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Jet spaces as nonrigid Carnot groups
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Abstract. We define a product on the jet spaces Jk(Rm,Rn) which makes
them Carnot groups. The Carnot group contact structure coincides with the
classical contact structure in the Lie-Bäcklund setting. Therefore, by prolonga-
tion, they are nonrigid Carnot groups, meaning that the space of contact maps
is infinite dimensional. We also show that strata dimensions are not rigidity in-
variants. This is demonstrated by constructing two distinct Carnot groups with
strata dimensions (3, 2, 1) but with opposite rigidity.
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1. Introduction

A Carnot group G is a connected, simply connected, stratified nilpotent Lie
group, equipped with a left-invariant sub-Riemannian metric, defined on the left-
invariant sub-bundle of the tangent bundle corresponding to the first level of the
stratification. The sub-bundle is called the horizontal bundle and the metric
is called the Carnot–Carathéodory metric. Diffeomorphisms which preserve the
horizontal bundle are called contact maps and G is said to be rigid when the
space of contact maps is finite dimensional. Quasiconformal maps are defined with
respect to the Carnot–Carathéodory metric and the definition implies they must
also be contact maps in some weak sense. Carnot groups are naturally equipped
with a family of dilations which, together with left translations, provide trivial
examples of contact maps which in the rigid cases tend to be the only examples.

Rigidity arises from the fact that contact maps are P -differentiable, a
concept due to Pansu [12]. The cases studied in the literature, e.g., [4], [12], [14],
suggest that rigidity is common and according to [6], this is cause for concern. The
euclidean spaces, the real and complex Heisenberg groups and the model filiform
groups are the established examples of nonrigid groups, see [13], [7], [8], [16] and
[17].

Recently, Tyson [18] asked the question: Are there Carnot groups of step
3 or higher which are nonrigid and support quasiconformal maps which are not
conformal? The answer is yes, the simplest examples being the model filiform
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groups. In [4], it was observed that the four dimensional real model filiform group is
not rigid and arises as the nilpotent part of the Iwasawa decomposition of Sp(2,R).
The analogous part of Sp(2n,R), n > 1, is rigid. In [20], all model filiform groups
are shown to be nonrigid. The Heisenberg and model filiform groups are related
by the fact that they are the generic jet spaces J1(Rm,Rn) and Jk(R,R). This
suggests that all generic jet spaces might be nonrigid Carnot groups. This is in
fact the case and is the subject of this paper.

The generic jet spaces Jk(Rm,Rn) are fundamental to the geometric study
of partial differential equations and arise in the literature as examples of sub-
Riemannian or Carnot–Carathéodory manifolds, of which in some sense Carnot
groups are the ideal models. These manifolds are equipped with a distribution
given by a frame of vector fields which generate the tangent space at each point by
Lie brackets. Again, a transformation of the manifold is a contact transformation
if it preserves the distribution and the question of rigidity applies. There is a
classical rigidity theorem of Bäcklund which shows that jet spaces are nonrigid,
however the contact condition is somewhat restrictive.

In this paper we construct an explicit multiplication on the generic jet
spaces so that they become Carnot groups. The multiplication gives rise to a
contact structure which coincides exactly with the jet space contact structure
thus providing a large family of nonrigid Carnot groups supporting a nontrivial
quasiconformal mapping theory. The difficulty in determining the multiplication
arises from the complexity of the Baker–Campbell–Hausdorff formula.

2. Carnot Groups

A nilpotent Lie algebra g is said to admit an n-step stratification if g = g1⊕· · ·⊕gn ,
such that gj+1 = [g1, gj] , where j = 1, . . . , n−1, and gn is contained in the center
Z(g). A Carnot group is a connected, simply connected nilpotent Lie group G ,
with stratified Lie algebra equipped with an inner product such that gi ⊥ gj when
i 6= j .

For simply connected nilpotent Lie groups, the exponential map exp : g→
G is a diffeomorphism which becomes an isomorphism (g, ∗)→ G when we define

X ∗ Y = exp−1(exp(X) exp(Y )).

The Baker–Campbell–Hausdorff formula is the explicit expression

X ∗ Y =
∑
n>0

(−1)n+1

n

∑
0<pi+qi
1≤i≤n

C−1
p,q (adX)p1(adY )q1 . . . (adX)pn(adY )qn−1Y

where (adX)Y = [X,Y ] , Cp,q = p1!q1! . . . pn!qn!
∑n

i=1 pi + qi and the last term is
(adX)pn−1X when qn = 0. The expansion to order 4 takes the form

X ∗ Y = X + Y +
1

2
[X, Y ] +

1

12
([X, [X, Y ]] + [Y, [Y,X]])

+
1

48
([Y, [X, [Y,X]]] + [X, [Y, [X,Y ]]]) + . . . .

