
Journal of Lie Theory
Volume 13 (2003) 427–442
C©2003 Heldermann Verlag

On a Diffeological Group Realization of Certain
Generalized Symmetrizable Kac-Moody Lie Algebras

Joshua Leslie

Communicated by P. Olver

Abstract. In this paper we utilize the notion of infinite dimensional
diffeological Lie groups and diffeological Lie algebras to construct a Lie group
structure on the space of smooth paths into a completion of a generalized
Kac-Moody Lie algebra associated to a symmetrized generalized Cartan
matrix.

We then identify a large normal subgroup of this group of paths such that
the quotient group has the sought-after properties of a candidate for a Lie
group corresponding to the completion of the initial Kac Moody Lie algebra.

Introduction

In the case of Banach-Lie algebras, it is well known that there exists Lie algebras
which are not realizable as the Lie algebras of any Lie group. Since the advent of
Kac-Moody Lie algebras it has been natural to ask if there are groups associated to
these Lie algebras in such a way that the representation theory of the Lie algebras
are related to the representation theory of the associated groups as in the theory
of finite dimensional Lie groups. Moody and Teo [16] have associated groups
to Kac-Moody Lie algebras, these groups have been studied by several authors
(see e.g. [5], [10], [14], [16] and [23]); however, those groups do not have some
important properties which one encounters in the finite dimensional case, such as
the existence of an exponential function. Goodman and Wallach [6] succeeded in
associating Banach-Lie groups to affine Kac-Moody Lie algebras and used them
to study the representation theory of affine Kac-Moody Lie algebras. Here, we
shall give a new procedure to construct a Lie group structure on C∞(I, Ḡ(A)),
where Ḡ(A) is an appropriate completion of a generalized Kac-Moody Lie algebra
associated to a symmetrized generalized Cartan matrix A , where C∞(I, Ḡ(A)) is
the space of C∞ functions from the unit interval I into Ḡ(A).

Further, we exhibit an exact sequence 0→ Ω→ C∞(I, Ḡ(A))→ Ḡ(A)→ 0
of smooth Lie algebra homomorphisms, where Ω = {f ∈ C∞(I, Ḡ(A)) :

∫
fdt = 0} ;

in the case of the above exact sequence, C∞(I, Ḡ(A)) also designates by abuse
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of notation the Lie algebra of the above mentioned Lie group C∞(I, Ḡ(A)) (the
underlying topological structures are the same (see [13] for details)). There is a
normal subgroup, ω , of C∞(I, Ḡ(A)) having Ω as its Lie algebra. We shall show
that C∞(I, Ḡ(A))/ω = Λ(A) has many of the requisite properties for a Lie group
corresponding to Ḡ(A). Finally, we lay the groundwork to show that the highest
weight representations of Ḡ(A) are differentials of smooth representations of Λ(A).

In section 1 we redefine diffeological spaces and reformulate some of the
results on them of which we subsequently make use. Most of the verifications
follow easily from the work done by Souriau, Dazord, Donato, Iglesias (e.g. see
[3], [4], [7],[21]). In those cases where we state formerly unpublished results on
diffeological spaces or diffeological groups we give proofs or indications of proofs
when it seems appropriate. The diffeological spaces that we deal with are different
from the differential spaces considered by the Polish school of Sikorski et al (see e.g.
[20]); there, the generalization of manifolds studied is in terms of the commutative
ring of smooth functions defined on a manifold. Here, we are looking instead at a
generalization of the structure given by the smooth functions defined with domain
an open subset of an arbitrary Hausdorff, complete, locally convex topological
vector space and with range a fixed manifold.

In section 2, we give details on our construction of a diffeological Lie
group Λ(A), corresponding to a generalized symmetrized Cartan matrix A with
a possibly countably infinite number of rows and columns such that the rows and
columns are uniformly `2 bounded. Our definition of generalized Kac-Moody Lie
algebra is more general than the one discussed by Kac in his most recent edition
of Infinite Dimensional Lie Algebras, but less general than Borcherds’ [1] in that
we suppose that the Cartan subalgebra has a canonical Hilbert space structure.

