Z \notin \mathfrak{g}_{x,(-t+s(\gamma))+}$.
Proof. Using the root decomposition $\mathfrak{t}(E)^{\perp}=\oplus_{\alpha \in \Phi(\mathbf{T}, E)} \mathfrak{g}(E)_{\alpha}$, for $Z \in \mathfrak{t}^{\perp} \subset$ $\mathfrak{t}(E)^{\perp}$ we write $Z=\sum Z_{\alpha}$. Then ${ }^{\gamma} Z-Z=\sum\left({ }^{\gamma} Z_{\alpha}-Z_{\alpha}\right)=\sum(\alpha(\gamma)-1) Z_{\alpha}$.

By assumption $Z \notin \mathfrak{g}_{x,(-t)+}$, hence (see equations (1)) $Z \notin \mathfrak{g}(E)_{x,(-t)+}$. Thus for some $\alpha \in \Phi(\mathbf{T}, E), Z_{\alpha} \notin \mathfrak{g}(E)_{x,(-t)+}$, and so by definition of $s_{\alpha}(\gamma)$,
 1) $Z_{\alpha} \notin \mathfrak{g}(E)_{x,(-t+s(\gamma))+}$. Hence ${ }^{\gamma} Z-Z=\sum(\alpha(\gamma)-1) Z_{\alpha} \notin \mathfrak{g}(E)_{x,(-t+s(\gamma))+}$. Intersecting with \mathfrak{g} we get that ${ }^{\gamma} Z-Z \notin \mathfrak{g}_{x,(-t+s(\gamma))+}$.

Proposition 2.4. Let $r \in \mathbb{R}$ and $x \in \mathcal{B}(\mathbf{T}, k)$. If $X \in \mathcal{N} \cap \mathfrak{g}_{x,(-2 r)+}$ satisfies ${ }^{\gamma} X-X \in \mathfrak{g}_{x,(-r)+}$, then $X \in \mathfrak{g}_{x,(-r-s(\gamma))+}$.

Proof. Fix $t<2 r$ such that $X \in \mathcal{N} \cap\left(\mathfrak{g}_{x,-t} \backslash \mathfrak{g}_{x,(-t)+}\right)$.
Write $X=Y+Z$ as in (2). By Lemma 2.2, $Z \in \mathfrak{t}^{\perp} \cap\left(\mathfrak{g}_{x,-t} \backslash \mathfrak{g}_{x,(-t)+}\right)$, and so by Lemma 2.3, ${ }^{\gamma} Z-Z \notin \mathfrak{g}_{x,(-t+s(\gamma))+}$.

On the other hand, since γ acts trivially on Y (because $Y \in \mathfrak{t}=C_{\mathfrak{g}}(\gamma)$), ${ }^{\gamma} Z-Z={ }^{\gamma} X-X \in \mathfrak{g}_{x,(-r)+}$.

Thus $-t+s(\gamma)>-r$, or equivalently $-t>-r-s(\gamma)$, which implies that $X \in \mathfrak{g}_{x,-t} \subseteq \mathfrak{g}_{x,(-r-s(\gamma))+}$.

Definition 2.5. A character $d \in\left(G_{x, r} / G_{x, 2 r}\right)^{\wedge}$ is called degenerate if under the isomorphism (4), the corresponding coset $X+\mathfrak{g}_{x,(-r)+}$ contains nilpotent elements.

Definition 2.6. Let K be a compact subgroup of G and $d \in K^{\wedge}$. For $g \in G$, let ${ }^{g} d$ denote the representation of $g K g^{-1}$ defined as ${ }^{g} d\left(g k g^{-1}\right):=d(k)$. We say that g intertwines d with itself if upon restriction to $g K g^{-1} \cap K, d$ and ${ }^{g} d$ contain a common representation (up to isomorphism) of $g K g^{-1} \cap K$.