Choosing a basis for g identifies (g, ∗) with R
dimg and X ∗ Y becomes

polynomial of degree at most n − 1. A coordinate system of this type is said to
be normal of the first kind.
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In a similar fashion we obtain normal coordinates of the second kind. Given
a basis {ej}dimg

j=1 of g , the map Φ : g→ G given by

X =
∑
j

xjej
Φ−→
∏
j

exp(xjej)

is a diffeomorphism [19, p. 86], which becomes an isomorphism (g,�)→ G when
we define

X � Y = Φ−1(Φ(X)Φ(Y )).

As before, X � Y becomes polynomial of degree at most n− 1.

Left translation, denoted τ
X
Y , is the analogue of translation in euclidean

spaces. Specifically τ
X
Y = X∗Y in coordinates of the first kind and τ

X
Y = X�Y

in coordinates of the second kind. An important feature of Carnot groups is an
analogue of dilation. For t > 0, the dilation δt : g → g is given by δt(X) =∑n

j=1 t
jXj where X =

∑n
j=1 Xj with Xj ∈ gj , which defines dilation on G via

the coordinate systems.

The sub-bundle of the tangent bundle given by left translation of g1 is
called the horizontal space or contact structure, and a contact transformation is a
transformation which preserves the contact structure pointwise. Left translations
and dilations are contact transformations.

3. Jet Spaces

3.1. Introduction.. In this section we establish the standard apparatus of jet
spaces, see for example [3], [10], [11], [16] and [17].

A function f : Rm → R has d(m, k) =
(
m+k−1

k

)
distinct k -th order partial

derivatives

∂I f(x0) =
∂kf

∂xi11 . . . ∂x
im
m

(x0)

where the k -index, I = (i1, . . . , im) satisfies |I| = i1 + · · · + im = k. We denote
the set of k -indexes by I(k) and let

Ĩ(k) = I(0) ∪ · · · ∪ I(k).

For I ∈ Ĩ(k) and t ∈ Rm we define

I! = i1!i2! . . . im! and tI = (t1)i1(t2)i2 . . . (tm)im ,

moreover the k -th order Taylor polynomial of f at x0 is given by

T kx0
(f)(t) =

∑
I∈Ĩ(k)

∂I f(x0)
(t− x0)I

I!
.

If D ⊆ Rm is open and p ∈ D , then two functions f1, f2 ∈ Ck(D,R) are defined to
be equivalent at x0 , denoted f1 ∼x0 f2 , if and only if T kx0

(f1) = T kx0
(f2). The k -jet

space over D is given by

Jk(D,R) = ∪x0∈DC
k(D,R)/ ∼x0 (1)
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where elements are denoted jkx0
(f). It comes equipped with the following projec-

tions

x : Jk(D,R)→ D and πkj : Jk(D,R)→ Jk−j(D,R), j = 1, . . . , k,

where
x(jkx0

(f)) = x0 and πkj (jkx0
(f)) = jk−jx0

(f).

Global coordinates are given by ψ(k) = (x, u(k)) where

uI(j
k
x0

(f)) = ∂I f(x0), I ∈ Ĩ(k),

and
u(k) = {uI | I ∈ Ĩ(k)}.

It follows that

Jk(D,R) ≡ D × Rd(m,0) × Rd(m,1) × · · · × Rd(m,k).

If f = (f1, . . . , fn) is a map f : D → R
n then we apply the jet apparatus

to the coordinate functions f`. Thus global coordinates are denoted by ψ(k) =
(x, u(k)), where

x(jkx0
(f)) = x0 and u`I(j

k
x0

(f)) = ∂I f
`(x), I ∈ Ĩ(k), ` = 1, . . . , n,

and
u(k) = {u`I | I ∈ Ĩ(k), ` = 1, . . . , n}.

It follows that

Jk(D,Rn) ≡ D × Rnd(m,0) × Rnd(m,1) × · · · × Rnd(m,k).

When making comparisons between jet spaces of different orders, we add
the superscript (t) to coordinate expressions on J t(Rm,Rn). In particular we
replace x by x(t) and we use

u(t) = {u(t),`
I | I ∈ Ĩ(t), ` = 1, . . . , n}.