1. Diffeological Algebraic Structures

Let Γ be the Grassmannian ring of super numbers generated by an arbitrary set
X = {xi}i∈I with its topology given by the inductive limit of Γi , for i ∈ J , where
J is the collection of finite subsets of I ordered by inclusion and ΓJ the finite
dimensional subspaces of Γ generated by xi1 , ..., xinj . . With this topology Γ is a
complete locally convex topological vector space. Γi is a Z2 graded commuatative
(i.e. ab = (−1)|a‖b|ba algebra, where |a| designates the parity of a . Γ with this
topology will be used as our base ring throughout what follows.

Let V and W be fopological graded modules over Γ. A continuous mapping

f : V × . . .× V → W

is said to be an n-multimorphism when f is n-multilinear with repect to the
ground field K and

f(e1, . . . , eiγ, ei+1, . . . , en) = f(e1, . . . , ei, γei+1, . . . , en), γ ∈ Γ

and
f(e1, . . . , enγ) = f(e1, . . . , en)γ, γ ∈ Γ.

Now suppose U ⊆ V open, a function f : U → W will be called super
Cn or Gn or simply smooth when there exists continuous maps, which are k-
multimorphisms in the k-terminal variables, for x ∈ U fixed,
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Dkf(x; · · ·) : U × V × · · · × V → W , k ≤ n , such that

Fk(h) = f(x+ h)− f(x)−Df(x, h)− · · · − 1

k!
Dkf(x, h, · · · , h), 1 ≤ k ≤ n,

satisfies the property that

Gk(t, h) =

{
Fk(th)/tk, t 6= 0

0, t = 0.
(1)

Let M be the category whose objects are super manifolds modelled on the
open subsets of graded complete Hausdorff locally convex topological vector spaces
(chlctvs) (see[12]); the morphisms of M are the G∞ functions. A diffeological
space is a set S together with a contravariant subfunctor FS(N) ⊆ Homset(N,S)
such that constant maps are in F (N) for each object N of M and each x ∈ S
and such that F restricted to the subcategory of open subsets of a fixed super
manifold, N , whose morphisms are the canonical injection of open subsets of N
into each other satisfies the axioms of a set valued sheaf.

When S is a G∞ super manifold we shall suppose without explicit mention
to the contrary that it has its underlying diffeology given by F (C) being defined
to be the set of G∞ maps with domain N and values in S .

Given a super manifold M and a diffeological space (S, F ), a mapping,
f , from a subset C ⊆ M to S is called smooth, when there exists an open
neighborhood, U , of C and a smooth extension of f to U , f̃ : U → S

Given any collection of diffeological structures on a set S , Fi , we have
that ∩Fi is a diffeological structure, thus any assignment of functions, GS(U) ⊂
Homset(U, S), U ⊂ E , E a Hausdorff locally convex topological vector space,
generates a diffeology; namely, the smallest or finest diffeology containing the
GS(U). For the diffeology so generated we shall call GS(U) a system of generators.

A useful notion for diffeological structures is that of the pull-back; given
a diffeological stucture on a set T , (T,G), and a function, f : S → T , define
f ?G(U) = {g ∈ Homsets(U, S) : f ◦ g ∈ G(U)} . It is straightforward to verify that
f ?G is a diffeological stucture on S .

Given a subset S1 ⊂ S2 , where (S2, F2) is a diffeological space, there is a
diffeological structure induced on S1 by F1(C) = {f ∈ F2(C) : f(C) ⊂ S1} . Note
that F1 = i?(F2), where i : S1 → S2 is the canonical inclusion. In the rest of this
paper when we consider a subset of a diffeological space as a diffeological space
it will be with the above described structure unless there is an explicit mention
to the contrary. When C is an open subset of a graded hlctvs we shall call f of
FS(C) a plot of the diffeological structure at a point s = f(x), x ∈ C .