Corollary 2.7. Let $x \in \mathcal{B}(\mathbf{T}, k), r \in \mathbb{R}_{>0}$, and assume $d \in\left(G_{x, r} / G_{x, 2 r}\right)^{\wedge}$ is degenerate. If γ intertwines d with itself then $d \in\left(G_{x, r} / G_{x, r+s(\gamma)}\right)^{\wedge}$.
Proof. Let $X+\mathfrak{g}_{x,(-r)+}$ be the coset in $\mathfrak{g}_{x,(-2 r)+} / \mathfrak{g}_{x,(-r)+}$ corresponding to d under the isomorphism (4). Since this coset is degenerate, we can assume that $X \in \mathcal{N}$.

Since γ fixes x (Lemma 0.1), γ stabilizes $G_{x, r}$. Thus having γ intertwine d with itself amounts to having $d \cong{ }^{\gamma} d$; or furthermore, since d is one-dimensional, $d={ }^{\gamma} d$. Under the isomorphism (4), we get $X+\mathfrak{g}_{x,(-r)+}={ }^{\gamma}\left(X+\mathfrak{g}_{x,(-r)+}\right)$, or equivalently that ${ }^{\gamma} X-X \in \mathfrak{g}_{x,(-r)+}$. Now apply Proposition 2.4 to conclude that $X \in$ $\mathfrak{g}_{x,(-r-s(\gamma))+}$, which under the isomorphism (4) gives that $d \in\left(G_{x, r} / G_{x, r+s(\gamma)}\right)^{\wedge}$.

3. Partial Traces

Let (π, V) be an irreducible admissible representation of G. Let K be an open compact subgroup of G. Let $V=\bigoplus_{d \in K^{\wedge}} V_{d}$ be the decomposition of V into K isotypic components. Let E_{d} denote the K-equivariant projection from V to V_{d}. For $f \in C_{c}^{\infty}(G)$ define the distribution $\Theta_{d}(f):=\operatorname{trace}\left(E_{d} \pi(f) E_{d}\right)$, the 'partial trace of π with respect to d^{\prime}. The distribution Θ_{d} is represented by the locally constant function $\Theta_{d}(x):=\operatorname{trace}\left(E_{d} \pi(x) E_{d}\right)$ on G. Recall that it is known that the distribution $\Theta_{\pi}(f):=$ trace $\pi(f)$ is also represented by a locally constant function, Θ_{π}, on $G^{r e g}$; we will not use this fact here. It follows from the definitions that as distributions

$$
\Theta_{\pi}(f)=\sum_{d \in K^{\wedge}} \Theta_{d}(f) \text { for all } f \in C_{c}^{\infty}(G)
$$

Remark 3.1. For (some) $\omega \subset G^{\text {reg }}$ compact, Corollary 3.6 and the proof of Theorem 4.1 will imply that, for all $f \in C_{c}^{\infty}(\omega)$, this sum is finite.

Lemma 3.2. $\quad \Theta_{d}\left(k x k^{-1}\right)=\Theta_{d}(x)$ for all $x \in G$ and all $k \in K$.
Proof. Since E_{d} is K-equivariant, it commutes with $\pi(k)$ for all $k \in K$.

$$
\begin{aligned}
\Theta_{d}\left(k x k^{-1}\right) & =\operatorname{trace}\left(E_{d} \pi\left(k x k^{-1}\right) E_{d}\right) \\
& =\operatorname{trace}\left(E_{d} \pi(k) \pi(x) \pi\left(k^{-1}\right) E_{d}\right) \\
& =\operatorname{trace}\left(\pi(k) E_{d} \pi(x) E_{d} \pi\left(k^{-1}\right)\right) \\
& =\operatorname{trace}\left(E_{d} \pi(x) E_{d}\right)=\Theta_{d}(x) .
\end{aligned}
$$

Let N be an open compact subgroup of G which is normal in K. Suppose $g \in G$ normalizes K and N. Let $d \in K^{\wedge}$. Considered as a representation of N, d decomposes into a finite sum of irreducible representations

$$
d_{1} \oplus \cdots \oplus d_{n}
$$

Proposition 3.3. Suppose $\Theta_{d}(g) \neq 0$. Then $d \cong{ }^{g} d$ as representations of K and also for some $i \in\{1, \cdots, n\}, d_{i} \cong{ }^{g} d_{i}$ as representations of N.