This notation expresses the compatibility of the coordinates with the projections
πts , that is:

x(t) = x(t−s) ◦ πts and u
(t),`
J = u

(t−s),`
J ◦ πts, when |J | ≤ t− s. (2)

We also use the notation

π̄ts = ψ(t−s) ◦ πts ◦ (ψ(t))−1.

3.2. Contact structure.. The k -jet of a map f ∈ Ck(D,Rn) is the section
x0 → jkx0

(f) of the bundle x : Jk(D,Rn)→ D. A contact form θ on Jk(D,R) is a
one form satisfying s∗θ = 0 for all k -jets s . By the chain rule, the contact forms
are framed by the set{

ω`I = du`I −
m∑
j=1

u`I+ejdx
j | I ∈ Ĩ(k − 1) , ` = 1, . . . , n

}
, (3)
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and, see [5], a section s of x : Jk(D,Rn) → D is a k -jet if and only if s∗ω`I = 0
for all I ∈ Ĩ(k − 1) and ` = 1, . . . , n .

The horizontal tangent bundle Hk is defined pointwise by

Hk
p =

{
v ∈ TpJk(D,Rn) | ω`I(v) = 0, I ∈ Ĩ(k − 1), ` = 1, . . . , n

}
.

In coordinates,

v =
m∑
j=1

dxj(v)X
(k)
j +

n∑
`=1

∑
I∈I(k)

du`I(v)
∂

∂u`I
,

where

X
(k)
j =

∂

∂xj
+

n∑
`=1

∑
I∈Ĩ(k−1)

u`I+ej
∂

∂u`I
, j = 1, . . . ,m,

and it follows that

Hk = span
{
X

(k)
j | j = 1, . . . ,m

}
⊕ span

{
∂

∂u`I
| I ∈ I(k) , ` = 1, . . . , n

}
.

The nontrivial commutators are[
∂

∂u`I+ej
, X

(k)
j

]
=

∂

∂u`I
, I ∈ Ĩ(k − 1), ` = 1, . . . , n.

If L0 = Hk and

Lj = span{ ∂

∂u`I
| I ∈ I(k − j), ` = 1, . . . , n},

where j ≥ 1, then Lj = [L0, Lj−1] , where j = 1, . . . , k. It follows that

Xk = L0 ⊕ · · · ⊕ Lk

is a (k + 1)-step stratified nilpotent Lie algebra of vector fields which span
TJk(D,Rn) pointwise.

Corresponding to the abstract Lie algebra defined by Xk , there is a Carnot
group G(k)(m,n), unique up to isomorphism, constructed via the Baker–Campbell–
Hausdorff formula. As is shown later, in the case D = R

m , we can explicitly de-
termine a multiplication � on Jk(Rm,Rn) such that (Jk(Rm,Rn),�) is a Carnot
group isomorphic with G(k)(m,n) and the group induced contact structure agrees
with the jet contact structure.

3.3. Contact Transformations.. A diffeomorphism f of some domain D ⊆
Jk(Rm,Rn) is called a contact transformation if f∗Hk

p = Hk
f(p). Equivalently, f is

a contact transformation if it preserves contact forms, i.e., if θ is a contact form
then f ∗θ is a contact form.

Let v ∈ Hk
p and

ψ(k) ◦ f ◦ (ψ(k))−1(x, u(k)) = (ξ(x, u(k)), η(k)(x, u(k))),
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where
η(k)(x, u(k)) =

{
η`J(x, u(k)) | J ∈ Ĩ(k), ` = 1, . . . , n

}
.

Then

dxj(f∗v) = dξj(ψ(k)
∗ v) =

∑
i

(X
(k)
i ξj)dxi(v) +

∑
q

∑
I∈I(k)

∂ξj

∂uqI
duqI(v)

and

du`J(f∗v) = dη`J(ψ(k)
∗ v) =

∑
i

(X
(k)
i η`J)dxi(v) +

∑
q

∑
I∈I(k)

∂η`J
∂uqI

duqI(v).

If f∗v ∈ Hk
f(p) then du`J(f∗v) =

∑
j(u

`
J+ej
◦ f(p))dxj(f∗v), hence a contact diffeo-

morphism satisfies the contact conditions:

X
(k)
i η`J =

∑
j

η`J+ej
(X

(k)
i ξj), J ∈ Ĩ(k − 1), ` = 1, . . . , n, (4)

∂η`J
∂uqI

=
∑
j

η`J+ej

∂ξj

∂uqI
, J ∈ Ĩ(k − 1), I ∈ I(k), ` = 1, . . . , n. (5)

In the case n = 1 we drop the superscript ` .

