Tensor fields and connections on holomorphic orbit spaces of finite groups

Andreas Kriegl, Mark Losik, and Peter W. Michor *
Communicated by E. B. Vinberg

Abstract

For a representation of a finite group G on a complex vector space V we determine when a holomorphic $\binom{p}{q}$-tensor field on the principal stratum of the orbit space V / G can be lifted to a holomorphic G-invariant tensor field on V. This extends also to connections. As a consequence we determine those holomorphic diffeomorphisms on V / G which can be lifted to orbit preserving holomorphic diffeomorphisms on V. This in turn is applied to characterize complex orbifolds.

Keywords: complex orbifolds, orbit spaces of complex finite group actions Subject Classification: 32M17

1. Introduction

Locally, an orbifold Z can be identified with the orbit space B / G, where B is a G-invariant neighborhood of the origin in a vector space V with a finite group $G \subset G L(V)$ and, using this identification, one can easily define local (and then global) tensor fields and other differential geometrical objects in Z as appropriate G-invariant tensor fields and objects on $B \subset V$. In particular, one can naturally define Riemannian orbifolds, Einstein orbifolds, symplectic orbifolds, Kähler-Einstein orbifolds etc.

We study complex orbifolds, that is, orbifolds modeled on orbit spaces V / G, where G is a finite subgroup of $G L(V)$ for a complex vector space V. In particular, the orbit spaces $Z=M / G$ of a discrete proper group G of holomorphic transformations of a complex manifold M are complex orbifolds.

An orbifold X has a structure defined by the sheaf \mathfrak{F}_{X} of local invariant holomorphic functions in a local uniformizing system. X has also a stratification by strata S which are glued from local isotropy type strata of local uniformizing systems. In particular, the regular stratum X_{0} is an open dense complex manifold in X.

Holomorphic geometric objects on X (e.g. tensor fields and connections) are locally defined as invariant objects on the uniformizing system. Their restrictions

[^0]to the regular stratum X_{0} are usual holomorphic geometric objects on the complex manifold X_{0}.

A natural question is to characterize these restrictions, i.e. to describe tensor fields and connections on X_{0} which are extendible to X. We look at the lifting problem for connections because this allows a very elegant approach to the lifting problem for holomorphic diffeomorphisms. And the last problem has immediate consequences for characterizing complex orbifolds, i.e., for answering the following question: Which data does one need besides \mathfrak{F}_{X} and X_{0} to characterize a complex orbifold X ? The main goal of the paper is to answer these questions.

We have first to investigate the local situation, thus we consider a finite subgroup $G \subset G L(V)$ and the orbit space $Z=V / G$ with the structure given by the sheaf $\mathfrak{F}_{V / G}$ of invariant holomorphic functions on V, and the orbit type stratification. The prime role is played by strata of codimension 1 with the orders of the corresponding stabilizer groups, which are arranged in the reflection divisor $D_{V / G}$ which keeps track of all complex reflections in G. It turns out that the union Z_{1} of Z_{0} and of all codimension 1 strata is a complex manifold, see 3.5. We characterize all G-invariant holomorphic tensor fields and connections on V in terms of the reflection divisor of the corresponding meromorphic tensor field and connection on Z_{1}, see 3.7 and 4.2. Our result gives a generalization 3.9 of Solomon's theorem [10], see 3.10. Using the lifting property of connections we are able to prove that a holomorphic diffeomorphism $Z=V / G \rightarrow V / G^{\prime}=Z^{\prime}$ between two orbit spaces has a holomorphic lift to V which is equivariant over an isomorphism $G \rightarrow G^{\prime}$ if and only if f respects the regular strata and the reflection divisors, i.e. $f\left(Z_{0}\right) \subset Z_{0}^{\prime}$ and $f_{*}\left(D_{Z}\right) \subset D_{Z^{\prime}}$. In fact we give two proofs of this result, which in [4] is carried over to the algebraic geometry setting for algebraically closed ground fields of characteristic 0 . The related problem of lifting (smooth) homotopies from (general) orbit spaces has been treated in [1] and [9].

Applying the local results we prove that a complex orbifold X is uniquely determined by the sheaf \mathfrak{F}_{X}, the regular stratum X_{0}, and the reflection divisor D_{X} alone, see 6.6.

2. Preliminaries

2.1. The orbit type stratification. Let V be an n-dimensional complex vector space, G a finite subgroup of $G L(V)$, and $\pi: V \rightarrow V / G$ the quotient projection. The ring $\mathbb{C}[V]^{G}$ has a minimal system of homogeneous generators $\sigma^{1}, \ldots, \sigma^{m}$. We will use the map $\sigma=\left(\sigma^{1}, \ldots, \sigma^{m}\right): V \rightarrow \mathbb{C}^{m}$. Denote by Z the affine algebraic variety in \mathbb{C}^{m} defined by the relations between $\sigma^{1}, \ldots, \sigma^{m}$. It is known that $\sigma(V)=Z$.

We consider the orbit space V / G endowed with the quotient topology as a local ringed space defined by the following sheaf of rings $\mathfrak{F}_{V / G}$: if U is an open subset of $V / G, \mathfrak{F}_{V / G}(U)$ is equal to the space of G-invariant holomorphic functions on $\pi^{-1}(U)$. Clearly one may consider sections of $\mathfrak{F}_{V / G}$ on U as functions on U. We call these functions holomorphic functions on U. It is known that the map of the orbit space V / G to Z induced by the map σ is a homeomorphism. Moreover, this homeomorphism induces an isomorphism of the sheaf $\mathfrak{F}_{V / G}(U)$ and the structure sheaf of the complex algebraic variety Z (see [7]). Via the above isomorphism
we identify the local ringed spaces V / G and Z. Under this identification the projection π is identified with the map σ. Let G and G^{\prime} be finite subgroups of $G L(V)$ and let $Z=V / G$ and $Z^{\prime}=V / G^{\prime}$ be the corresponding orbit spaces. By definition a holomorphic diffeomorphism of the orbit space Z to the orbit space Z^{\prime} is an isomorphism of Z to Z^{\prime} as local ringed spaces.

Let K be a subgroup of $G,(K)$ the conjugacy class of K. Denote by $V_{(K)}$ the set of points of V whose isotropy groups belong to (K) and put $Z_{(K)}=\pi\left(V_{(K)}\right)$. It is known that $\left\{Z_{(K)}\right\}$ is a finite stratification of Z, called the isotropy type stratification, into locally closed irreducible smooth algebraic subvarieties (see [5]). Denote by Z^{i} the union of the strata of codimension greater than i and put $Z_{i}=Z \backslash Z^{i}$. Then Z_{0} is the principal stratum of Z, i.e. $Z_{0}=Z_{(K)}$ for $K=\{\mathrm{id}\}$. It is known that Z_{0} is a Zariski open subset of Z and a complex manifold. It is clear that the restriction of the map σ to the set $V_{\text {reg }}$ of regular points of V is an tale map onto Z_{0}.

In this paper we consider the orbit space $Z=V / G$ with the above structure of local ringed space and the stratification $\left\{Z_{(K)}\right\}$.
2.2. The divisor of a tensor field. We shall use divisors of meromorphic functions on a complex manifold X. For technical reasons (see e.g. the last formula of this section) we define $\operatorname{div}(0)=\sum_{S} \infty . S$, where the sum runs over all complex subspaces of X of codimension 1 .

Let f and g be two meromorphic functions on X. Then we have
$\operatorname{div}(f+g) \geq \min \{\operatorname{div}(f), \operatorname{div}(g)\}$, where $\operatorname{div}(f)$ denotes the divisor of f.
Taking the minimum means: For each irreducible complex subspace S of X of codimension 1 belonging to the support of f or g take the minimum of the coefficients in \mathbf{Z} of S in $\operatorname{div}(f)$ and $\operatorname{div}(g)$.

