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Abstract. Heisenberg groups are simply connected nilpotent Lie groups of
class 2. A group is called almost homogeneous if its automorphism group acts
with at most 3 orbits. Several open problems about the existence of embeddings
between almost homogeneous Heisenberg groups have been posed in a previous
paper by the second author. Most of these problems are solved.
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1. Introduction.

An important class of nilpotent groups is formed by the so-called Heisenberg
groups, which are defined as follows: Let V and Z be vector spaces of finite
dimension over R , and let β := 〈·, ·〉 : V × V → Z be a symplectic bilinear map.
Then [(v, x), (w, y)] := (0, 〈v, w〉) gives a Lie bracket on the vector space V × Z ;
the Lie algebra thus defined will be denoted by gh(V, Z, β). The corresponding
simply connected group is the topological space V × Z , endowed with the multi-
plication

(v, x) · (w, y) :=
(
v + w, x+ y + 1

2
〈v, w〉

)
.

We denote this group by GH(V, Z, β).

A (topological) group G is called almost homogeneous if the group Aut(G)
of (topological) automorphisms acts with at most 3 orbits on G . The discrete
case has been investigated in [3]. For a locally compact connected group G , the
assumption that Aut(G) acts with less than 2ℵ0 orbits already implies that G
is a simply connected, nilpotent Lie group, cf. [7] 5.1. Thus the locally compact
connected almost homogeneous groups are exactly those groups that have been
determined in [5]. Some of the results in the present paper are contained in the
first author’s thesis [2]. Another part of that thesis was incorporated in [8] 3.8.

Theorem 1.1. Let H be a locally compact connected group.

a. If Aut(H) acts with 2 orbits then H is isomorphic to Rn , for some natural
number n.
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b. If Aut(H) acts with 3 orbits then H is a Heisenberg group, and the pair of
dimensions

(
dim(H/H ′), dimH ′

)
belongs to the set

{
(2n, 1) | n ≥ 1

}
∪
{

(4n, 2) | n ≥ 1
}
∪

{
(4n, 3) | n ≥ 1

}
∪
{

(3, 3) , (6, 6) , (7, 7) , (8, 5) , (8, 6) , (8, 7)
}
.

Moreover, the pair (dim(H/H ′), dimH ′) determines H , up to isomorphism.

The pattern of possible dimensions already suggests that there are three infinite
series, and 6 isolated examples. This is indeed the case, cf. [5]:

Remark 1.2. a. Every Heisenberg group GH(V, Z, β) with dimZ = 1 is
obtained from a symplectic form β : V × V → Z ∼= R . Such a group
is almost homogeneous if, and only if, the form β is non-degenerate. In
this case, (the isomorphism type of) GH(V, Z, β) is denoted by Hn

R
, where

n = dimR V .

b. A Heisenberg group GH(V, Z, β) with dimZ = 2 is almost homogeneous if,
and only if, the spaces V and Z can be made vector spaces over C in such
a way that β is complex bilinear, and non-degenerate. In this case, (the
isomorphism type of) GH(V, Z, β) is denoted by H2n

C
, where n = dimC V .

c. A Heisenberg group GH(V, Z, β) with dimV = 4n and dimZ = 3 is
almost homogeneous if, and only if, the space V can be made a vector
space over Hamilton’s quaternions H in such a way that β is the pure
part of a positive definite hermitian form from H

n × Hn ∼= V × V to
Z ∼= Pu (H) :=

{
h ∈ H

∣∣ h̄ = −h
}

. In this case, (the isomorphism type
of) GH(V, Z, β) is denoted by H4n

H
, where n = dimH V .

The almost homogeneous Heisenberg groups with (v, z) :=
(

dim(H/H ′), dimH ′
)

in
{

(3, 3) , (6, 6) , (7, 7) , (8, 5) , (8, 6) , (8, 7)
}

will be denoted by Hv
z ; the corre-

sponding Lie algebra by hvz . The Lie algebras h8
5 and h8

6 will be introduced by
certain module projections in 2.7 below. Even more explicit descriptions may be
found in 3.1 and 3.2.

Problems 1.3. There exist quite obvious embeddings between almost homo-
geneous Heisenberg groups: H2n

R
↪→H4n

C
, H2n

R
↪→H4n

H
and H3

3 ↪→H6
6 ↪→H7

7 ; see [6].
It appeared natural to pose the general embeddability problem. Apart from a few
cases, this problem was solved in [6]; only the following problems remained open:

(a) Is there an embedding of H4
R

into H8
6 ?