3.4. Prolongation. From a contact transformation f on Ω ⊆ Jk(Rm,Rn) we
can construct a domain Ω1 ⊂ Jk+1(Rm,Rn) and a map pr(f) : Ω1 → pr(f)(Ω1) ⊆
Jk+1(Rm,Rn), called the first prolongation of f , uniquely determined by the
following conditions:

• pr(f) is a contact transformation (6)

• πk+1
1 ◦ pr(f) = f ◦ πk+1

1 . (7)

Let π̄k+1
1 = ψ(k) ◦ πk+1

1 ◦ (ψ(k+1))−1 and

ψ(k+1) ◦ pr(f) ◦ (ψ(k+1))−1 = (ξ(k+1), η(k+1)),

then (7) and the compatibility conditions (2) imply

ξ(k+1),j = ξ(k),j ◦ π̄k+1
1 , (8)

and

η
(k+1),`
J = η

(k),`
J ◦ π̄k+1

1 (9)

when |J | ≤ k . When |J | = k+1, the definition of the coordinate functions η
(k+1),`
J

is given by the contact conditions

ω
(k+1),`
I (pr(f)∗X

(k+1)
i ) = 0, |I| = k, ` = 1, . . . , n, i = 1, . . . ,m. (10)

In coordinates, these conditions give the matrix equation[
X

(k+1)
i (η

(k),`
I ◦ π̄k+1

1 )
]
i

=
[
X

(k+1)
i (ξ(k),j ◦ π̄k+1

1 )
]
ij

[
η

(k+1),`
I+ei

]
i
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which serves to define the coordinate functions η
(k+1),`
J , where |J | = k+1, uniquely

on Ω1 = (ψ(k+1))−1(W ) where

W =

{
(x(k+1), u(k+1)) ∈ ψ(k+1)

(
(πk+1

1 )−1(Ω)
) ∣∣ det

[
X

(k+1)
i (ξ(k),j ◦ π̄k+1

1 )
]
ij
6= 0

}
.

It remains to be checked that pr(f) is a contact transformation. To this
end, note that the compatibility conditions (2), imply that

dx(k+1),i = (πk+1
1 )∗dx(k),i = dx(k),i ◦ (πk+1

1 )∗, (11)

and, when |J | ≤ k , that

du
(k+1),`
J = (πk+1

1 )∗du
(k),`
J = du

(k),`
J ◦ (πk+1

1 )∗. (12)

It follows that

ω
(k+1),`
J = (πk+1

1 )∗ω
(k),`
J = ω

(k),`
J ◦ (πk+1

1 )∗ (13)

when |J | ≤ k − 1. From (11), (12) and (13) we have (πk+1
1 )∗ : Hk+1 → Hk . In

particular

(πk+1
1 )∗

∂

∂u
(k+1),`
I

=

{
∂

∂u
(k),`
I

|I| ≤ k

0 |I| = k + 1
(14)

and

(πk+1
1 )∗X

(k+1)
j = X(k) +

∑
`

∑
|I|=k

du
(k),`
I

(
(πk+1

1 )∗X
(k+1)
j

) ∂

∂u
(k),`
I

. (15)

From (2) and (13), we have

ω
(k+1),`
J ◦ pr(f)∗ = ω

(k),`
J ◦ f∗ ◦ (πk+1

1 )∗ (16)

when |J | ≤ k − 1, hence (15) and (16), together with the fact that f is a contact
transformation, imply

ω
(k+1),`
J

(
pr(f)∗X

(k+1)
j

)
= 0 (17)

when |J | ≤ k − 1. Furthermore, for |I| = k + 1, (14) and (16), together with the
fact that f is a contact transformation, show that

ω
(k+1),`
J

(
pr(f)∗

∂

∂u
(k+1),`
I

)
= 0 (18)

when |J | ≤ k − 1.

For |J | = k , (11), (12) and (2) give

ω
(k+1),`
J ◦ pr(f)∗ = du

(k),`
J ◦ f∗ ◦ (πk+1

1 )∗ −
∑
j

u
(k+1),`
J+ej

◦ pr(f) dx(k),j ◦ f∗ ◦ (πk+1
1 )∗,
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which, by (14), gives (18) when |J | = k and |I| = k + 1. It follows that pr(f)
is a contact transformation. Iterating the procedure defines the higher order
prolongation pr`(f) with domain Ω`.