Let P be a meromorphic tensor field (i.e., with meromorphic coefficient functions in local coordinates) on X. In local holomorphic coordinates y^{1}, \ldots, y^{n} on an open subset $U \subset X$ the tensor field P can be written as

$$
\left.P\right|_{U}=\sum_{i_{1}, \ldots, i_{p}, j_{1}, \ldots, j_{q}} P_{j_{1} \ldots j_{q}}^{i_{1} \ldots i_{p}} \frac{\partial}{\partial y^{i_{1}}} \otimes \cdots \otimes \frac{\partial}{\partial y^{i_{p}}} \otimes d y^{j_{1}} \otimes d y^{j_{q}}
$$

and we define the divisor of P on U as the minimum of all divisors $\operatorname{div}\left(P_{j_{1} \ldots j_{q}}^{i_{1} \ldots i_{p}}\right) \in$ $\operatorname{Div}(U)$ for all coefficient functions of P. The resulting coefficient of the complex subspace S of codimension 1 in $\operatorname{div}(P) \in \operatorname{Div}(U)$ does not depend on the choice of the holomorphic coordinate system; e.g., for a vector field $\sum_{i} X^{i} \frac{\partial}{\partial y^{i}}=$ $\sum_{i, k} X^{i} \frac{\partial u^{k}}{\partial y^{i}} \frac{\partial}{\partial u^{k}}$ we have
$\operatorname{div}\left(\sum_{i} X^{i} \frac{\partial u^{k}}{\partial y^{i}}\right) \geq \min _{i} \operatorname{div}\left(X^{i} \frac{\partial u^{k}}{\partial y^{i}}\right)=\min _{i}\left(\operatorname{div}\left(X^{i}\right)+\operatorname{div}\left(\frac{\partial u^{k}}{\partial y^{i}}\right)\right) \geq \min _{i} \operatorname{div}\left(X^{i}\right)$.
Finally we define the divisor of P on X by gluing the local divisors for any holomorphic atlas of X. Note that a tensor field P is holomorphic if and only if $\operatorname{div}(P) \geq 0$.

3. Invariant tensor fields

3.1. Let P be a G-invariant holomorphic tensor field of type $\binom{p}{q}$ on V. Since σ is an tale map on $V_{\text {reg }}$, there is a unique holomorphic tensor field Q on Z_{0} of type $\binom{p}{q}$ such that the pullback $\sigma^{*}(Q)$ coincides with the restriction of P to $V_{\text {reg }}$. It is clear that the tensor field P is uniquely defined by Q.

Consider a holomorphic tensor field Q of type $\binom{p}{q}$ on Z_{0} and its pullback $\sigma^{*}(Q)$ which is a G-invariant holomorphic tensor field on $V_{\text {reg }}$. Then by the Hartogs extension theorem, $\sigma^{*}(Q)$ has a G-invariant holomorphic extension to V iff it has a holomorphic extension to $\sigma^{-1}\left(Z_{1}\right)$.

Denote by \mathfrak{H} the set of all reflection hyperplanes corresponding to all complex reflections in G and, for each $H \in \mathfrak{H}$, by e_{H} the order of the cyclic subgroup of G fixing H. It is clear that $\sigma\left(\cup_{H \in \mathfrak{H}} H\right)$ contains all strata of codimension 1 . This implies immediately the following
3.2. Proposition. If $\mathfrak{H}=\emptyset$, for each holomorphic tensor field P_{0} on Z_{0} the pullback $\sigma^{*}\left(P_{0}\right)$ has a G-invariant holomorphic extension to V.
3.3. The reflection divisor of the orbit space. Consider the set R_{Z} of all hyper surfaces $\sigma(H)$ in Z, where H runs through all reflection hyperplanes in V. Note that $\sigma(H)$ is a complex subspace of Z_{1} of codimension 1. We endow each $S=\sigma(H) \in R_{Z}$ with the label e_{H} of the hyperplane H. It is easily seen that this label does not depend on the choice of H, we denote it by e_{S} and we consider $e_{S} . S$ as an effective divisor on Z and we consider the effective divisor in Z_{1}

$$
D=D_{V / G}=D_{Z}=\sum_{S \in R_{Z}} e_{S} . S
$$

which we call the reflection divisor.
3.4. Basic example. Let the cyclic group $\mathbb{Z}_{r}=\mathbb{Z} / r \mathbb{Z}$ with generator $\zeta_{r}=e^{2 \pi i / r}$ act on \mathbb{C} by $z \mapsto e^{2 \pi i k / r} z$ for $r \geq 2$. The generating invariant is $\tau(z)=z^{r}$.

We consider first a holomorphic tensor field $P=f(z)(d z)^{\otimes q} \otimes\left(\frac{\partial}{\partial z}\right)^{\otimes p}$ on \mathbb{C}. It is invariant, $\zeta_{r}^{*} P=P$, if and only if $f\left(\zeta_{r} z\right)=\zeta_{r}^{p-q} f(z)$, so that in the expansion $f(z)=\sum_{k \geq 0} f_{k} z^{k}$ at 0 of f the coefficient $f_{k} \neq 0$ at most when $k \cong p-q \bmod r$. Writing $p-q=r s+t$ with $s \in \mathbb{Z}$ and $0 \leq t<r$ we see that P is invariant if and only if $f(z)=z^{t} g\left(z^{r}\right)$ for holomorphic g.

We use the coordinate $y=\tau(z)=z^{r}$ on $\mathbb{C} / \mathbb{Z}_{r}=\mathbb{C}, \tau^{*} d y=r z^{r-1} d z$ and $\tau^{*}\left(\left.\frac{\partial}{\partial y}\right|_{\mathbb{C} \backslash 0}\right)=\left.\frac{1}{r z^{r-1}} \frac{\partial}{\partial z}\right|_{\mathbb{C} \backslash 0}$, and we write

$$
\begin{aligned}
\left.P\right|_{\mathbb{C} \backslash 0} & =g\left(z^{r}\right) z^{t}(d z)^{\otimes q} \otimes\left(\frac{\partial}{\partial z}\right)^{\otimes p} \\
& =g(y) z^{t}\left(r z^{r-1}\right)^{p-q}(d y)^{\otimes q} \otimes\left(\frac{\partial}{\partial y}\right)^{\otimes p} \\
& =g(y) z^{-r s}\left(r z^{r}\right)^{p-q}(d y)^{\otimes q} \otimes\left(\frac{\partial}{\partial y}\right)^{\otimes p} \\
& =g(y) r^{p-q} y^{p-q-s}(d y)^{\otimes q} \otimes\left(\frac{\partial}{\partial y}\right)^{\otimes p}
\end{aligned}
$$

(we omitted τ^{*}). Thus a holomorphic tensor field P of type $\binom{p}{q}$ on \mathbb{C} is \mathbb{Z}_{r} invariant if and only if $\left.P\right|_{\mathbb{C} \backslash 0}=\tau^{*} Q$ for a meromorphic tensor field

$$
Q=g(y) y^{m}(d y)^{\otimes q} \otimes\left(\frac{\partial}{\partial y}\right)^{\otimes p}
$$

on \mathbb{C} with g holomorphic with $g(0) \neq 0$ and with

$$
m \geq p-q-s
$$

It is easily checked that the above inequality is equivalent to the following one

$$
m r+(q-p)(r-1) \geq 0
$$

3.5. Suppose $\mathfrak{H} \neq \varnothing$. Let $z \in Z_{1} \backslash Z_{0}$ and $v \in \sigma^{-1}(z)$. Then there is a unique hyperplane $H \in \mathfrak{H}$ such that $v \in H$ and the isotropy group G_{v} is isomorphic to a cyclic group. It is evident that the order $r_{z}=e_{H}$ of G_{v} depends only on $z=\sigma(v)$ and is locally constant on $Z_{1} \backslash Z_{0}$.

By the holomorphic slice theorem (see [5], [6]) there is a G_{v}-invariant open neighborhood U_{v} of v in V such that the induced map $U_{v} / G_{v} \rightarrow V / G$ is a local biholomorphic map at v.

Choose orthonormal coordinates z^{1}, \ldots, z^{n} in V with respect to a G invariant Hermitian inner product on V, so that $H=\left\{z^{n}=0\right\}$. Then the ring $\mathbb{C}[V]^{G_{v}}$ is generated by $z^{1}, \ldots, z^{n-1},\left(z^{n}\right)^{r}$, where $r=r_{z}$.