(b) Is there an embedding of H4
C

into H8
5 ?

(c) Is there an embedding of H4
H

into H8
5 , or into H8

6 ?

(d) Is there an embedding of H6
R

into H8
5 ?

(e) For which pairs (k, n) is there an embedding of H4k
C

into H8n
H

?
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In the present paper we solve Problems (a) – (d), but Problem (e) remains open.

We are dealing with simply connected nilpotent Lie groups here, where the
exponential map is a homeomorphism (even a diffeomorphism, see [9] Thm. 3.6.2).
Therefore, embeddings (where we have a homeomorphism onto the image) cor-
respond bijectively to embeddings of Lie algebras (i.e., injective Lie algebra ho-
momorphisms), and embeddings are nothing else than injective continuous group
homomorphisms. This remark is made only to indicate the deeper reason why
it suffices to consider Lie algebra homomorphisms in the sequel. Of course, non-
existence of an embedding for the algebras implies non-existence of an embedding
for the groups.

Lemma 1.4. Let G = GH(S, Y, γ) and H = GH(V, Z, β) be almost homo-
geneous Heisenberg groups. Assume that ϕ : G → H is an injective continuous
homomorphism. Then the following hold.

a. The commutator groups satisfy ({0}×Y )ϕ = G′ϕ = H ′∩Gϕ = ({0}×Z)∩Gϕ .

b. There are injective linear maps
ϕ1 : S → V and ϕ2 : Y → Z
such that the following diagram
commutes:

S × S
γ

- Y

V × V
(ϕ1, ϕ1)

?

β
- Z

ϕ2
?

c. Every pair (ϕ1, ϕ2) as in assertion b yields an embedding

(ϕ1, ϕ2) : GH(S, Y, γ)→ GH(V, Z, β) : (s, y) 7→ (sϕ1 , yϕ2) .

However, if ϕ1 and ϕ2 are obtained from an embedding ϕ as in assertion b,
it may happen that (ϕ1, ϕ2) and ϕ are different.

d. For every g ∈ G, we have dim CG (g)− dimG′ ≤ dim CH (gϕ)− dimH ′ .

Proof. The first two statements were proved in [6] 3.2. Every linear map
τ : S → Y defines an automorphism τ̃ : (s, y) 7→ (s, y+ sτ ) of GH(S, Y, γ), and ϕ
and τ̃ϕ yield the same pair (ϕ1, ϕ2). The rest of assertion c is verified by a simple
computation. The last assertion follows from the observation that ϕ induces an
injective linear map from CG (g) /G′ to CH (gϕ) /H ′ .

2. Notation.

As our treatment involves some explicit computations, we have to fix descriptions
for rather well known objects.

Complex numbers will be considered as 2×2 matrices over R ; then complex
conjugation is obtained by transposition:

C :=

{(
a b
−b a

) ∣∣∣∣ a, b ∈ R} , (
a b
−b a

)
=

(
a −b
b a

)
.

In the Lie algebra gl2nR of all 2n× 2n matrices over R , we have the subalgebra

glnC :=

{
A = (aj,k)

2n
j,k=1 ∈ gl2nR

∣∣∣∣ ∀j, k ∈ {1, . . . , n} :
a2j,2k = a2j−1,2k−1

a2j−1,2k = −a2j,2k−1

}
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of all complex matrices, considered as matrices with special block structure.

The transpose of a real matrix A is denoted by A′ . For the sake of
distinction, the transpose of a complex matrix C = (cj,k)

n
j,k=1 ∈ glnC will be

written Cᵀ := (ck,j)
n
j,k=1 , and C is obtained by conjugation of each entry:

(cj,k)nj,k=1 = (cj,k)
n
j,k=1.

Note that C
ᵀ

is just the transpose of the real matrix. The complex trace of C is
trC(cj,k)

n
j,k=1 =

∑n
j=1 cj,j .

Hamilton’s quaternions form a subalgebra of gl2C , namely

H :=

{(
x y
−y x

) ∣∣∣∣ x, y ∈ C} .
We will use the standard involution h 7→ h̃ := h′ = h̄ᵀ on H . This involution fixes
the real scalar multiples of the identity, while the complementary eigenspace is

Pu (H) :=
{
h ∈ H

∣∣∣ h̃ = −h
}

=

{(
ri b
−b̄ −ri

) ∣∣∣∣ r ∈ R, b ∈ C} .