Definition 1.1. 1 We shall call a diffeological structure lattice or L type when
given two plots f : M1 → S, g : M2 → S at a point f(x) = g(y) there always
exists a third plot through which the germs of f at x and g at y factor; that
is, there exists a plot h : N → S such that f = h ◦ φ, g = h ◦ γ , where
φ : M̃1 → N, γ : M̃2 → N are smooth functions such that φ(x) = γ(y), where
M̃i ⊂Mi is a neighborhood of x (resp. y).
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Given diffeological spaces (X1, F1) and (X2, F2) a function f : X1 → X2

is called smooth or C∞ for each g ∈ F1 , we have f ◦ g ∈ F2 . We shall say that
f is locally smooth at x0 ∈ X1 when given any smooth map, g ∈ F1 , from a
neighborhood, U , of 0 ∈ E ,where f(0) = x0 there exists a neighborhood, U0 ⊂ U
of 0 such that f ◦ (g|U0) ∈ F2 .

Given diffeological spaces (X1, F1) and (X2, F2), and an open subset U of
an graded chlctvs E a mapping f :U → C∞(X1, X2) is smooth when
F :U × X1 → X2 , given by F (u, x) = f(u)(x) is smooth. The finest diffeol-
ogy on C∞(X1, X2) admitting these functions as generating plots will be called
the function space diffeology on C∞(X1, X2).

From the definitions, using the notion of the pull-back, it follows that

Lemma 1.2. Given diffeological spaces (X1, F1) and (X2, F2) and a set of
generators GS(U) of F1 , if the function f : X1 → X2 satisfies f(GS(U)) ⊂ F2(U),
then f is smooth.

Suppose that (S, F ) is a diffeological space of L − type ; consider the
equivalence relation generated between germs of one dimensional plots at s ∈ S C1

and C2 are open intervals containing 0 as follows: let f and g be one dimensional
plots at 0 with domains open intervals C1 and C2 containing 0, we write f0 ≡ g0 ,
when f(0) = g(0) = s and there exists a plot k:U→ S through which the germs of
f and g factor at 0 and we have that D0(h◦f) = D0(h◦g), where h is any smooth
real valued function defined on the image of k . The equivalence classes will be
called tangent vectors at s , we shall designate the set of tangents at s by TsS . It is
immediate that a smooth map f : S → W defines a function Tf : TsS → Tf(s)W .
When M is a manifold modelled on a locally convex topological vector space,
this definition is equivalent to the classical one. Given a plot f : U → S , we use
Tf : TU → TS to define plots on TS and thus a diffeology on TS , in what follows
TS will be considered as a diffeological space with the finest diffeology admitting
such Tf ’s as plots.

Given diffeological spaces (X1, F1) and (X2, F2) the Cartesian product
diffeology is defined by f ∈ F1 × F2 if and only if pr1 ◦ f ∈ F1 and pr2 ◦ f ∈ F2 .
A group G with a diffeology F on its underlyling set will be called a diffeological
group when multiplication and inversion define smooth maps G × G → G and
G → G ; in a similar vein we define the notions of diffeological vector space and
diffeological Lie algebra.

Definition 1.3. A diffeological vector space E will be called integral when there
exists a smooth linear map

∫
: C∞(I, E) → E , such that given any smooth real

valued linear function H : E → R , we have H(
∫

(f)) =
∫
H(f(t))dt and such that

given any v ∈ E we have
∫

(f(t)v) = (
∫
f(t)dt)v .

A subspace, K , of an integral diffeological vector space, E , will be called
closed when

∫
(C∞(I,K)) ⊆ K . One readily verifies that each diffeological group

is of L− type .

Given a plot at the identity, e ∈ G, f : U → G, x ∈ U , U ⊂ E , E a locally
convex topological vector space, U open, define Df(x;α) = [f(x + tα]t=0, x ∈ U .
The definitions imply
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Lemma 1.4. Let (X,G) and (Y,K) be diffeological spaces and suppose that
f : X → Y is a smooth map. Then Tf : TX → TY is a smooth map.