Put $\tau^{1}=z^{1}, \ldots, \tau^{n-1}=z^{n-1}, \tau^{n}=\left(z^{n}\right)^{r}$, and $\tau=\left(\tau^{1}, \ldots, \tau^{n}\right): U_{v} \rightarrow \mathbb{C}^{n}$. Then there are holomorphic functions $f^{i}(i=1, \ldots, n)$ in an open neighborhood W_{z} of $z \in \mathbb{C}^{m}$ such that $\tau^{a}=\left.f^{a} \circ \sigma\right|_{U_{v}}$. On the other hand, we know that in an open neighborhood of v all σ^{a} for $(a=1, \ldots, m)$ are holomorphic functions of the τ^{i}. We denote by y^{i} the holomorphic function on Z such that $\tau^{i}=y^{i} \circ \sigma$. Then we can use y^{i} as coordinates of Z defined in the open neighborhood $W_{z} \subseteq \mathbb{C}^{m}$ of z. Note that we found holomorphic coordinates near each point of Z_{1}, so we have:
Corollary. The union Z_{1} of all codimension ≤ 1 strata, with the restriction of the sheaf $\mathfrak{F}_{V / G}$, is a complex manifold.
3.6. The reflection divisor of a meromorphic tensor field on Z_{1}. Let $\Gamma_{\mathcal{M}}\left(T_{q}^{p}\left(Z_{1}\right)\right)$ be the space of meromorphic tensor fields (i.e. with meromorphic coefficient functions in local holomorphic coordinates on the complex manifold $\left.Z_{1}\right)$, and let $P \in \Gamma_{\mathcal{M}}\left(T_{q}^{p}\left(Z_{1}\right)\right)$.

Let S be an irreducible component of $Z_{1} \backslash Z_{0}$ and let $z \in S$. Local coordinates y^{1}, \ldots, y^{n} on $U \subset Z_{1}$, centered at z, are called adapted to the stratification of Z_{1} if $S=\left\{y^{n}=0\right\}$ near z. By definition the coordinates y^{1}, \ldots, y^{n} from 3.5 have this property. Denote by \mathcal{O}_{z} the ring of germs of holomorphic functions and by \mathcal{M}_{z} the field of germs of meromorphic functions, both at $z \in Z_{1}$.

Let y^{1}, \ldots, y^{n} be local coordinates on $U \subset Z_{1}$, centered at z, adapted to the stratification of Z_{1}. Then on U the meromorphic tensor field P is given by

$$
\left.P\right|_{U}=\sum_{i_{1}, \ldots, i_{p}, j_{1}, \ldots, j_{q}} P_{j_{1} \ldots j_{q}}^{i_{1} \ldots i_{p}} \frac{\partial}{\partial y^{i_{1}}} \otimes \cdots \otimes \frac{\partial}{\partial y^{i_{p}}} \otimes d y^{j_{1}} \otimes d y^{j_{q}}
$$

where the $P_{j_{1} \ldots j_{q}}^{i_{1} \ldots i_{p}}$ are meromorphic on U. Let us fix one nonzero summand of the right hand side: for the coefficient function we have $P_{j_{1} \ldots j_{q}}^{i_{1} \ldots i_{p}}=\left(y^{n}\right)^{m} f$ for some integer m such that the germs at z of y^{n}, g, and h are pairwise relatively prime in \mathcal{O}_{z} where $f=g / h \in \mathcal{M}_{z}$. Suppose that the factor $\frac{\partial}{\partial y^{n}}$ appears exactly p^{\prime} times and the factor $d y^{n}$ appears exactly q^{\prime} times in this summand. The integer

$$
\mu=m r+\left(q^{\prime}-p^{\prime}\right)(r-1)
$$

a priori depending on z, is constant along an open dense subset of S and it is called the reflection residuum of the summand at S. Finally let $\mu_{S}(P)$ be the minimum of the reflection residua at S of all summands of P in the representation of P.

Let $\tilde{y}^{1}, \ldots, \tilde{y}^{n}$ be arbitrary local coordinates on $U \subset Z_{1}$, centered at z, adapted to the stratification of Z_{1}. In a neighborhood of z we have $y^{n}=f \tilde{y}^{n}$, where f is a holomorphic function such that $f(z) \neq 0$. Remark that \tilde{y}^{n} divides $\frac{\partial y^{n}}{\partial \tilde{y}^{i}}$ and $\frac{\partial \tilde{y}^{n}}{\partial y^{i}}(i=1, \ldots, n)$ in \mathcal{O}_{z}. A straightforward calculation using the above remark shows that the values of $\mu_{S}(P)$ calculated in the coordinates \tilde{y}^{i} and in the coordinates y^{i} are the same. Then $\mu_{S}(P)$ does not depend on the choice of the system of local coordinates adapted to the stratification of Z_{1}. For details see [4]: there we checked this in the algebraic geometry setting where the use of tensor fields is less familiar.

We now can define the reflection divisor

$$
\operatorname{div}_{D}(P)=\operatorname{div}_{D_{V / G}}(P) \in \operatorname{Div}(U)
$$

as follows: take the divisor $\operatorname{div}(P)$, and for each irreducible component S of $Z_{1} \backslash Z_{0}$ do the following: if S appears in the support of $\operatorname{div}(P) \in \operatorname{Div}(U)$, replace its coefficient by $\mu_{S}(P)$; if it does not appear, add $\mu_{S}(P) . S$ to it. If S is not contained in $Z_{1} \backslash Z_{0}$, we keep its coefficient in $\operatorname{div}(P)$.

Finally we glue the global reflection divisor $\operatorname{div}_{D}(P) \in \operatorname{Div}\left(Z_{1}\right)$ from the local ones, using a holomorphic atlas for Z_{1}.
3.7. Theorem. Let $G \subset G L(V)$ be a finite group, with reflection divisor $D=D_{V / G}=D_{Z}$. Then we have:

- Let P be a holomorphic G-invariant tensor field on V. Then the reflection divisor $\operatorname{div}_{D}\left(\pi_{*} P\right) \geq 0$.
- Let $Q \in \Gamma_{\mathcal{M}}\left(T_{q}^{p}\left(Z_{1}\right)\right)$ be a meromorphic tensor field on Z_{1}. Then the G-invariant meromorphic tensor field $\pi^{*} Q$ extends to a holomorphic G invariant tensor field on V if and only if $\operatorname{div}_{D}(Q) \geq 0$.

The above remains true for G-invariant holomorphic tensor fields defined in a G-stable open subset of V.
Proof. This follows directly from Hartogs' extension theorem, the basic example 3.4 using y^{1}, \ldots, y^{n-1} as dummy variables, and the definition of the reflection divisor $\operatorname{div}_{D}(P)$ as explained in 3.6.
3.9. Corollary. The mapping σ establishes an injective correspondence between the space of holomorphic G-invariant tensor fields of type $\binom{p}{q}$ on V which are skew-symmetric with respect to the covariant entries, and the space of holomorphic tensor fields on Z_{1} of the same type and the same skew-symmetry condition. If $p=0$ the correspondence is bijective.

The above remains true for G-invariant holomorphic tensor fields defined in a G-stable open subset of V.

Proof. Let P be a holomorphic G-invariant tensor field on V satisfying the conditions of the corollary. For each nonzero decomposable summand of $\pi_{*} P$ take the integers m, p^{\prime}, and q^{\prime} defined in 3.6. By skew symmetry of P we have $q^{\prime} \leq 1$.

By Theorem 3.7 we get $\operatorname{div}_{D}\left(\pi_{*} P\right) \geq 0$ and thus $m r \geq\left(p^{\prime}-q^{\prime}\right)(r-1)>-r$. So $m \geq 0$ and the summand is holomorphic on Z_{1}.