Again, elements of glnH will be interpreted as special elements of gl2nC or
of gl4nR , respectively.

The real n×n identity matrix will be denoted by 1n ; note that for n = 2h
even, this is the complex h × h identity matrix 1Ch , and the quaternion q × q
identity matrix 1Hq for n = 4q .

Definition 2.1. Let o2nR be the Lie algebra of all skew symmetric 2n × 2n
matrices over R . We consider the subalgebras

unC := o2nR ∩ glnC =
{

(cj,k)
n
j,k=1 ∈ glnC

∣∣ ∀j, k : cj,k = −ck,j
}

and sunC :=
{
M ∈ unC | trCM = 0

}
.

For n = 4, we will use a convenient description of the latter subalgebra by complex
block matrices:

su4C =

{(
A B

−Bᵀ C

) ∣∣∣∣ A,C ∈ u2C, B ∈ gl2C,
trCA = −trCC

}
In the sequel, we will consider representations of (Lie algebras of) com-

pact connected Lie groups. By Weyl’s trick, these representations are completely
reducible, cf. [1] I.6.2, Thm 2, p. 52.

The adjoint representation of o8R restricts to an R-linear representation of
su4C on o8R . We will decompose o8R as a direct sum of irreducible su4C-modules.
To this end, we introduce some more notation. We put

S :=


σ

σ
σ

σ

 , where σ =

(
1
−1

)
.

Note that, for each c ∈ C , we have σc = cσ . We will also use

i :=

(
0 1
−1 0

)
∈ C and J :=

(
0 12

−12 0

)
∈ H.
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Lemma 2.2. For A ∈ u4C and

MS ∈ U := (o4C)S =

{(
tJ X
−Xᵀ uJ

)
S

∣∣∣∣ t, u ∈ C, X ∈ gl2C

}
,

we have [A,MS] = (AM − (AM)ᵀ)S .

Proof. Using σc = cσ and the defining properties for A ∈ u4C and M ∈ US−1 ,
we compute MSA = MᵀSĀᵀ = MᵀAᵀS = (AM)ᵀS , and the assertion follows.

Comparing dimensions and using Lemma 2.2, one sees that U is a u4C-
invariant complement of u4C in o8R . However, the u4C-module U is not irre-
ducible. We consider the R-subspaces

W0 :=

{(
tJ X
−Xᵀ −tJ

)
S

∣∣∣∣ t ∈ C, X ∈ H}
and W :=

{(
tJ Y
−Y ᵀ tJ

)
S

∣∣∣∣ t ∈ C, Y ∈ H( 12 0
0 −12

)}
.

Proposition 2.3. The su4C-module o8R splits as a direct sum of su4C-
modules o8R = u4C⊕ U , and U = W0 ⊕W . The su4C-modules W0 and W are
irreducible, and u4C splits as sum of the irreducible submodules su4C and z(u4C).

Proof. The su4C-module su4C is irreducible because su4C is a simple Lie
algebra (submodules are just ideals here). Note that W = [I,W0] is the image of
W0 under the adjoint action of the element I = i1C4 of the center z(u4C) of u4C .
Therefore, it suffices to check that W0 is an irreducible su4C-submodule of o8R .
A straightforward calculation shows {0} 6= [su4C,W0] ⊆ W0 . Every nontrivial
su4C-module has dimension at least 6 = dimW0 , cf. [4] p. 624. Therefore, the
module W0 is irreducible.

Remark 2.4. The su4C-modules W0 and W provide explicit models for the
representation that gives rise to the exceptional isomorphism su4C

∼= o6R (which
is a restriction of “the” obvious isomorphism between simple complex Lie algebras
of type A3 and D3 ).

Our next aim is to obtain a decomposition of o8R as a u2H-module.
The Lie algebra u2H is obtained as intersection u2H := o8R ∩ gl2H , where

gl2H :=

{(
A B
C D

) ∣∣∣∣ A,B,C,D ∈ H} .

Note that u2H is contained in su4C ; in fact, one has u2H = su4C ∩ gl2H .