Proof. We refer to the appendix. Since g permutes the $V_{d^{\prime}}$'s (Theorem 5.1.1), $0 \neq \Theta_{d}(g)=\operatorname{trace}\left(E_{d} \pi(g) E_{d}\right)$ implies that g must stabilize V_{d}. Fix a decomposition (\ddagger) as in Theorem 5.1.2, and let $E_{W_{i}}$ denote the K-equivariant projections onto W_{i}. Since $E_{d}=\sum E_{W_{i}}$, $\operatorname{trace}\left(E_{d} \pi(g) E_{d}\right) \neq 0$ implies that for some i, g must stabilize W_{i}, and that $\operatorname{trace}\left(E_{W_{i}} \pi(g) E_{W_{i}}\right) \neq 0$. By Theorem 5.1.3, $d \cong{ }^{g} d$, which proves the first part of the theorem.

Now as a representation of N,

$$
W_{i}=\bigoplus_{N} W_{i, d_{j}},
$$

where $W_{i, d_{j}}$ are the d_{j}-isotypic components of W_{i}. Since g stabilizes N, it must permute the $W_{i, d_{j}}$'s (Theorem 5.1.1). Since $E_{W_{i}}=\sum E_{W_{i, d_{j}}}$, having
$\operatorname{trace}\left(E_{W_{i}} \pi(g) E_{W_{i}}\right) \neq 0$ implies that for some j, g must stabilize $W_{i, d_{j}}$, and that $\operatorname{trace}\left(E_{W_{i, d_{j}}} \pi(g) E_{W_{i, d_{j}}}\right) \neq 0$. Fix a decomposition (\ddagger) as in Theorem 5.1.2 for $W_{i, d_{j}}$:

$$
W_{i, d_{j}} \cong \bigoplus d_{j} .
$$

Since $E_{W_{i, d_{j}}}=\sum E_{d_{j}}$, $\operatorname{trace}\left(E_{W_{i, d_{j}}} \pi(g) E_{W_{i, d_{j}}}\right) \neq 0$ implies that g must stabilize one of the d_{j} 's. By Theorem 5.1.3, $d_{j} \cong{ }^{g} d_{j}$, which proves the second part of the theorem.

The following theorem and corollaries are used in the proof of Theorem 4.1 to show that for f with compact support, the sum $\sum_{d \in K^{\wedge}} \Theta_{d}(f)$ is finite (see also Remark 3.1).

Theorem 3.4. Fix $x \in \mathcal{B}(\mathbf{T}, k)$ and let $r>\max \{s(\gamma), \rho(\pi)\}$. If $d \in\left(G_{x, r}\right)^{\wedge}$ satisfies $\Theta_{d}(\gamma) \neq 0$, then $d \in\left(G_{x, r} / G_{x, r+s(\gamma)}\right)^{\wedge}$.

Proof. If d is trivial we are done, so assume it is not. Let t be the smallest number such that $\left.d\right|_{G_{x, t+}}$ is trivial (so in particular $\left.d\right|_{G_{x, t}}$ is nontrivial).

Case $t<2 r$: Pick $s \leq 2 r$ such that $G_{x, s}=G_{x, t+}$. Consider d as an element of $\left(G_{x, r} / G_{x, 2 r}\right)^{\wedge}$. By Proposition 3.3, $\Theta_{d}(\gamma) \neq 0$ implies that $d \cong{ }^{\gamma} d$. Also, $\Theta_{d}(\gamma) \neq 0$ implies that $\left.d \subset \pi\right|_{G_{x, r}}$; since $r>\rho(\pi)$ this means that d is degenerate (see $[5, \S 7.6]$). Now apply Corollary 2.7 .