Lemma 1.5. The canonical map Π : TG→ G is a smooth map.

Proof. Let f : W → TG be a plot, by definition there exists a neighborhood,
U , at each point x ∈ W and an open subset V of a hlctvsp so that f |U factors
smoothly through TV ; that is, f = Th ◦ φ, h : V → G and φ : W → TV are
plots. Now, πG ◦ Th ◦ φ = h ◦ πV ◦ φ , which is clearly smooth being a composition
of smooth maps.

Proposition 1.6. If G is a diffeological group, then TeG is a diffeological
vector space.

Proof. Given two vectors α = [[f ]0], β = [[g]0] at e ∈ G , define α + β =
[[f × g]0] , and scalar multiplication by r × α = [[f(rt)]0] . It is straigtforward
to verify that TeG becomes a well-defined vector space. Lemma 1.2 implies
that vector addition in TeG is smooth. Lemma 1.4 below implies that scalar
multiplication is smooth.

Lemma 1.7. Let U,X and Y be Ltype diffeological spaces. If f : U ×X → Y
is a smooth map, then the partial in U (resp. X ), T1f : TU × X → TY (resp.
T2f : U × TX → TY ) is smooth.

Proof. It suffices to observe that the canonical map U × TX → T (U × X)
sending (u, α) to (0u, α) (respectively, TU × X → T (U × X) sending (α, x) to
(α, 0x) is smooth.

Corollary 1.8. Given a diffeological group G and a plot f : U → G, set
F (x;α) = Rf(x)−1 ◦Df(x;α), where U ⊂ E is an open subset of a graded chlctvs
and Rx is induced by right multiplication by x. Then F : U ×E → TeG is smooth.

We use the diffeomorphism TRx : TG → TG induced by right multipli-
cation by x to transport the vector space structure of TeX to TxG , with these
definitions Df(x;α) : E → Tf(x)G is linear in α . Note that given any smooth
map f : G → H we have that Tf : TxG → Tf(x)H is linear, when G and H are
diffeological groups.

Proposition 1.9. Let G be a diffeological group, then TG is a diffeological
group, where the group operation is given by TP ◦ σ−1 , where σ : T (G × G) →
TG × TG is the canonical map, and P : G × G → G is the diffeological group
operation.
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Proof. As in the classical case the product map in TG can be expressed as

α ? β = Rπ(α)π(β)(Rπ(α)−1(α)) + Adπ(α)(Rπ(β)−1(β)),

where Adx : TG→ TG is the bundle map over the identity induced by the adjoint
action on G by x , and Rx : TG→ TG is the map induced by right multiplication
by x . From this formula it follows immediately that ”?” defines a smooth map
TG× TG→ TG .

Again as in the classical case the inverse is given by

α→ −Lπ(α)−1(Rπ(α)−1(α)).

The above lemmas now imply that indeed TG is a diffeological group.

Remark 1.10. Let G be a diffeological group and N a normal subgroup of G ,
then one has that G/N is a diffeological group.

Before proceeding we shall adapt what we need of Iglesias’s treatment [7]
of diffeological fiber bundles to our context.

Given diffeological spaces (X,G) and (Y,K) and a smooth map f : X → Y
consider the diffeological groupoid of automorphisms of f , Gf , it has as objects
the elements of Y , its morphisms, Morphf (y, y

′), are the diffeomorphisms from
f−1(y) to f−1(y′). Let s : Morphf → Y (resp. t : Morphf → Y be the source map
(resp. target map); that is, given h ∈ Morphf (y, y

′), s(h) = y (resp. t(h) = y′ ).
We now define a diffeology on Gf as follows: given an open subset U of a graded
hlctps E , we say that g : U → Morphf is a plot if and only if we have that

i) s× t ◦ g is smooth,

ii) with Xs :≡ {(x, y) : x ∈ U, y ∈ yx} ⊂ U ×X , the mapping ρ : Xs → X ,
given by ρ(x, y) = g(x)(y), is smooth, and

iii) setting Xt :≡ {(x, y) : x ∈ U, y ∈ y′x)} ⊂ U × X , we have that the
mapping µ : Xt → X given by µ(x, y) = g(x)−1(y) is smooth.