We define the vector space

Z :=

{(
ri1C2 Hi

H̃ᵀi −ri1C2

) ∣∣∣∣ r ∈ R, H ∈ H} .
Proposition 2.5. The u2H-module o8R splits as a direct sum of submodules
o8R = u2H⊕ Z ⊕ z(u4C)⊕ U , and su4C = u2H⊕ Z . The u2H-modules u2H and
Z are both irreducible.
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Proof. Since u2H is contained in su4C , we have [u2H, su4C] ⊆ su4C and
[u2H, z(u4C)] = {0} as well as [u2H, U ] ⊆ [su4C, U ] = U . A straightforward
calculation shows su4C = u2H ⊕ Z , and {0} 6= [u2H, Z] ⊆ Z . The module u2H

is irreducible because u2H is a simple Lie algebra. Every nontrivial u2H-module
has dimension at least 5 = dimZ , cf. [4] p. 624. Thus the assertion follows.

Remark 2.6. The u2H-module Z provides a concrete model for the repre-
sentation that gives rise to the exceptional isomorphism u2H

∼= o5R (which is a
restriction of “the” obvious isomorphism between Lie algebras of type C2 and B2 ).

The u2H-module U splits as the sum of two one-dimensional and two five-
dimensional simple submodules. This follows from the observation that u2H is
embedded in su4C like o5R in o6R ; the u2H-modules W0 and W split accordingly.
We will not use that information, however: for our purposes, it suffices to identify
the irreducible u2H-submodule Z together with the complementary submodule
u2H⊕ z(u4C)⊕ U .

Definition 2.7. The module decompositions obtained in 2.3 and in 2.5 are
used to introduce the almost homogeneous Heisenberg algebras h8

5 and h8
6 . In

both cases, we describe a skew symmetric bilinear map β` from R
8 × R8 to some

vector space C` by giving the corresponding linear map β̄` : R8 ∧R8 = o8R→ C` .
Then the Lie algebra h8

` := gh(R8, C`, β`) is obtained as R8×C` , with commutator
[(x, c), (y, d)] := (0, (x, y)β`).

For h8
5 , we put C5 := Z and let π5 : o8R→ Z be the projection modulo the

u2H-submodule u2H + z(u4C) + U . Then π5 and β̄5 := 4π5 are homomorphisms
of U2H-modules.

For h8
6 , we put C6 := W and let π6 : o8R → W be the projection modulo

the su4C-submodule u4C + W0 . Then π6 and β̄6 := 4π6 are homomorphisms of
SU4H-modules.

Using the module decompositions obtained above, it is now easy (if tedious)
to determine the values (vj, vk)

β` ∈ C` for the standard basis v1, . . . , v8 of R8 : one
has to express vj ∧ vk = vj ⊗ vk − vk ⊗ vj = v′jvk − v′kvj as a sum of (vj, vk)

π` ∈ C`
and R`

j,k ∈ kerπ` .

In the sequel, we are going to use this in order to determine the subalgebras
of h8

5 and h8
6 generated by vector subspaces of R8 .

3. Explicit Computations.

We are now going to give explicit descriptions of the symplectic maps β5 and β6

used to define the Lie algebras h8
5 and h8

6 . We describe bilinear maps from R
n×Rn

to some vector space M by matrices with vector entries, as follows:

For any n × n matrix R = (rj,k)
n
j,k=1 with entries from M and vectors

x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn , we write xRy′ :=
∑n

j,k=1 xjykrj,k ∈M .
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Lemma 3.1. We define the following elements of gl4C:

z1 :=

 i 0 0 0
0 i 0 0
0 0 −i 0
0 0 0 −i

 , z2 :=

 0 0 i 0
0 0 0 i
i 0 0 0
0 i 0 0

 , z3 :=

 0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

 ,

z4 :=

 0 0 0 i
0 0 −i 0
0 −i 0 0
i 0 0 0

 , z5 :=

 0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

 .

Then {z1, . . . , z5} is a basis of Z ∼= R
5 . With respect to this basis, the symplectic

map β5 is described by (x, y)β5 = xRy′ , where

R =



0 z1 0 0 −z3 z2 −z5 z4

−z1 0 0 0 −z2 −z3 −z4 −z5

0 0 0 z1 −z5 −z4 z3 z2

0 0 −z1 0 z4 −z5 −z2 z3

z3 z2 z5 −z4 0 −z1 0 0
−z2 z3 z4 z5 z1 0 0 0
z5 z4 −z3 z2 0 0 0 −z1

−z4 z5 −z2 −z3 0 0 z1 0


.