Prolongation gives rise to two particular types of contact transformations,
known as point and Lie tangent transformations. A point transformation is a
prolongation of a diffeomorphism of some D ⊆ J0(Rm,Rn) ≡ Rm × Rn , and a
Lie tangent transformation is a prolongation of a contact transformation on some
D ⊆ J1(Rm,Rn). It turns out that Lie tangent transformations can form a larger
class than point transformations, but there are no other contact transformations
beyond Lie tangent transformations, this fact is Bäcklund’s theorem.

Theorem 3.1. (Bäcklund, [2]) If n > 1, then every contact transformat-
ion on Jk(Rm,Rn) is the k -th order prolongation of a point transformation on
J0(Rm,Rn). If n = 1, then every contact transformation on Jk(Rm,R) is the
(k − 1)-th order prolongation of a contact transformation on J1(Rm,R).

Bäcklund’s proof is purely geometric, but other treatments, e.g., [1], tend
to be at the infinitesimal level. Other useful references include [16] and [17].
Bäcklund’s theorem can be derived directly from the Lie algebra Xk using Car-
tan’s formula or Cauchy characteristics, and is thus a consequence of the Carnot
structure. This observation suggests a Bäcklund type theorem might be possible
for Carnot groups generally.

4. Group Structure

4.1. Introduction. In what follows we obtain a multiplication, denoted �, for
the jet spaces Jk(Rm,Rn). The particular examples J1(Rm,Rn) and Jk(R,R)
are simple enough that we can produce � from second kind coordinates using
the Baker-Campbell-Hausdorff formula. Owing to the complexity of the Baker–
Campbell–Hausdorff formula, this approach is in general difficult. However, the
left translation arising from � must be a contact automorphism, and thus, also
a point transformation. The examples suggest how to construct the coordinate
maps ξ and η` , which through prolongation, define �.
4.2. Example: J1(Rm,Rn). In this case

H1 = span
{
X

(1)
j | j = 1, . . . ,m

}
⊕ span

{
∂

∂u`ej
| ` = 1, . . . , n, j = 1, . . . ,m

}
where

X
(1)
j =

∂

∂xj
+

n∑
`=1

u`ej
∂

∂u`0
, j = 1, . . . ,m

and the nontrivial commutators are[
∂

∂u`ej
, X

(1)
j

]
=

∂

∂u`0
.

If L0 = H1 and L1 = span{ ∂
∂u`0
} then L1 = [L0, L0]. It follows that

X1 = L0 ⊕ L1
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is a 2-step stratified nilpotent Lie algebra of vector fields which span TJ1(Rm,Rn)
pointwise.

Let g denote the abstract Lie algebra over R isomorphic with X1. Denote
the basis by

{e(1)
1 , . . . , e(1)

m , e1
1, . . . , e

1
m, . . . , e

n
1 , . . . , e

n
m, e

1, . . . , en}

where the nontrivial commutator relations are[
e`j, e

(1)
j

]
= e`

and the isomorphism is given by X
(1)
j ↔ e

(1)
j , ∂

∂u`ej
↔ e`j and ∂

∂u`
↔ e`. The map

∑
xje

(1)
j +

∑
u`je

`
j +
∑

u`e` → m(x, u(1))

where

m(x, u(1)) =



0 . . . 0 u1
1 . . . u1

m u1

...
...

...
...

...
0 . . . 0 un1 . . . unm un

0 . . . 0 0 . . . 0 x1

...
...

...
...

...
0 . . . 0 0 . . . 0 xm

0 . . . 0 0 . . . 0 0


is a Lie algebra isomorphism giving a matrix model of g . In coordinates of the
second kind we have

Φ(m(x, u(1))) =



1 . . . 0 u1
1 . . . u1

m u1

...
...

...
...

...
0 . . . 1 un1 . . . unm un

0 . . . 0 1 . . . 0 x1

...
...

...
...

...
0 . . . 0 0 . . . 1 xm

0 . . . 0 0 . . . 0 1


and it follows that the second kind coordinate multiplication

(x, u(1))� (y, v(1)) = (z, w(1))

is defined by z = x+ y , w`ej = v`ej + u`ej and

w` = u` + v` +
m∑
j=1

u`ejyj. (19)

4.3. Example: Jk(R,R). In this case

Hk = span{X(k),
∂

∂uk
}
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where

X(k) =
∂

∂x
+

k−1∑
j=0

uj+1
∂

∂uj

and the commutator relations are[
∂

∂uj
, X(k)

]
=

∂

∂uj−1

, j = 1, . . . , k.