If Q is a holomorphic differential form on Z_{1} its pullback $\sigma^{*} Q$ is a G invariant holomorphic form on $\sigma^{-1}\left(Z_{1}\right)$ and then has a holomorphic extension to the whole of V.
3.10. Remarks. Note that Corollary 3.9 is a generalization of Solomon's theorem (see [10]): If $G \subset G L(V)$ is a finite complex reflection group then every G invariant polynomial exterior q-form ω on V can be written as $\omega=\sigma^{*} \varphi$ for a polynomial q-form φ on \mathbb{C}^{n}, where $\sigma=\left(\sigma^{1}, \ldots, \sigma^{n}\right): V \rightarrow \mathbb{C}^{n}$ is the mapping consisting of a minimal system of homogeneous generators of $\mathbb{C}[V]^{G}$.

Actually, in the case of a reflection group $Z=\mathbb{C}^{n}$ and each holomorphic $\binom{p}{q}$-tensor field Q on Z_{1} has a holomorphic extension to Z by Hartogs' extension theorem.

4. Invariant complex connections

4.1. Let Γ be a holomorphic G-invariant complex connection on V. Then the image $\sigma_{*} \Gamma$ of Γ under the map σ defines a holomorphic complex connection on Z_{0}.

Let $z \in Z_{1} \backslash Z_{0}, v \in \sigma^{-1}(z)$, and r the order of G_{v}. Consider the coordinates z^{i} in V defined in 3.5. Denote by $\Gamma_{j k}^{i}$ the components of the connection Γ with respect to these coordinates. By assumption, the $\Gamma_{j k}^{i}$ are holomorphic functions on V. Recall the standard formula for the image γ of Γ under a holomorphic diffeomorphism $f=\left(y^{a}\left(x^{i}\right)\right)$

$$
\gamma_{b c}^{a} \circ f=\frac{\partial y^{a}}{\partial x^{i}} \frac{\partial x^{j}}{\partial y^{b}} \frac{\partial x^{k}}{\partial y^{c}} \Gamma_{j k}^{i}\left(x^{l}\right)-\frac{\partial^{2} y^{a}}{\partial x^{i} \partial x^{j}} \frac{\partial x^{i}}{\partial y^{b}} \frac{\partial x^{j}}{\partial y^{c}} .
$$

Remark that the similar formula is true for the transformation of the components of connection under the change of coordinates.

Consider the generator g of the cyclic group G_{v} given by 3.5. Since g acts linearly, the connection reacts to it like a $\binom{1}{2}$-tensor field. Thus by the considerations of 3.4 we get in the notation of 3.5 , where $i, j, k=1, \ldots, n-1$:

$$
\begin{gathered}
\Gamma_{j k}^{i}=\tilde{\Gamma}_{j k}^{i} \circ \sigma, \quad \Gamma_{j k}^{n}=\frac{1}{r} z^{n} \tilde{\Gamma}_{j k}^{n} \circ \sigma, \quad \Gamma_{j n}^{i}=r\left(z^{n}\right)^{r-1} \tilde{\Gamma}_{j n}^{i} \circ \sigma, \\
\Gamma_{n k}^{i}=r\left(z^{n}\right)^{r-1} \tilde{\Gamma}_{n k}^{i} \circ \sigma, \quad \Gamma_{j n}^{n}=\tilde{\Gamma}_{j n}^{n} \circ \sigma, \quad \Gamma_{n k}^{n}=\tilde{\Gamma}_{n k}^{n} \circ \sigma, \\
\Gamma_{n n}^{i}=r^{2}\left(z^{n}\right)^{r-2} \tilde{\Gamma}_{n n}^{i} \circ \sigma, \quad \Gamma_{n n}^{n}=r\left(z^{n}\right)^{r-1} \tilde{\Gamma}_{n n}^{n} \circ \sigma,
\end{gathered}
$$

where the $\tilde{\Gamma}_{b c}^{a}$ are holomorphic functions of the coordinates $y^{a}(a=1, \ldots, n)$ introduced in 3.5.

Using the transformation formula for connections, we get the following formulas for the components $\gamma_{b c}^{a}$ of the meromorphic connection $\sigma_{*} \Gamma$ with respect to the coordinates y^{a}

$$
\begin{gather*}
\gamma_{j k}^{i}=\tilde{\Gamma}_{j k}^{i}, \quad \gamma_{j k}^{n}=y^{n} \tilde{\Gamma}_{j k}^{n}, \quad \gamma_{j n}^{i}=\tilde{\Gamma}_{j n}^{i}, \quad \gamma_{n k}^{i}=\tilde{\Gamma}_{n k}^{i}, \tag{4.1.1}\\
\gamma_{j n}^{n}=\tilde{\Gamma}_{j n}^{n}, \quad \gamma_{n k}^{n}=\tilde{\Gamma}_{n k}^{n}, \quad \gamma_{n n}^{i}=\frac{1}{y^{n}} \tilde{\Gamma}_{n n}^{i}, \quad \gamma_{n n}^{n}=\tilde{\Gamma}_{n n}^{n}-\frac{r-1}{r y^{n}} .
\end{gather*}
$$

Let \tilde{y}^{a} for $a=1, \ldots, n$ be other local coordinates centered at z and adapted to the stratification of Z_{1}. Then in a neighborhood of z we have

$$
y^{n}=f \tilde{y}^{n}, \quad \tilde{y}^{n}=\tilde{f} y^{n},
$$

where f and \tilde{f} are holomorphic functions in a neighborhood of z and $\tilde{f} f=1$. Then we have

$$
\frac{\partial y^{n}}{\partial \tilde{y}^{i}}=\frac{\partial f}{\partial \tilde{y}^{i}} \tilde{y}^{n}, \quad \frac{\partial \tilde{y}^{n}}{\partial y^{i}}=\frac{\partial f}{\partial y^{i}} y^{n} \quad(i=1, \ldots, n-1)
$$

and on $S=\left\{y^{n}=0\right\}$

$$
\frac{\partial y^{n}}{\partial \tilde{y}^{n}}=f, \quad \frac{\tilde{\partial} y^{n}}{\partial y^{n}}=\tilde{f} .
$$

Using these formulas one can check that in the coordinates \tilde{y}^{a} the formulas 4.1.1 have the same form as in the coordinates y^{a}. For example, for the new component $\tilde{\gamma}_{n n}^{n}$ we have

$$
\tilde{\gamma}_{n n}^{n}+\frac{r-1}{r \tilde{y}^{n}}=\frac{(r-1)\left(1-\tilde{f} \frac{\partial \tilde{y}^{n}}{\partial y^{n}}\left(\frac{\partial y^{n}}{\partial \tilde{y}^{n}}\right)^{2}\right)}{r y^{n} \tilde{f}}+h,
$$

where h is a holomorphic function near z. Since on $S=\left\{y^{n}=0\right\}$ we have

$$
1-\tilde{f} \frac{\partial \tilde{y}^{n}}{\partial y^{n}}\left(\frac{\partial y^{n}}{\partial \tilde{y}^{n}}\right)^{2}=1-\tilde{f}^{2} f^{2}=0
$$

y^{n} divides in \mathcal{O}_{z} the function

$$
1-\tilde{f} \frac{\partial \tilde{y}^{n}}{\partial y^{n}}\left(\frac{\partial y^{n}}{\partial \tilde{y}^{n}}\right)^{2} .
$$

Thus

$$
\tilde{\gamma}_{n n}^{n}+\frac{r-1}{r \tilde{y}^{n}}
$$

is holomorphic in a neighborhood of z.
4.2. Theorem. Let γ be a holomorphic complex linear connection on Z_{0} such that for each $z \in Z_{1} \backslash Z_{0}$ it has an extension to a neighborhood of z whose components in the coordinates adapted to the stratification of Z_{1} are defined by the formulas 4.1.1 where $\tilde{\Gamma}_{b c}^{a}$ are holomorphic. Then there is a unique G-invariant holomorphic complex linear connection Γ on V such that $\sigma_{*} \Gamma$ coincides with γ on Z_{0}. This remains true if we replace V by a G-open subset of G.