Proof. Elements of kerπ5 = u2H⊕ z(u4C)⊕ U and C5 = Z have the form


ai b c d
∗ −ai −d̄ c̄
∗ ∗ ei f
∗ ∗ ∗ −ei

+


gi 0 0 0
∗ gi 0 0
∗ ∗ gi 0
∗ ∗ ∗ gi

+


0 tσ mσ nσ
∗ 0 pσ qσ
∗ ∗ 0 uσ
∗ ∗ ∗ 0

 and


ri 0 xi yi
∗ ri −ȳi x̄i
∗ 0 −ri 0
∗ ∗ ∗ −ri

 , respectively, with uniquely determined entries

a, e, g, r ∈ R and b, c, d, f, t, u,m, n, p, q, x, y ∈ C.

The entries marked ∗ are determined by those given explicitly because we consider
elements of o8R . Using the fact that 1C1 = 12 and σ are linearly independent in
the complex vector space R2×2 , together with observations like ( 1 0

0 0 ) = 1
2

(
1C1 + σ

)
and ( 0 1

0 0 ) = 1
2

(i− iσ), one finds the image of vj ∧ vk under β̄5 = 4π5 that forms
the (j, k)-entry in R . Computational details are left to the interested reader.
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Lemma 3.2. We define the following elements of gl4C:

w1 :=


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

S, w2 :=


0 i 0 0
−i 0 0 0
0 0 0 −i
0 0 i 0

S,

w3 :=


0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

S, w4 :=


0 0 i 0
0 0 0 i
−i 0 0 0
0 −i 0 0

S,

w5 :=


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

S, w6 :=


0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0

S.

Then {w1, . . . , w5} is a basis of W ∼= R
6 . With respect to this basis, the symplectic

map β6 is described by (x, y)β6 = xTy′ , where

T =



0 0 w1 −w2 w3 −w4 −w5 w6

0 0 −w2 −w1 −w4 −w3 w6 w5

−w1 w2 0 0 −w5 −w6 −w3 −w4

w2 w1 0 0 −w6 w5 −w4 w3

−w3 w4 w5 w6 0 0 w1 w2

w4 w3 w6 −w5 0 0 w2 −w1

w5 −w6 w3 w4 −w1 −w2 0 0
−w6 −w5 w4 −w3 −w2 w1 0 0


.

Proof. We proceed as in the proof of 3.1, using 2.1 and 2.3: Elements of
kerπ6 = u4C⊕W0 and C6 = W have the form

ai b c d
∗ ei f g
∗ ∗ hi j
∗ ∗ ∗ ki

+


0 tσ xσ yσ
∗ 0 −ȳσ x̄σ
∗ ∗ 0 −t̄σ
∗ ∗ ∗ 0

 and


0 zσ uσ −vσ
∗ 0 −v̄σ −ūσ
∗ ∗ 0 z̄σ
∗ ∗ ∗ 0

 ,

respectively, where the entries a, e, h, k ∈ R and b, c, d, f, g, j, t, x, y, z, u, v ∈ C are
uniquely determined. Again, the entries marked ∗ are determined by those given
explicitly because we consider elements of o8R .

Remark 3.3. In order to solve Problem 1.3(c), we describe H4
H

more explicitly,
using the hermitian form 〈x|y〉 = xỹ and the corresponding symplectic map
γ1
H

: H1 × H1 → Pu (H) : (x, y) 7→ Pu (〈x|y〉) = 1
2

(xỹ − yx̃). With respect to
the basis

p1 :=

(
i 0
0 −i

)
, p2 :=

(
0 1
−1 0

)
, p3 :=

(
0 i
i 0

)
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for Pu (H), and the basis p0 := 14 , p1 , p2 , p3 for H1 , the symplectic map γ1
H

is
described by the matrix

H :=


0 −p1 −p2 −p3

p1 0 −p3 p2

p2 p3 0 −p1

p3 −p2 p1 0

 via

(
3∑
j=0

xjpj,
3∑
j=0

yjpj

)
7→ xHy′ .

Remark 3.4. After the identification (a+ib, c+id)↔ (a, b, c, d), a Heisenberg
group of type H4

C
is obtained as GH(R4,C, β2

C
), where β4

C
: R4 ×R4 → C is given

by

(x, y) 7→ x


0 0 1 i
0 0 i −1
−1 −i 0 0
−i 1 0 0

 y′ .