We take on Gf the finest diffeology which induces the given diffeology on
Y and admits the above maps to the morphisms of Gf as smooth maps. This
diffeology on Gf will be called the standard diffeology .

It follows in a straightforward manner from the definitions that

Proposition 1.11. The standard diffeology endows Gf with the structure of a
diffeological groupoid; that is, setting Sdef :≡ {(x, y) ∈ Morph×Morph : t(x) =
s(y)} ⊂ Morph×Morph, σ(x, y) :≡ y◦x defines a smooth map σ : Sdef → Morph,
the inverse operation in the groupoid defines a smooth map Morph→ Morph, and
ι(m) = im : f−1(m)→ f−1(m) defines a diffeomorphism from the objects of Gf to
the identities of Gf .

Theorem 1.12. Let G be a diffeological group and let Π : TG → G be the
canonical map, then s × t : MorphΠ → G × G satisfies the local lifting property;
that is, given any open subset of a graded hlctvs U ⊂ E, x ∈ U and smooth map
f : U → G × G, there exists an open neighborhood U0 ⊂ U of x and smooth map
F : U0 → MorphΠ such that s× t ◦ F = f .
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Proof. Let f : U → G×G be a plot, such that f(u) = (f1(u), f2(u)) ∈ G×G ,
set F (u) = Tf1(u)Lf2(u)f1(u)−1 : Tf1(u)G→ Tf2(u)G . F : U → MorphG� , where G� is
the groupoid of automorphisms of the canonical map Π : TG→ G . It follows from
the definitions and Lemma 1.4 that F is smooth, by definition t× s ◦ F = f .

Definition 1.13. A diffeological group G will be called a diffeological Lie group
when the tangent space at the identity, TeG, is a diffeological vector space which

i) admits for every non zero α ∈ TeG a smooth real valued linear map
T : TeG→ R such that T (α) 6= 0.

ii) the linear plots of TeG are cofinal in the sense that every plot of TeG
factors smoothly through a smooth linear map of a complete Hausdorff locally
convex topological vector space into TeG.

Theorem 1.14. Let G be a diffeological Lie group, then TeG admits the struc-
ture of a Lie algebra such that the bracket operation defines a smooth linear map
5

X
: TeG→ TeG, where 5

X
(Y ) = [X, Y ].

Proof. Proposition 1.6 shows that TeG is a vector space. We shall now verify
that TeG admits the structure of a Lie algebra. Given two vectors α, β ∈ TeG ,let
a1, a2, b be paths on open intervals containing 0, such that [a1]0 = [a2]0 = α ,
[b]0 = β . Now Y1(t) = a1(t)βa(t)−1

1 is a smooth path which therefore factors
through a linear plot, H1 : E1 → TeG at β ; that is, Y1(t) = H1 ◦ y1(t), where
y1 : (−ε, ε) → E, ε > 0. Suppose that φ : U → G is a plot at e through which
a1, a2 , and b factor with Dt=0(k ◦ a1) = Dt=0(k ◦ a2), where k is any smooth real
valued function defined on the image of φ . Since TeG is of lattice type we may
also suppose without loss of generality that H1 factors through Tφ ; in paricular,
Y1(t) and a2(t)βa2(t)−1 factor through T0φ . Define [α, β] = H(Dt=0y1(t)).

To verify that [α, β] is well-defined suppose Y2(t) = a2(t)βa−1
2 (t) =

H2 ◦ y2(t), where H2 : E2 → TeG is a linear plot; let k : TeG → R be a
smooth linear real valued function. Considering the smooth real valued function
on φ(U) given by Wk(z) = k(zβz−1) we now have that (k ◦ H2)(Dt=0(y2(t))) =
Dt=0(k ◦H2(y2(t))) = Dt=0(Wk(a2(t))) = Dt=0(Wk(a1(t))) = Dt=0(k ◦H1(y1(t))) =
(k◦H1)(Dt=0(y1(t))); since k is an arbitrary smooth linear functional we have that
[α, β] is well-defined.