Proof. Since σ is tale on the principal stratum, there is a unique G-invariant complex linear connection Γ_{0} on $\sigma^{-1}\left(Z_{0}\right)$ such that $\sigma_{*} \Gamma_{0}=\gamma$. The condition of the theorem implies that the connection Γ_{0} has a holomorphic extension to $\sigma^{-1}\left(Z_{1}\right)$. Then by Hartogs' extension theorem the connection Γ_{0} has a unique holomorphic extension Γ to the whole of V.

5. Lifts of diffeomorphisms of orbit spaces

5.1. Let G and G^{\prime} be finite subgroups of $G L(V)$ and $G L\left(V^{\prime}\right)$ and let F be a holomorphic diffeomorphism $V \rightarrow V^{\prime}$ which maps G-orbits to G^{\prime}-orbits bijectively. Then the map F induces an isomorphism f of the sheaves $\mathfrak{F}_{V / G} \rightarrow \mathfrak{F}_{V^{\prime} / G^{\prime}}$, i.e. a holomorphic diffeomorphism of orbit spaces V / G and V^{\prime} / G^{\prime}.

Lemma. There is a unique isomorphism $a: G \rightarrow G^{\prime}$ such that $F \circ g=a(g) \circ F$ for every $g \in G$.

Note that a and its inverse a^{-1} map complex reflections to complex reflections.
Proof. The cardinalities of the two groups are the same since F maps a generic regular orbit to a regular orbit. Consequently, it maps regular points to regular points and we have $\sigma^{\prime} \circ F=f \circ \sigma: V \rightarrow V^{\prime} / G^{\prime}$ for a holomorphic diffeomorphism $f: V / G \rightarrow V^{\prime} / G^{\prime}$, where $\sigma: V \rightarrow V / G$ and $\sigma^{\prime}: V^{\prime} \rightarrow V^{\prime} / G^{\prime}$ are the quotient projections.

Fix some G-regular $v \in V$. Then $F(v)$ and $F(g v)$ for $g \in G$ are regular points of V^{\prime} of the same orbit. Therefore, there is a unique $a(g) \in G$ such that $F(g v)=a(g)(F(v))$. We have $\sigma^{\prime} \circ F \circ g=f \circ \sigma \circ g=f \circ \sigma=\sigma^{\prime} \circ F=\sigma^{\prime} \circ a(g) \circ F$. Since σ^{\prime} is tale on $V_{\text {reg }}^{\prime}$ we see that $F \circ g=a(g) \circ F$ locally near v and thus globally. By uniqueness, the map $g \rightarrow a(g)$ is an isomorphism of G onto G^{\prime}.

In this section we study when a diffeomorphism f of the orbit spaces $Z \rightarrow Z^{\prime}$ has a holomorphic lift F.
5.2. Corollary. Let $F: V \rightarrow V$ be a holomorphic diffeomorphism which maps G-orbits onto G^{\prime}-orbits, and $f: Z \rightarrow Z^{\prime}$ the corresponding holomorphic diffeomorphism of the orbit spaces. Then f maps the isotropy type stratification of Z onto that of Z^{\prime} and, moreover, it maps D_{Z} to $D_{Z^{\prime}}$.

Proof. This follows from Lemma 5.1 and the definition 3.3 of the reflection divisor.
5.3. Theorem. Let G and G^{\prime} be two finite subgroups of $G L(V)$ and let $f: Z \rightarrow$ Z^{\prime} be a holomorphic diffeomorphism of the corresponding orbit spaces such that $f\left(Z_{0}\right)=Z_{0}^{\prime}$ and $f_{*}\left(D_{Z}\right)=D_{Z^{\prime}}$. If Q is a holomorphic tensor field of type $\binom{p}{q}$ on Z_{0} which satisfies the conditions of Theorem 3.7, then $f_{*}(Q)$ also satisfies these conditions on Z_{0}^{\prime} and thus there exists a unique G^{\prime}-invariant holomorphic tensor field Q^{\prime} of type $\binom{p}{q}$ such that $\sigma_{*}^{\prime} Q^{\prime}$ coincides with $f_{*} Q$ on Z_{0}^{\prime}.

This is also true for holomorphic connections if we replace Theorem 3.7 by Theorem 4.2. The theorem remains true if we replace V by invariant open subsets of V.

Proof. Since $f\left(Z_{0}\right)=Z_{0}^{\prime}$ the tensor field $f_{*} Q$ is also holomorphic on Z_{0}^{\prime}. Let $z \in Z_{1} \backslash Z_{0}$. Then there is a complex space $S \in R_{Z}$ of codimension 1 such that $z \in S$. By assumption $f(z) \in Z_{1}^{\prime} \backslash Z_{0}^{\prime}$ and $f(z) \in f(S) \in R_{Z^{\prime}}$ and $r_{z}=e_{S}=e_{f(S)}=r_{f(z)}$. Now, obviously $f_{*} Q$ satisfies the conditions of Theorem 3.7 at $f(x)$. Thus there exists a G^{\prime}-invariant holomorphic tensor field Q^{\prime} on V with $\sigma_{*}^{\prime} Q^{\prime}=f_{*} Q$.

A similar argument applies to connections.
5.4 Theorem. Let G and G^{\prime} be two finite subgroups of $G L(V)$. Let $f: Z \rightarrow Z^{\prime}$ be a holomorphic diffeomorphism of the orbit spaces such that $f\left(Z_{0}\right)=Z_{0}^{\prime}$ and $f_{*}\left(D_{Z}\right)=D_{Z^{\prime}}$.

Then f lifts to a holomorphic diffeomorphism $F: V \rightarrow V$, i.e. $\sigma^{\prime} \circ F=$ $f \circ \sigma$.

The local version is also true. Namely, if B is a ball in the vector space V centered at 0 (for an invariant Hermitian metric), $U=\sigma(B)$, and $f: U \rightarrow Z^{\prime}$ is a local holomorphic diffeomorphism of U onto a neighborhood U^{\prime} of $\sigma^{\prime}(0)$ such that $f\left(U \cap Z_{0}\right)=U^{\prime} \cap Z_{0}^{\prime}$ and f maps $D_{Z} \cap U$ to $D_{Z^{\prime}} \cap U^{\prime}$, then there is a holomorphic lift $F: B \rightarrow V$.
Proof. Let Γ be the natural flat connection on V. Then Γ is uniquely defined by the holomorphic connection $\sigma_{*} \Gamma$ on Z_{0} which satisfies the conditions of Theorem 4.2. By Theorem 5.3 there is a unique G-invariant holomorphic complex linear connection Γ^{\prime} on V such that $\sigma_{*}^{\prime} \Gamma^{\prime}$ coincides with $f_{*}\left(\sigma_{*} \Gamma\right)$ on Z_{0}^{\prime}. It is evident that Γ^{\prime} is a torsion free flat connection, since Γ is it and Γ^{\prime} is locally isomorphic to Γ on an open dense subset.

Let $v \in V$ be G-regular and let $v^{\prime} \in V$ be G^{\prime}-regular, such that $(f \circ \sigma)(v)=$ $\sigma^{\prime}\left(v^{\prime}\right)$. Then there is a biholomorphic map F of a neighborhood W of v onto a neighborhood of v^{\prime} such that $\sigma^{\prime} \circ F=f \circ \sigma$ on W and $F(v)=v^{\prime}$. Moreover by construction F is a locally affine map of the affine space (V, Γ) into $\left(V, \Gamma^{\prime}\right)$ equipped with the above structures of locally affine spaces, thus we have

$$
\begin{equation*}
F=\exp _{v^{\prime}}^{\Gamma^{\prime}} \circ T_{v} F \circ\left(\exp _{v}^{\Gamma}\right)^{-1} \tag{1}
\end{equation*}
$$

where $\exp _{v}^{\Gamma}: T_{v} V \rightarrow V$ is the holomorphic geodesic exponential mapping centered at v given by the connection Γ and its induced spray. It is globally defined, thus complete and a holomorphic diffeomorphism since Γ is the standard flat connection. Likewise $\exp _{v^{\prime}}^{\Gamma^{\prime}}$ is the holomorphic exponential mapping of the flat connection Γ^{\prime}. The formula above extends F to a globally defined holomorphic mapping if $\exp _{v^{\prime}}^{\Gamma^{\prime}}: T_{v} V \rightarrow V$ is also globally defined (complete). Assume for contradiction that this is not the case. Let F be maximally extended by equation (1); it still projects to $f: Z \rightarrow Z^{\prime}$. We consider $\exp _{v^{\prime}}^{\Gamma^{\prime}}$ as a real exponential mapping, and then there is a real geodesic which reaches infinity in finite time and this is the image under F of a finite part $\exp _{v}^{\Gamma}\left(\left[0, t_{0}\right) w\right)$ of a real geodesic of Γ emanating at v. The sequence $\exp _{v}^{\Gamma}\left(\left(t_{0}-1 / n\right) w\right)$ converges to $\exp _{v}^{\Gamma}\left(t_{0} w\right)$ in V, but its image under F diverges to infinity by assumption. On the other hand, the image under F is contained in the set $\left(\sigma^{\prime}\right)^{-1}\left(f \sigma\left(\exp _{v}^{\Gamma}\left(\left[0, t_{0}\right] w\right)\right)\right)$ which is compact since σ^{\prime} is a proper mapping. Contradiction.