4. Embeddings into H8
5 .

Throughout this section, let v1, . . . , v8 be the standard basis for R8 .

We want to determine the isomorphism types of subgroups H ≤ H8
` with

dimH/H ′ = d . To this end, we have to consider vector subspaces V of dimension
d in R8 , and determine the image of V ×V under β` . Using subgroups of Aut(H8

`),
we can reduce this problem considerably.

The following reduction helped to find candidates for embeddings.

Lemma 4.1. If searching for the isomorphism types of subgroups H < H8
5 with

dimH/H ′ = 4, it suffices to consider the subspaces of R8 generated by independent
sets of the following two types:

B1 : {v1, v2, v3, v4}, or B2 : {v1, d2, d3, d4},

where d2, d3 ∈ 〈v2, v3, v4, v6, v7, v8〉R and d4 ∈ v5 + 〈v2, v3, v4〉R .

Proof. We consider a 4-dimensional subspace V of R8 . By the very con-
struction of H8

5 (via u2H-submodules of o8R), the group U2H = exp(u2H) is
a subgroup of Aut(H8

5). Since this group acts transitively on R
8 \ {0} , we

may assume that v1 is contained in V . If V = 〈v1〉H = 〈v1, v2, v3, v4〉R , there
is nothing left to do. Therefore, we may assume that V contains an element
x ∈ 〈v2, v3, v4, v5, v6, v7, v8〉R \ 〈v2, v3, v4〉R .

The stabilizer of v1 in the group U2H is

(U2H)v1 =

{(
1 0
0 d

) ∣∣∣∣ d ∈ H, dd̃ = 1

}
.

Using an element λ of this stabilizer, we may map x to some real scalar multiple
of an element d4 ∈ v5 + 〈v2, v3, v4〉R . Extending {v1, d4} to a suitable basis for the
image of V under λ , we establish the claim.

The image of 〈v1〉H2 = 〈v1, v2, v3, v4〉R2 under β5 obviously is 〈z1〉R ; cf. 3.1.
Thus 〈v1〉H × {0} does not generate a subgroup isomorphic to H4

C
or H4

H
. Closer

inspection reveals that the subgroup generated by 〈v1〉H×{0} is isomorphic to H4
R

.
This is the embedding of H4

R
into H8

5 found in [6] 3.9.
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Theorem 4.2. There is an embedding of H4
C

into H8
5 .

In fact, for V := 〈v1, v3, v5, v7〉R ≤ R
8 the subset V × {0} generates a

subgroup of H8
5 that is isomorphic to H4

C
.

Proof. Using 3.1 one easily computes that the image of V × V generates
the subspace U := 〈z3, z5〉R in W . In order to see that H4

C
is isomorphic to

GH(V, U, β5|V×V ), we define maps ϕ1 : H → V and ϕ2 : Pu (H) → U by
linear extension of (1, 0)ϕ1 := v1 , (i, 0)ϕ1 := −v3 , (0, 1)ϕ1 := v7 , (0, i)ϕ1 := v5 ,
1ϕ2 := −z5 , and iϕ2 := −z3 . A simple calculation shows that ϕ1 × ϕ2 is an
isomorphism from H4

C
onto GH(V, U, β5|V×V ). (See 3.1 and 3.4 for the structure

constants.)

Theorem 4.3. There is an embedding of H4
H

into H8
5 .

In fact, for V := 〈v1, v2, v5, v6〉R ≤ R
8 the subset V × {0} of R8 × W

generates a subgroup of H8
5 that is isomorphic to H4

H
.

Proof. The image of V × V under β5 generates the 3-dimensional subspace
U := 〈z1, z2, z3〉R . An isomorphism (ϕ1, ϕ2) from H4

H
onto GH(V, U, β5|V×V ) is

obtained by linear extension of pϕ1

0 := v1 , pϕ1

1 := v2 , pϕ1

2 := v6 , pϕ1

3 := v5 , and
pϕ2

1 := −z1 , pϕ2

2 := −z2 , pϕ2

3 := z3 , cf. 3.1 and 3.3.

We conclude this section with a negative result.

Theorem 4.4. There is no continuous injective homomorphism from the group
H6
R

into the group H8
5 .