As in the classical case we prove that [α, β] is linear in β , [α, β] is anti-
commutative, and satisfies the Jacobi identity; for example, for anticommuta-
tivity we choose an arbitrary plot at e through which the germs of a, b , and
f(s, t) = a(s)b(t)a(s)−1 at 0 factor, K : W → G , let λ : K(W ) → R at e
be a smooth real valued function on that plot, and we consider dλ([α, β]) =
Dt=0Ds=0(λY2(f̃(s, t))) = dλ(Y2(Ds=0Dt=0f̃(s, t))). It is straightforward to ver-
ify that dλ([α, β]) satisfies anti-commutativity for each λ . The Jacobi identity is
proved in a similar manner. Given a smooth function β : U → TeG we consider
the smooth function g(t, u) = a(t)β(u)a(t)−1 , which we now factor linearly and
smoothly through a graded hclctvs E, H:E→ TeG so that g(t, u) = H ◦ k(t, u).
The smoothness of Dtk shows that 5

X
is smooth.
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Let E be an Hausdorff, sequentially complete, locally convex topological
vector space, we suppose E furnished with the canonical diffeology, and let Aut(E)
be the group of linear diffeomorphisms of E . Given an arbitrary locally convex
topological vector space V and an open subset U ⊂ V , a mapping f : U → Aut(E)
is a plot if and only if

i) F : U × E → E defined by F (x, y) = f(x)(y) is smooth and

ii) G : U × E → E defined by G(x, y) = f(x)−1(y) is smooth.

The finest diffeology on Aut(E) admitting the above plots of Aut(E) will
be called the normal diffeology on Aut(E).

Theorem 1.15. Aut(E) with the normal diffeology is a diffeological group.

Proof. To show that multplication is a smooth map from Aut(E)×Aut(E) to
Aut(E) it suffices to consider smooth maps f, g : U → Aut(E) and apply the chain
rule to the composition gḟ(x, e) = g(x)(f(x)(e)). As the composition of plots is
smooth and the inversion of plots is by definition smooth it follows that Aut(E)
under composition with the normal diffeology is a diffeological group. Designate
by L(E,E) the diffeological vector space of all smooth linear endomorphisms of E
with f : U → E a plot if and only if F : U × E → E given by F (u, e) = f(u)(e)
is smooth. It is straightforward to verify that L(E,E) is indeed a diffeological
vector space such that the canonical injection Aut(E)→ L(E) is a smooth map.

A diffeological Lie group G will be called regular when the logarithmic
derivative f ′(t)ḟ(t)−1 defines a diffeological isomorphism from the diffeological set
of smooth mappings from the unit interval into G which map zero to the identity,
e ∈ G , C∞0 (I,G), to the diffeological set of smooth mapppings from the unit
interval into TeG , χ : C∞0 (I,G) → C∞(I, TeG). We recall that a map from the
unit interval into a diffeological space is called smooth when there exists an open
interval containing the unit interval to which the map can be smoothly extended.

Proposition 1.16. Suppose that G is a regular diffeological Lie group and
suppose that g ∈ G, then χg : C∞0 (I, (G, g)) → C∞(I, TeG) is a diffeomorphism,
where C∞0 (I, (G, g)) = {f ∈ C∞(I,G) : f(0) = g} and χg = f ′(t)ḟ(t)−1 .

Proof. χg = χ ◦Rg−1 .

Proposition 1.16 implies

Theorem 1.17. Let G be a regular diffeological Lie group, then there exists a
smooth function exp : TeG → G such that exp((t + s)) = exp(tξ) × exp(sξ) and
[exp(tξ)]t = Rexp(tξ)(ξ).