Any holomorphic lift F of a holomorphic diffeomorphism f is a holomorphic diffeomorphism of V which maps G-orbits onto G^{\prime} orbits, by the following argument: Let F^{\prime} be a holomorphic lift of f^{-1}. Evidently the map $F^{\prime} \circ F$ preserves each G-orbit. Then, for a G-regular point $v \in V$, there is a $g \in G$ such that $F^{\prime} \circ F=g$ in a neighborhood of v and, then, on the whole of V. Similarly $F \circ F^{\prime}=g^{\prime} \in G^{\prime}$. This implies that F is a holomorphic diffeomorphism of V. By definition the lift F respects the partitions of V into orbits.

We give a second proof of Theorem 5.4 based on the known results about the fundamental groups of $V_{\text {reg }}$ and Z_{0} for finite complex reflection groups. It is an extension of the proof of [8], using results of [2].
5.5. Lemma. Let G and G^{\prime} be two finite subgroups of $G L(V)$ and let $f: Z \rightarrow$ Z^{\prime} be a holomorphic diffeomorphism of the corresponding orbit spaces. Suppose $v_{0} \in V_{\text {reg }}, v_{0}^{\prime} \in V_{\text {reg }}^{\prime}$, and $f \circ \sigma\left(v_{0}\right)=\sigma^{\prime}\left(v_{0}^{\prime}\right)$. If the image of the fundamental group $\pi_{1}\left(V_{\text {reg }}, v_{0}\right)$ under $f \circ \sigma$ is contained in the subgroup $\sigma_{*}^{\prime}\left(\pi_{1}\left(V_{\text {reg }}\right), v_{0}^{\prime}\right)$ of $\pi_{1}\left(Z_{0}^{\prime}, \sigma^{\prime}\left(v_{0}^{\prime}\right)\right)$, the holomorphic lift of $f \circ \sigma$ mapping v_{0} to v_{0}^{\prime} exists.

Proof. Consider the restriction φ of the map $f \circ \sigma$ to $V_{\text {reg }}$. Since the restriction of σ to $V_{\text {reg }}$ is a covering map onto Z_{0}, the condition of the lemma implies that there is a holomorphic lift F_{0} of the map φ to $V_{\text {reg }}$. The map F_{0} is bounded on $B \cap V_{\text {reg }}$ for each compact ball B in V since its image is contained in the compact set $\left(\sigma^{\prime}\right)^{-1}(f(\sigma(B)))$. Then by the Riemann extension theorem F_{0} has a holomorphic extension F to V which is the required holomorphic lift of f.
5.6. Next we prove Theorem 5.4 in the case when the group G is generated by complex reflections. Put

$$
B:=\pi_{1}\left(Z_{0}\right) \quad \text { and } \quad P:=\pi_{1}\left(V_{\mathrm{reg}}\right) .
$$

The groups B and P are called the braid group and the pure braid group associated to G, respectively. It is clear that the map σ induces an isomorphism of P onto a subgroup of B.

The following results about the groups B and P are well known (see, for example, [2]). The braid group B is generated by those elements which are represented by loops around the hypersurfaces $\sigma(H)$ for $H \in \mathfrak{H}$. The pure braid group P is generated by the elements of B of the type $s^{e_{H}}$, where s is any of the above generators of B represented by a loop around the hypersurface $\sigma(H)$. This implies the following

Proposition. Suppose the group G is generated by complex reflections. Let f be a holomorphic diffeomorphism of the orbit space $Z=\mathbb{C}^{n}$ with $f\left(Z_{0}\right)=Z_{0}$ which also preserves D_{Z}. Then $\left.f\right|_{Z_{0}}$ preserves the subgroup P of B.

The following proposition is an immediate consequence of Lemma 5.5 and Proposition 5.6.
5.7. Proposition. Suppose the groups G and G^{\prime} are generated by complex reflections. Let $f: Z \rightarrow Z^{\prime}$ be a holomorphic diffeomorphism between the corresponding orbit spaces, such that $f\left(Z_{0}\right)=Z_{0}^{\prime}$ and $f_{*}\left(D_{Z}\right)=D_{Z^{\prime}}$.

Then f has a holomorphic lift F to V.
Second proof of 5.4. Now let $G \subset G L(V)$ be a finite group and let G_{1} be the subgroup generated by all complex reflections in G. Clearly G_{1} is a normal subgroup of G. Let $G_{2}=G / G_{1}$. Let $\sigma_{1}^{1}, \ldots, \sigma_{1}^{n}$ be a system of homogeneous generators of $\mathbb{C}[V]^{G_{1}}$ and $\sigma_{1}: V \rightarrow \mathbb{C}^{n}$ the corresponding orbit map. Then the action of G on V induces the action of the group G_{2} on $V_{1}:=\mathbb{C}^{n}=\sigma_{1}(V)$. Since each representation of the group G_{2} is completely reducible, by standard arguments of invariant theory, we may assume that the generators σ_{1}^{i} 's are chosen in such a way that the above action of G_{2} on $V_{1}=\mathbb{C}^{n}$ is linear. Then the representation of G_{2} on V_{1} contains no complex reflections. Let $\sigma_{2}^{1}, \ldots, \sigma_{2}^{m}$ be a system of homogeneous generators of $\mathbb{C}\left[V_{1}\right]^{G_{2}}$ and $\sigma_{2}: V_{1} \rightarrow \mathbb{C}^{m}$ the corresponding
orbit map. Then $\sigma^{i}=\sigma_{2}^{i} \circ \sigma_{1}(i=1, \ldots, m)$ is a system of generators of $\mathbb{C}[V]^{G}$ with orbit map $\sigma=\sigma_{2} \circ \sigma_{1}$. Similarly for G^{\prime}.

Let $f: Z \rightarrow Z^{\prime}$ be a holomorphic diffeomorphism, such that $f\left(Z_{0}\right)=Z_{0}^{\prime}$ and $f_{*}\left(D_{Z}\right)=D_{Z^{\prime}}$. Since the group G_{2} contains no complex reflections the set $V_{1, \text { reg }}$ of regular points of the action of G_{2} on V_{1} is obtained from V_{1} by removing some subsets of codimension ≥ 2. And similarly for G^{\prime}. Then the fundamental group $\pi_{1}\left(V_{1, \text { reg }}\right)=\pi_{1}\left(V_{1}\right)=0$ is trivial and by lemma 5.5 the diffeomorphism f has a holomorphic lift $F_{1}: V_{1} \rightarrow V_{1}^{\prime}$ which is a holomorphic diffeomorphism mapping the principal stratum to the principal stratum, and the reflection divisor to the reflection divisor, since G_{2} contains no complex reflections on V_{1}. Thus the diffeomorphism F_{1} has a holomorphic lift to V by Proposition 5.7, which is a holomorphic lift of f.