Case $t \geq 2 r$: Note that $\frac{t}{2} \geq r>s(\gamma)$. For $\epsilon>0$ such that $\frac{t}{2}>\frac{\epsilon}{2}+s(\gamma)$, let $s=t+\epsilon$. By making ϵ smaller if necessary, we can make sure that $G_{x, s}=G_{x, t+}$. Note that $t>\frac{t}{2}+\frac{\epsilon}{2}+s(\gamma)=\frac{s}{2}+s(\gamma)$.

Since $\frac{s}{2}>\frac{t}{2} \geq r$ it makes sense to restrict d to $G_{x, \frac{s}{2}}$ and think of it as an element of $\left(G_{x, \frac{s}{2}} / G_{x, s}\right)^{\wedge}$. As a representation of $G_{x, \frac{s}{2}} / G_{x, s}, d$ decomposes into a finite sum of irreducible (one-dimensional) representations

$$
d_{1} \oplus \cdots \oplus d_{n}
$$

Let $X_{i}+\mathfrak{g}_{x,\left(-\frac{s}{2}\right)+}$ be the coset in $\mathfrak{g}_{x,(-s)+} / \mathfrak{g}_{x,\left(-\frac{s}{2}\right)+}$ corresponding to d_{i} under the isomorphism (4).

By Proposition 3.3, $0 \neq \Theta_{d}(\gamma)$ implies that for some $j, d_{j} \cong{ }^{\gamma} d_{j}$.
Now $\left.d \subset \pi\right|_{G_{x, r}}$, implies that $\left.d_{j} \subset \pi\right|_{G_{x, \frac{s}{2}}}$ and since $\frac{s}{2}>r>\rho(\pi)$ we have that d_{j} is degenerate. Apply Corollary 2.7 to d_{j} to conclude that $d_{j} \in\left(G_{x, \frac{s}{2}} / G_{x, \frac{s}{2}+s(\gamma)}\right)^{\wedge}$. In particular d_{j} is trivial on $G_{x, \frac{s}{2}+s(\gamma)}$, and hence on $G_{x, t}$.

Since $G_{x, r}$ normalizes $G_{x, \frac{s}{2}}$, it acts by permutations on the d_{i} 's. Since d is irreducible, this action is transitive. Hence all the d_{i} 's are conjugate by elements of $G_{x, r}$. By the conjugation of the d_{i} 's and the fact that $\left.d_{j}\right|_{G_{x, t}}=1$ it follows that $\left.d_{i}\right|_{G_{x, t}}=1$ for all i, and so d itself is trivial on $G_{x, t}$. This contradicts the definition of t. Hence this case is not possible and $t<2 r$.

Corollary 3.5. Fix $x \in \mathcal{B}(\mathbf{T}, k)$ and let $r>\max \{s(\gamma), \rho(\pi)\}$. Let X denote $\gamma T_{r+s(\gamma)}$, a compact subset of $T \cap G^{\text {reg }}$. If $d \in\left(G_{x, r}\right)^{\wedge}$ satisfies $\Theta_{d}\left(\gamma^{\prime}\right) \neq 0$ for some $\gamma^{\prime} \in X$, then $d \in\left(G_{x, r} / G_{x, r+s(\gamma)}\right)^{\wedge}$.

Proof. Lemma 1.4 implies that γ^{\prime} fixes x and that $s\left(\gamma^{\prime}\right)=s(\gamma)$. Now apply Theorem 3.4 to γ^{\prime}.