If L0 = Hk and Lj = span{ ∂
∂uk−j

} , j ≥ 1, then Lj = [L0, Lj−1] , j = 1, . . . , k and

it follows that
Xk = L0 ⊕ · · · ⊕ Lk

is a (k + 1)-step stratified nilpotent Lie algebra of vector fields which span
TpJ

k(R,R) for every point p .

Let g(k) denote the abstract Lie algebra over R isomorphic with Xk . Denote
the basis by {e(k), ek, . . . , e0} where the nontrivial commutators are [ej, e

(k)] =
ej−1 , when j = 1, . . . , k and the isomorphism is given by the correspondence
X(k) ↔ e(k) and ej ↔ ∂

∂uj
. Note that g(1) is the Heisenberg algebra, g(2) is the

Engel algebra, and in general g(k) goes by the names model filiform algebra and
Goursat algebra.

The map

xe(k) +
∑

ujej →



0 −x 0 · · · 0 u0

0 0 −x · · · 0 u1

0 0 0 · · · 0 u2
...

...
...

...
...

0 0 0 · · · −x uk−1

0 0 0 · · · 0 uk
0 0 0 · · · 0 0


is a Lie algebra isomorphism giving a matrix model of g(k) . In coordinates of the
second kind, the elements of the corresponding connected, simply connected Lie
group G(k) take the form

exp(xe(k)) exp(ukek + · · ·+ u0e0).

Multiplication in second kind coordinates, denoted

(x, uk, . . . , u0)� (y, vk, . . . , v0) = (z, wk, . . . , w0),

can be found by solving

exp(ze(k)) exp(
∑
j

wjej) = exp(xe(k)) exp(
∑
j

ujej) exp(ye(k)) exp(
∑
j

vjej) (20)

for (z, wk, . . . , w0). Using the matrix model we have

exp(xe(k)) ∼
(
A(x) 0

0 1

)
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where

(
A(x) 0

0 1

)
=



1 (−x) (−x)2/2! (−x)3/3! · · · (−x)k /(k − 0)! 0
0 1 (−x) (−x)2/2! · · · (−x)k−1/(k − 1)! 0
0 0 1 (−x) · · · (−x)k−2/(k − 2)! 0
0 0 0 1 · · · (−x)k−3/(k − 3)! 0
...

...
...

...
...

...
0 0 0 0 · · · (−x) 0
0 0 0 0 · · · 1 0
0 0 0 0 · · · 0 1


and

exp(
∑
j

ujej) ∼
(

Id V (u)
0 1

)
=



1 0 0 0 · · · 0 u0

0 1 0 0 · · · 0 u1

0 0 1 0 · · · 0 u2

0 0 0 1 · · · 0 u3
...

...
...

...
...

...
0 0 0 0 · · · 1 uk
0 0 0 0 · · · 0 1


.

Substituting these expressions into (20) gives

(
A(z) A(z)V (w)

0 1

)
=

(
A(x)A(y) A(x)A(y)V (v) + A(x)V (u)

0 1

)
. (21)

From (21), we have

A(z) = A(x)A(y) and V (w) = V (v) + A(y)−1V (u).

It follows that

z = x+ y, ws = vs + us +
k∑

j=s+1

uj
yj−s

(j − s)!
, s = 0, . . . , k (22)

For each (x, u(k)) the previous formula defines a contact transformation in
the variable (y, v(k)) and is thus the prolongation of the point transformation

(y, v0)→
(
x+ y, v0 +

k∑
j=0

uj
yj

j!

)
. (23)

4.4. Multiplication. Guided by (23), we first construct multiplication on the
jet spaces Jk(Rm,R) and then follow (19) to extend it to Jk(Rm,Rn). To this end
we establish some notation. We write

(x, u(k))� (y, v(k)) = (x+ y, uv(k))

where
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(y, v(k)) = jky (f), f(t) =
∑
I∈Ĩ(k)

vI
(t− y)I

I!
,

(x, u(k)) = jkx(g), g(t) =
∑
I∈Ĩ(k)

uI
(t− x)I

I!
,

(x+ y, uv(k)) = jkx+y(h), h(t) =
∑
I∈Ĩ(k)

uvI
(t− y − x)I

I!
.

We write J ≤ I if j` ≤ i` for all ` then

∂tI

∂tJ
=

(
∂

∂t1

)j1
. . .

(
∂

∂tm

)jm
(t1)i1(t2)i2 . . . (tm)im =

{
I!

(I−J)!
tI−J if J ≤ I

0 otherwise.