6. An intrinsic characterization of a complex orbifold

We recall the definition of orbifold.
6.1. Definition. [11] Let X be a Hausdorff space. An atlas of a smooth n dimensional orbifold on X is a family $\left\{U_{i}\right\}_{i \in I}$ of open sets that satisfy:

1. $\left\{U_{i}\right\}_{i \in I}$ is an open cover of X.
2. For each $i \in I$ we have a local uniformizing system consisting of a triple $\left(\tilde{U}_{i}, G_{i}, \varphi_{i}\right)$, where \tilde{U}_{i} is a connected open subset of \mathbb{R}^{n} containing the origin, G_{i} is a finite group of diffeomorphisms acting effectively and properly on \tilde{U}_{i}, and $\varphi_{i}: \tilde{U}_{i} \rightarrow U_{i}$ is a continuous map of \tilde{U}_{i} onto U_{i} such that $\varphi_{i} \circ g=\varphi_{i}$ for all $g \in G_{i}$ and the induced map of \tilde{U}_{i} / G_{i} onto U_{i} is a homeomorphism. The finite group G_{i} is called a local uniformizing group.
3. Given $\tilde{x}_{i} \in \tilde{U}_{i}$ and $\tilde{x}_{j} \in \tilde{U}_{j}$ such that $\varphi_{i}\left(\tilde{x}_{i}\right)=\varphi_{j}\left(\tilde{x}_{j}\right)$, there is a diffeomor${\underset{\tilde{V}}{i s m}}_{\tilde{U}_{i j}} g_{i j}: \tilde{V}_{j} \rightarrow \tilde{V}_{i}$ from a neighborhood $\tilde{V}_{j} \subseteq \tilde{U}_{j}$ of \tilde{x}_{j} onto a neighborhood $\tilde{V}_{i} \subseteq \tilde{U}_{i}$ of \tilde{x}_{i} such that $\varphi_{j}=\varphi_{i} \circ g_{i j}$.

Two atlases are equivalent if their union is again an atlas of a smooth orbifold on X. An orbifold is the space X with an equivalence class of atlases of smooth orbifolds on X.

If we take in the definition of orbifold \mathbb{C}^{n} instead of \mathbb{R}^{n} and require that G_{i} is a finite group of holomorphic diffeomorphisms acting effectively and properly on \tilde{U}_{i} and the maps $g_{i j}$ are biholomorphic, we get the definition of complex analytic n-dimensional orbifold.
6.2. Theorem. [11] Let M be a smooth manifold and G a proper discontinuous group of diffeomorphisms of M. Then the orbit space M / G has a natural structure of smooth n-dimensional orbifold. If M is a complex n-dimensional manifold and G is a group of holomorphic diffeomorphisms of M, the orbit space M / G is a complex n-dimensional orbifold.
6.3 Definitions. In the definition of atlas of a complex orbifold on X we can always take \tilde{U}_{i} to be balls of the space \mathbb{C}^{n} (with respect to some Hermitian metric) centered at the origin and the finite subgroups G_{i} to be subgroups of the $G L(n)$
acting naturally on \mathbb{C}^{n}. In the sequel we consider atlases of complex orbifolds satisfying these conditions.

Let X be a complex orbifold with an atlas $\left(\tilde{U}_{i}, G_{i}, \varphi_{i}\right)$. A function $f: U_{i} \rightarrow$ \mathbb{C} is called holomorphic if $f \circ \varphi_{i}$ is a holomorphic function on \tilde{U}_{i}. The germs of holomorphic functions on X define a sheaf \mathfrak{F}_{X} on X. It is evident that the sheaf \mathfrak{F}_{X} depends only on the structure of complex orbifold on X.

Consider a uniformizing system $\left(\tilde{U}_{i}, G_{i}, \varphi_{i}\right)$ of the above atlas and the corresponding action of G_{i} on \mathbb{C}^{n}. Then we have the isotropy type stratification of the orbit space \mathbb{C}^{n} / G_{i}, the induced stratification of U_{i}, and the divisor $D_{U_{i}}$.

By corollary 5.2 we get the stratification on X by gluing the strata on the U_{i} 's. Denote by X_{0} the principal stratum of this stratification. By definition, for each $x \in X_{0}$, for each uniformizing system $\left(\tilde{U}_{i}, G_{i}, \varphi_{i}\right)$, and for each $y \in \tilde{U}_{i}$ such that $\varphi_{i}(y)=x$, the isotropy group G_{y} of y is trivial. Note that X_{0} is a complex manifold. Note that X_{1} is also a complex manifold since this holds locally as noted in 3.5.

Denote by R_{X} the set of all strata of codimension 1 of X. Since the pullbacks of the reflection divisors $D_{U_{i}}$ to $U_{i} \cap U_{j}$ agree by 5.2 we may glue them into the reflection divisor D_{X} on X_{1}.
6.4. Definition. Let X and \tilde{X} be two smooth orbifolds. The orbifold \tilde{X} is called a covering orbifold for X with a projection $p: \tilde{X} \rightarrow X$ if p is a continuous map of underlying topological spaces and each point $x \in X$ has a neighborhood $U=\tilde{U} / G$ (where \tilde{U} is an open subset of \mathbb{R}^{n}) for which each component V_{i} of $p^{-1}(U)$ is isomorphic to \tilde{U} / G_{i}, where $G_{i} \subseteq G$ is some subgroup. The above isomorphisms $U=\tilde{U} / G$ and $V_{i}=\tilde{U} / G_{i}$ must respect the projections.

Note that the projection p in the above definition is not necessarily a covering of the underlying topological spaces. It is clear that a covering orbifold for a complex orbifold is a complex orbifold. Hereafter we suppose that all orbifolds and their covering orbifolds are connected.
6.5. Theorem. [11] An orbifold X has a universal covering orbifold $p: \tilde{X} \rightarrow X$. More precisely, if $x \in X_{0}, \tilde{x} \in \tilde{X}_{0}$ and $p(\tilde{x})=x$, for any other covering orbifold $p^{\prime}: \tilde{X}^{\prime} \rightarrow X$ and $\tilde{x}^{\prime} \in \tilde{X}^{\prime}$ such that $p^{\prime}\left(\tilde{x}^{\prime}\right)=x$ there is a cover $q: \tilde{X} \rightarrow \tilde{X}^{\prime}$ such that $p=p^{\prime} \circ q$ and $q(\tilde{x})=\tilde{x}^{\prime}$. For any points $\tilde{x}, \tilde{x}^{\prime} \in p^{-1}(x)$ there is a deck transformation of \tilde{X} taking \tilde{x} to \tilde{x}^{\prime}.

Now we prove the main theorem of this section.
6.6. Theorem. An n-dimensional complex orbifold X is uniquely determined by the sheaf of holomorphic functions \mathfrak{F}_{X}, the principal stratum X_{0}, and the reflection divisor D_{X}.
Proof. For each $x \in X$, there exists $V=\mathbb{C}^{m}$, a finite group $G \subset G L(m)$, a ball B in V centered at 0 , an open subset U of X containing x, and an isomorphism $\psi: \pi(B) \rightarrow U$ between the sheaves $\left.\mathfrak{F}_{Z}\right|_{\pi(B)}$ and $\left.\mathfrak{F}_{X}\right|_{U}$. Consider the map $\pi: V \rightarrow Z=V / G$, the stratum Z_{0} and the reflection divisor D_{Z}. We suppose also that $\psi\left(Z_{0} \cap B / G\right) \subseteq X_{0}$ and $\psi_{*}\left(D_{\pi(B)}\right)=D_{U}$. It suffices to prove that the germ of the uniformizing system $\{B, G, \psi \circ \pi \mid B\}$ at x is the germ of some uniformizing system of the orbifold X.