Corollary 3.6. Fix $x \in \mathcal{B}(\mathbf{T}, k)$ and let $r>\max \{s(\gamma), \rho(\pi)\}$. Let ω denote $G_{x, r}\left(\gamma T_{r+s(\gamma)}\right)$, an open compact subset of $G^{r e g}$. Then Θ_{d} vanishes on ω for all $d \notin\left(G_{x, r} / G_{x, r+s(\gamma)}\right)^{\wedge}$. Furthermore, $\Theta_{d}(x)=\Theta_{d}(\gamma)$ for all $x \in \omega$ and all $d \in\left(G_{x, r} / G_{x, r+s(\gamma)}\right)^{\wedge}$.

Proof. Follows immediately from Lemma 3.2 and Corollary 3.5.

4. Proof of the Main Theorem

Let $r>\max \{s(\gamma), \rho(\pi)\}$. Denote the finite set $\left(G_{x, r} / G_{x, r+s(\gamma)}\right)^{\wedge}$ by F.
Theorem 4.1. The distribution Θ_{π} is represented on the set ${ }^{G}\left(\gamma T_{r+s(\gamma)}\right)$ by a constant function.

Proof. Using Corollary 3.6, we have for all $f \in C_{c}^{\infty}(G)$ whose support is contained in ω,

$$
\begin{aligned}
\Theta_{\pi}(f)=\sum_{d \in\left(G_{x, r}\right)^{\wedge}} \Theta_{d}(f)=\sum_{d \in F} \int_{\omega} \Theta_{d}(x) f(x) d x & =\sum_{d \in F} \int_{\omega} \Theta_{d}(\gamma) f(x) d x \\
& =\int_{\omega}\left(\sum_{d \in F} \Theta_{d}(\gamma)\right) f(x) d x
\end{aligned}
$$

Thus Θ_{π} is represented by the constant function $\sum_{d \in F} \Theta_{d}(\gamma)$ on ω, i.e. $\Theta_{\pi}(x)=$ $\sum_{d \in F} \Theta_{d}(\gamma)$ for all $x \in \omega$. Since Θ_{π} is conjugation invariant, we get $\Theta_{\pi}\left(g x g^{-1}\right)=$ $\Theta_{\pi}(x)=\sum_{d \in F} \Theta_{d}(\gamma)$ for all $x \in \omega$ and all $g \in G$.

Remark 4.2. This gives a new proof of the local constancy (near compact regular semisimple tame elements γ) of the character of an irreducible admissible representation for an arbitrary reductive p-adic group G.

5. Appendix

We prove some variations of Clifford theory $[6, \S 14]$. Let K and N be open compact subgroups of G, such that N is a normal subgroup of K. Let (π, V) be an irreducible admissible representation of G and let

$$
V \underset{K}{\bar{K}} \bigoplus_{d \in K^{\wedge}} V_{d}
$$

be the (canonical) decomposition of V into K-isotypic components. Here V_{d} denotes the d-isotypic component of V, i.e. the sum of all the K-submodules of V isomorphic to $d=(d, W)$. Each isotypic component V_{d} decomposes (noncanonically) into a finite sum of isomorphic copies $W_{i} \cong \underset{K}{\cong} W$ of (d, W)

$$
V_{d} \cong \bigoplus_{K} \bigoplus_{i} W_{i}
$$

Theorem 5.1. Suppose $g \in G$ normalizes K and N. Then

1. The action of g permutes the V_{d} 's.
2. Suppose g stabilizes V_{d}. Then there exists a decomposition (\ddagger) such that the action of g permutes the W_{i}.
3. Suppose W^{\prime} is a K-submodule of V, isomorphic to W, and stable under the action g. Then ${ }^{g} d \cong d$.