Guided by (19), (22) and (23), we define

uvI = vI +
∑
I≤J

uJ
yJ−I

(J − I)!
=

∂

∂tI
f(t)
∣∣∣
t=y

+
∂

∂tI
g(t)

∣∣∣
t=y+x

. (24)

In particular, vuI is the I -th coordinate function ηI , of the prolonged point
transformation

(y, v0)→ (x+ y, v0 +
∑
0≤J

uJ
yJ

J !
).

To prove associativity, we use the notation(
(z, w(k))� (x, u(k))

)
� (y, v(k)) = (z + x+ y, (wu)v(k))

and
(z, w(k))�

(
(x, u(k))� (y, v(k))

)
= (z + x+ y, w(uv)(k)).

By definition,

(wu)vI = vI +
∑
I≤J

wuJ
yJ−I

(J − I)!

= vI +
∑
I≤J

uJ
yJ−I

(J − I)!
+
∑
I≤J

∑
J≤K

wK
xK−J

(K − J)!

yJ−I

(J − I)!

and

w(uv)I = uvI +
∑
I≤J

wJ
(x+ y)J−I

(J − I)!

= vI +
∑
I≤J

uJ
yJ−I

(J − I)!
+
∑
I≤J

wJ
(x+ y)J−I

(J − I)!
.

Hence associativity will follow if (wu)vI − w(uv)I = 0, where

(wu)vI − w(uv)I =
∑
I≤J

∑
J≤K

wK
xK−J

(K − J)!

yJ−I

(J − I)!
−
∑
I≤J

wJ
(x+ y)J−I

(J − I)!
. (25)
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Using the multi-index binomial formula

(x+ y)J−I =
∑

0≤K≤J−I

(J − I)!

(J − I −K)!K!
xJ−I−KyK ,

the sum in (25) becomes

∑
I≤J

∑
J≤K

wK
xK−J

(K − J)!

yJ−I

(J − I)!
−
∑
I≤J

∑
K≤J−I

wJ
xJ−I−KyK

(J − I −K)!K!
. (26)

Exchanging J and K in the first sum of (26) and changing K to K − I in
the second sum of (26), we obtain

(wu)vI − w(uv)I=
∑
I≤K

∑
K≤J

wJ
xJ−K

(J −K)!

yK−I

(K − I)!
−
∑
I≤J

∑
I≤K≤J

wJ
xJ−KyK−I

(J −K)!(K − I)!
.

If S1(I) = {(J,K) | I ≤ K and K ≤ J} and S2(I) = {(J,K) | I ≤
J and I ≤ K ≤ J} , then S1(I) ⊂ S2(I) and S2(I) ⊂ S1(I), hence the right
hand side of the previous expression is zero.

From (24), the point (y, v(k)), where

y = −x and vI = −
∑
I≤J

(−1)|J−I|uJ
xJ−I

(J − I)!
,

defines a right inverse of (x, u(k)). Since the multiplication is associative, the right
inverse is also a left inverse.

The distribution induced by the left translation under � is exactly Hk .
Indeed it follows that

∂

∂yj
uvJ

∣∣∣
(0,0)

=

{
uJ+ej if |J | = 0, . . . , k − 1

0 if |J | = k

and
∂

∂vI
uvJ

∣∣∣
(0,0)

=

{
1 if I = J
0 otherwise,

implying that

L(x,u(k))∗

( ∂

∂yj

∣∣∣
(0,0)

)
= X

(k)
j

∣∣∣
(x,u(k))

and L(x,u(k))∗

( ∂

∂uI

∣∣∣
(0,0)

)
=

∂

∂uI

∣∣∣
(x,u(k))

.

Multiplication on Jk(Rm,Rn) is obtained by applying the multiplication on
Jk(Rm,R) to the coordinate functions, i.e., define

uv`I = v`I +
∑
I≤J

u`J
yJ−I

(J − I)!
=

∂

∂tI
f`(t)

∣∣∣
t=y

+
∂

∂tI
g`(t)

∣∣∣
t=y+x

.
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5. Rigidity and Strata Dimension

The folk law rule of thumb is that noncommutativity should reflect rigidity in
the sense that a high degree of noncommutativity should imply more rigidity. The
problem here is that we don’t know what the measure of noncommutativity should
be. An obvious consideration is that a measure of noncommutativity or rigidity
should depend on the step and the dimensions of the strata. However such data
tells us almost nothing, as we can construct distinct Carnot groups with strata
dimensions (3, 2, 1) but with opposite rigidity.