Let $y \in V_{\text {reg }} \cap B$. Then the ring $\mathfrak{F}_{Z}(\pi(y))$ of germs of \mathfrak{F}_{Z} at $\pi(y)$ is isomorphic to the ring of germs of holomorphic functions on \mathbb{C}^{n} at 0 and thus we
have $m=n$.
Consider the uniformizing system $\left(\tilde{U}_{i}, G_{i}, \varphi_{i}\right)$ of the orbifold X, where \tilde{U}_{i} is a ball in \mathbb{C}^{n} centered at the origin, G_{i} is a finite subgroup of the group $G L(n)$ acting naturally on $V=\mathbb{C}^{n}$, and where $\varphi_{i}(0)=x$. Consider the map $\pi_{i}: V \rightarrow V / G_{i}$ given by some system of generators of $\mathbb{C}[V]^{G_{i}}$. We may assume that $\varphi_{i}=\left.\psi_{i} \circ \pi_{i}\right|_{\tilde{U}_{i}}$, where $\psi_{i}: \mathfrak{F}_{\tilde{U}_{i} / G_{i}} \rightarrow \mathfrak{F}_{U_{i}}$ is an isomorphism of sheaves.

Then the maps ψ and ψ_{i} define a map (germ) f of a holomorphic diffeomorphism B / G to U_{i} / G_{i} at $0:=\pi(0)$ such that $f(0)=0:=\pi_{i}(0)$. Then f induces an isomorphism $\mathfrak{F}_{V / G}(0) \rightarrow \mathfrak{F}_{V / G_{i}}(0)$, it maps $(B / G)_{0}$ to $\left(U_{i} / G_{i}\right)_{0}$ and $f_{*}\left(D_{B / G}\right)=$ $D_{\tilde{U}_{i} / G_{i}}$. Thus by theorem 5.4 there is a germ of a holomorphic diffeomorphism $F: B \rightarrow \tilde{U}_{i}$ which is equivariant for a suitable isomorphism $G \rightarrow G_{i}$.
6.7. Corollary. Let M be a complex simply connected manifold, G a proper discontinuous group of holomorphic diffeomorphisms of M, and \mathfrak{F}_{X} the corresponding sheaf on the orbifold $X=M / G$. The G-manifold M is a universal covering orbifold for the orbifold X and it is defined uniquely up to a natural isomorphism of universal coverings by the sheaf \mathfrak{F}_{X}, the principal stratum X_{0}, and by the reflection divisor D_{X}.

Proof. Evidently the manifold M is a covering orbifold for X. If \tilde{X} is a universal covering orbifold for X, by definition 6.4 there is a cover $q: \tilde{X} \rightarrow M$. By definition \tilde{X} should be a manifold and q a cover of manifolds. Therefore, q is a diffeomorphism. Then the statement of the corollary follows from theorem 6.6.

An automorphism of the sheaf \mathfrak{F}_{X} is called a holomorphic diffeomorphism of the orbit space X. Theorem 6.5 and corollary 6.7 imply the following analogue of Theorem 5.4.
6.8. Theorem. Let M be a complex simply connected manifold, G a proper discontinuous group of holomorphic diffeomorphisms of M, and \mathfrak{F}_{X} the corresponding sheaf on the orbifold $X=M / G$. Each holomorphic diffeomorphism f of the orbit space X preserving X_{0} and D_{X} has a holomorphic lift F to M, which is G-equivariant with respect to an automorphism of G. The lift F is unique up to composition by an element of G.

Proof. By theorem 6.6 and corollary 6.7 the manifold M with the map $f \circ p$: $M \rightarrow X$, where $p: M \rightarrow X$ is the projection, is a universal covering orbifold for X. Then there is a holomorphic diffeomorphism $F: M \rightarrow M$ such that $p \circ F=f \circ p$. The equivariance property holds locally by 5.1 , thus globally. The lift is uniquely given by choosing $F(x)$ for a regular point x in the orbit $f(p(x))$.
6.9. Let V be a complex vector space with a linear action of a finite group G. The group \mathbb{C}^{*} acts on V by homotheties and induces an action on $Z=V / G$.

Corollary. In this situation, the G-module V is uniquely defined up to a linear isomorphism by the sheaf $\mathfrak{F}_{V / G}$ with the action of \mathbb{C}^{*}, by Z_{0}, and the reflection divisor D_{Z}.

Proof. Consider the orbit space $Z=V / G$ of a G-module V with the sheaf $\mathfrak{F}_{V / G}$, regular stratum Z_{0}, reflection divisor D_{Z}, and the action of \mathbb{C}^{*} induced by the action of \mathbb{C}^{*} on V by homotheties. Suppose that we have another G^{\prime}-module V^{\prime} with the same data on $Z^{\prime}=V^{\prime} / G^{\prime}$ such that there is a biholomorphic map $f: Z \rightarrow Z^{\prime}$ preserving these data. By Theorem 4.5 there is a biholomorphic lift $F: V \rightarrow V^{\prime}$, and by lemma 5.1 there is an isomorphism $a: G \rightarrow G^{\prime}$ such that $F \circ g=a(g) \circ F$. Thus we may assume that $G=G^{\prime}, V=V^{\prime}, Z=Z^{\prime}$, and a is the identity map. By definition the pullback A of the vector field on the orbit space V / G defined by the action of the group \mathbb{C}^{*} on V / G coincides with the vector field on V defined by the above action of the group \mathbb{C}^{*} on V. By construction $F^{*} A=A$ and then the map F commutes with the action of \mathbb{C}^{*} on V, i.e. for each $t \in \mathbb{C}^{*}$ and $v \in V$ we have $F(t v)=t F(v)$. Since F is biholomorphic it is a linear automorphism of the vector space V. By definition F is then an automorphism of the G-module V.
6.10. Tensor fields and connections on orbifolds. The local results in section 3 show that the correct definition of a $\binom{p}{q}$-tensor field Q on an orbifold X is as follows: Q is a meromorphic $\binom{p}{q}$-tensor field on X_{1} such that $\operatorname{div}_{D_{X}}(Q) \geq 0$.

Likewise, we can define connections on orbifolds by requiring the local conditions of section 4.

References

[1] Bierstone, E., Lifting isotopies from orbit spaces, Topology 14 (1975), 245-252.
[2] Broué, M., G. Malle, and R. Rouquier, Complex reflection groups, braid groups, Hecke algebras, J. reine angew. Math. 500 (1998), 127-190.
[3] Losik, M., Lifts of diffeomorphisms of orbit spaces for representations of compact Lie groups, Geom. Dedicata 88 (2001), 21-36.
[4] Losik, M., P. W. Michor, and V. L. Popov, Invariant tensor fields and orbit varieties for finite algebraic transformation groups, arXiv:math.AG/0206008.
[5] Luna, D., Slices étales, Bull. Soc. Math. France, Mémoire 33 (1973), 81-105.
[6] -, Sur certaines opèrations différentiables des groupes de Lie, Amer. J. Math. 97 (1975), 172-181.
[7] -, Fonctions différentiables invariantes sous l'opération d'une groupe réductif, Ann. Inst. Fourier 26 (1976), 33-49.
[8] Lyashko, O. V., Geometry of bifurcation diagrams, J. Soviet Math. 27 (1984), 2736-2759.
[9] Schwarz, G. W., Lifting smooth homotopies of orbit spaces, Publ. Math. IHES 51 (1980), 37-136.
[10] Solomon, L., Invariants of finite reflection groups, Nagoya J. Math. 22 (1963), 57-64.
[11] Thurston, W. P., The geometry and topology of tree-manifolds, Lect. Notes, Princeton Univ. Press, Princeton (1978).

A. Kriegl
Institut für Mathematik,
Universität Wien,
Strudlhofgasse 4, A-1090 Wien,
Austria.
Andreas.Kriegl@univie.ac.at
P. W. Michor
Institut für Mathematik,
Universität Wien,
Strudlhofgasse 4, A-1090 Wien,
Austria; and
Erwin Schrödinger Institut
für Mathematische Physik,
Boltzmanngasse 9, A-1090 Wien, Austria
Peter.Michor@esi.ac.at

Received July 15, 2002
and in final form October 29, 2002

M. Losik
Saratov State University,
ul. Astrakhanskaya, 83,
410026 Saratov, Russia
LosikMV@info.sgu.ru

[^0]: *M.L. and P.W.M. were supported by 'Fonds zur Förderung der wissenschaftlichen Forschung, Projekt P 14195 MAT'