Proof. 1. This follows from the fact that for any two K-submodules W^{\prime} and $W^{\prime \prime}$ of V, if $W^{\prime} \cong W^{\prime \prime}$ then $g W^{\prime} \cong g W^{\prime \prime}$.
2. Let W^{\prime} be an irreducible K-submodule of V_{d}, isomorphic to W. Since g normalizes K and stabilizes $V_{d}, g W^{\prime}$ is a K-submodule of V_{d}. Since W^{\prime} is irreducible, so is $g W^{\prime}$. As an irreducible submodule of $V_{d}, g W^{\prime}$ must be isomorphic to W. By irreducibility either $W^{\prime} \cap g W^{\prime}=\{0\}$ or $W^{\prime}=g W^{\prime}$. Thus the orbit of W^{\prime} under g is a collection of subspaces with trivial pairwise intersection, and so g acts on their sum as a desired. By complete reducibility of V_{d} (being a finite-dimensional representation of the compact group K) we can now use induction on the dimension of V_{d}.
3. This follows from the following commutative diagram (in which all the arrows are isomorphisms of vector spaces and $k \in K)$.

$$
\begin{aligned}
& \begin{aligned}
W & W^{\prime} \xrightarrow{\pi(g)} g W^{\prime} \\
d(k) \downarrow & W^{\prime} \longrightarrow
\end{aligned} \\
& W \longrightarrow W^{\prime} \xrightarrow{\pi(g)} g W^{\prime} \longrightarrow W^{\prime} \longrightarrow W
\end{aligned}
$$

References

[1] Adler, J., Refined anisotropic K-types and supercuspidal representations, Pacific J. Math. 185 (1998), 1-32.
[2] Adler, J., and S. DeBacker, Some applications of Bruhat-Tits theory to harmonic analysis on the Lie algebra of a reductive p-adic group, Michigan Math. J. 50 (2002), 263-286.
[3] -, Murnaghan-Kirillov theory for supercuspidal representations of tame general linear groups, J. Reine Angew. Math. 575 (2004), 1-35.
[4] Adler, J., and A. Roche, An intertwining result for p-adic groups, Canad. J. Math. 52 (2000), 449-467.
[5] DeBacker, S., Lectures on harmonic analysis for reductive p-adic groups, Representation Theory of Lie Groups, Institute of Mathematical Sciences, National University of Singapore, 2002, see http://www.math.lsa.umich.edu/~smdbackr/MATH/singfinal.pdf.
[6] Dornhoff, L., "Group representation theory, Part A," Pure and Applied Mathematics 7, Marcel Dekker Inc., 1971.
[7] Harish-Chandra, Admissible invariant distributions on reductive p-adic groups, Notes by Stephen DeBacker and Paul J. Sally, Amer. Math. Soc. University Lecture Series, 16, 1999.
[8] Howe, R., Some qualitative results on the representation theory of $G L_{n}$ over a p-adic field, Pacific J. Math. 73 (1977), 479-538.
[9] Kim, J.-L., and F. Murnaghan, Character expansions and unrefined minimal K-types, Amer. J. Math. 125 (2003), 1199-1234.
[10] Moy, A., and G. Prasad, Unrefined minimal K-types for p-adic groups, Inv. Math. 116 (1994), 393-408.
[11] -, Jacquet functors and unrefined minimal K-types, Comment. Math. Helvetici 71 (1996), 98-121.
[12] Murnaghan, F., Characters of admissible representations of reductive padic groups, Lecture Notes for the Thematic Year 1999 on Number Theory at the CRM, Montreal, 1-26.
[13] Prasad, G., Galois fixed points in the Bruhat-Tits buildings of a reductive group, Bull. Soc. Math. France 129 (2001), 169-174.
[14] Tits, J., Reductive groups over local fields, in: Automorphic Forms, Representation and L-functions, Proc. Symp. Pure Math. 33-1 (1979), 29-69.
[15] Yu, J.-K., Construction of tame supercuspidal representations, J. Amer. Math. Soc. 14 (2001), 579-622.

Jonathan Korman
Department of Mathematics
University of Toronto
Toronto, Ontario, Canada M5S 3G3
jkorman@math.toronto.edu

Received January 24, 2005
and in final form March 19, 2005