Proof. First, we determine the centralizer CH8
5

((v1, 0)). From 3.1 we read

off that the image of the set
{

(v1, vj) | j ∈ {2, 5, 6, 7, 8}
}

spans Z , and that
{v1, v3, v4} is contained in the centralizer. Therefore, one has dim CH8

5
(v1) = 8

and CH8
5

(v1) = 〈v1, v3, v4〉R + Z . Since H8
5 is almost homogeneous, this implies

dim CH8
5

(g)− dim(H8
5)′ = 3 for each g ∈ H8

5 \ (H8
5)′ .

According to 1.4, the existence of an injective continuous homomorphism
from H6

R
into H8

5 would require dim CH6
R

(x)−dim(H6
R
)′ ≤ 3 for each x ∈ H6

R
\(H6

R
)′ .

However, it is easy to see that every element in H6
R

has a centralizer of dimension
at least 6. Thus dim CH6

R

(x)− dim(H6
R
)′ ≥ 5, and no injection is possible.

5. Embeddings into H8
6 .

Again, let v1, . . . , v8 be the standard basis for R8 . We start with positive results.

Theorem 5.1. There is an embedding of H4
H

into H8
6 .

In fact, for V := 〈v1, v3, v5, v7〉R ≤ R
8 the subset V × {0} of R8 × W

generates a subgroup of H8
6 that is isomorphic to H4

H
.
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Proof. Using 3.2 we compute that the image of V ×V under β6 generates the
3-dimensional subspace U := 〈w1, w3, w5〉R of W . An isomorphism from H4

H
onto

GH(V, U, β6|V×V ) is given by the maps ϕ1 : R4 → V and ϕ2 : R3 → U obtained
by linear extension of pϕ1

0 = v1 , pϕ1

1 = v3 , pϕ1

2 = v5 , pϕ1

3 = v7 , pϕ2

1 = −w1 ,
pϕ2

2 = −w3 , and pϕ2

3 = w5 .

Embeddings of H4
C

into H6
6 and of H6

6 into H8
6 were given in [6] 3.8, 3.11.

We take the opportunity to exhibit an explicit embedding of H4
C

into H8
6 .

Theorem 5.2. Let V := 〈v1, v2, v3, v4〉R ≤ R
8 . Then V × {0} generates a

subgroup of H8
6 that is isomorphic to H4

C
.

Proof. The image of V × V under β6 generates the subspace U := 〈w1, w2〉R
in W . An isomorphism (ϕ1, ϕ2) from H4

C
onto GH(V, U, β6|V×V ) is obtained by

linear extension of (1, 0)ϕ1 := v1 , (i, 0)ϕ1 := v2 , (0, 1)ϕ1 := v3 , (0, i)ϕ1 := v4 ,
1ϕ2 := w1 , and iϕ2 := −w2 . (See 3.2 and 3.4 for the structure constants.)

We conclude this section by another negative result.

Theorem 5.3. There is no continuous injective homomorphism from the group
H4
R

into the group H8
6 .

Proof. The 6-dimensional space W is generated by the images

(v1, v3)β6 = w1, (v1, v4)β6 = −w2, (v1, v5)β6 = w3,
(v1, v6)β6 = −w4, (v1, v7)β6 = −w5, (v1, v8)β6 = w6,

cf. 3.2. Thus dim CH8
6

((v1, 0))− dim(H8
6)′ = 2, and the same value is obtained for

any g ∈ H8
6 \ (H8

6)′ because the group H8
6 is almost homogeneous.

For each element x ∈ H4
R

, one easily sees that dim CH4
R

(x)−dim(H4
R
)′ is at

least 3. Thus a continuous injection is impossible by 1.4.

6. Conclusion.

The following diagram is a modification of the diagram in [6], taking into account
the information obtained in the present paper. The diagram attempts to visualize
all embeddings between almost homogeneous Heisenberg groups of dimension at
most 18. In particular, this range comprises all exceptional ones.

For the sake of readability, triangles have been suppressed in the diagram:
an embedding may be designated by a path of arrows.

Absence of (paths of) arrows indicates that no embedding exists.
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There remains the following question, stated as Problem (e) in [6]:

Problem 6.1. For which pairs (k, n) of positive integers is there an embedding
of H4k

C
into H4n

H
?

(Partial answers have been given in [6] 3.4, 3.5, 3.6.)
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