For example, using the vector field method, as in [7] and [20], it easy to
check that the Carnot group corresponding to the Lie algebra n(4,R), the strictly
upper triangular 4× 4 real matrices, is rigid with strata dimensions (3, 2, 1).

For the nonrigid example we use Grassmanian prolongation (see [9]): Let
Σ(k,M) be a distribution of k dimensional subspaces of an n dimensional manifold
M , i.e, if p ∈ M then Σ(k,M)p is a k dimensional subspaces of TpM and for
some neighborhood U of p there exist smooth vector fields X1, . . . , Xk such that

Σ(k,M)q = span{X1(q), . . . , Xk(q)}, q ∈ U.

The study of ` dimensional submanifolds of M which are tangent to Σ(k,M)
gives rise to the bundle Gr(`,Σ(k,M))→ M where each fibre Gr(`,Σ(k,M))p is
the Grassmannian of ` dimensional subspaces Λp ⊂ Σ(k,M)p . The elements of
Gr(`,Σ(k,M))p represent the possible tangent spaces of the submanifolds.

A curve through (p,Λp) ∈ Gr(`,Σ(k,M)) has the form (γ(t),Λγ(t)), where
γ(0) = p , and is defined to be horizontal at (p,Λp) if γ̇(0) ∈ Λp . These curves
define a subspace of T(p,Λp)Gr(`,Σ(k,M)) and the collection of all these subspaces
defines a distribution Σ(Gr(`,Σ(k,M))) on Gr(`,Σ(k,M)). The Grassman bundle
Gr(`,Σ(k,M)), together with the distribution Σ(Gr(`,Σ(k,M))), is called the
Grassman prolongation of Σ(k,M). A contact map of M lifts to a contact map of
Gr(`,Σ(k,M)) via f(p,Λp) = (f(p), f∗Λp) so that M and Gr(`,Σ(k,M)) share
the same rigidity.

Consider the Carnot group G with Lie algebra given by

span{X1, X2, X3, X4}

and nontrivial brackets [X1, X2] = [X1, X3] = X4 . The horizontal space is

H = span{X1, X2, X3}

and the strata dimensions are (3, 1). In second kind coordinates, we have

X1 =
∂

∂x1

− (x2 + x3)
∂

∂x4

X2 =
∂

∂x2

X3 =
∂

∂x3

X4 =
∂

∂x4

with corresponding dual forms dx1 , dx2 , dx3 , and dx4 + (x2 + x3)dx1 , and
H = Σ(3, G). A vector field V =

∑
viXi induces a contact flow if [H, V ] = 0

mod H which implies that

X1v4 + v2 + v3 = 0, X2v4 − v1 = 0 and X3v4 − v1 = 0.

It follows that

V = (X2v4)X1 + v2X2 − (X1v4 + v2)X3 + v4X4
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with v2 arbitrary and v4 = P (x1, x2 + x3, x4) for any suitably smooth P . We
conclude that G is nonrigid.

We Grassman prolong G by 1-dimensional subspaces of the form

span{X1 + tX2 + sX3} ⊂ H.

Thus we define γ = (x1, x2, x3, x4, t, s) to be horizontal if

ẋ1 6= 0, ẋ4 = −(x2 + x3)ẋ1 and (ẋ1, ẋ2, ẋ3) = λ(1, t, s),

equivalently if γ̇ = ẋ1(X1 + tX2 + sX3) + ṫ ∂
∂t

+ ṡ ∂
∂s

. It follows that

H̃ = Σ(Gr(1,Σ(3, G))) = span
{
X̃1, T, S

}
where X̃1 = X1 +tX2 +sX3 , T = ∂

∂t
and S = ∂

∂s
, moreover the nontrivial brackets

are

[T, X̃1] = X2, [S, X̃1] = X3, [X̃1, X2] = [X1, X2] = X4, [X̃1, X3] = [X1, X3] = X4.

By construction, the corresponding Carnot group is nonrigid with strata dimen-
sions (3, 2, 1).

6. Further Consequences

By Bäcklund’s theorem, the quasiconformal automorphism groups of the jet spaces
must consist of point transformations and be polynomial in all but the base vari-
ables. Except for the complications that might arise from the analytic definition
of quasiconformality, it is feasible that we can calculate these quasiconformal au-
tomorphisms. In work in preparation we investigate the quasiconformal mappings
of Jk(R,R) obtaining explicitly the quasiconformal automorphisms as well as Li-
ouville’s theorem.

References

[1] Anderson, R. L., and N. H. Ibragimov, “Lie–Bäcklund transformations
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