Corollary 1.18. If G is a regular diffeological Lie group, then TeG admits the
structure of a diffeological Lie algebra.
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Definition 1.19. Let L be an integral diffeological Lie algebra. A closed ideal,
I , will be called pre-integrable when for each a(t) ∈ C∞(I,L) the differen-
tial equation, (?)y′ = [a(t), y], admits a smooth flow, Φ(a(t), s, l) such that
DsΦ(a(t), s, l) = [a(s),Φ(a(t), s, l)], Φ(a(t), 0, l) = l and such that Φ defines by
an abuse of notation a smooth map

i) Φ : C∞(I, I)× I × I → I , such that

ii) Φ(a(t), s, ·) : I → I is a diffeomorphism which induces a diffeomorphism
Ξ : C∞(I, I) → C∞(I, I), where Ξ(f)(t) = Φ(a(t), t, f(t)) and where C∞(I, I)
has the functional diffeology.

Theorem 1.20. Let G be a regular Lie group and H a pre-integrable diffe-
ological Lie subalgebra of TeG with an ideal, K , as a diffeological vector space
complement; that is, a mapping, f : U → TeG = H ×K is smooth if and only if
πH◦f and πK◦f are smooth. Then there exists a regular diffeological Lie subgroup,
H , of G such that the canonical injection, i : H → G induces an isomorphism of
diffeological Lie algebras, T (i) : TeH → H ⊂ TeG.

Proof. Define H :≡ {g ∈ G : ∃ a smooth path g : [0, 1] → G such that
g(0) = e, g(1) = g , and Dtg(t)ġ(t)−1 ∈ H for all t ∈ [0, 1]} . Translating the
product in C∞0 (I,G) to C∞(I, TeG) by means of χ allows one to establish that
H is indeed a subgroup of G . The regularity of H is an immediate consequence
of the regularity of G .

Theorem 1.21. Let G be a simply connected, regular, diffeological Lie group
with canonical diffeomorphism χ : C∞0 (I,G)→ C∞(I, TeG) and suppose that H is
a connected normal subgroup of G such that there exists a pre-integrable Lie ideal,
H ⊆ TeH ⊆ TeG = G , of the Lie algebra, G , of G with a diffeological vector space
complement, K , satisfying

i) χ−1(C∞(I,H)) ⊆ C∞0 (I,H) ;

ii) given h ∈ H there exists a smooth path f : [0, 1] → H such that
f(0) = e, f(1) = h, and χ(f) ∈ C∞(I,H);

iii) given any k ∈ G/H , there exists a smooth Lie algebra homomorpism φ,
of G/H into a the Lie algebra S of a regular diffeological Lie group S such that
φ(k) 6= 0.

Then G/H is a diffeological Lie group with Lie algebra G/H .

Proof. By definition of the diffeology on G/H the canoniacal map π : TeG→
TeG/H is onto; iii) implies that the canonical map restricted to K determines
a smooth one-one linear isomorphism onto G/H . From the definition of the
diffeology on G/H , we have that f : U → G/H is smooth if and only if there
exists a smooth F : Ux → G where x is an arbitrary element of U and Ux is
an open neighborhood of x in U such that π ◦ F = f |Ux . Now πK ◦ F is a
smooth mapping which depends only on f . The preceeding suffices to show that
the canonical map restricted to K is a linear diffeomorphism onto G/H .
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Lemma 1.22. Under the hypotheses of Theorem 1.21, given
u(t), v(t) ∈ C∞0 (I,G) suppose that χ(u) − χ(v) ∈ H . Then, there exists w(t) ∈
C∞0 (I,H) such that v(t) = u(t)ẇ(t).

Proof. We have as in the classical case that

χ(uv̇)(s) = χ(u)(s) + Φ(χ(v), s, χ(u)(s)).

For a verification of this equality that is applicable in this case see [13]. The
preceding equality and the fact that H is a pre-integrable ideal, which implies
that Φ(χ(v), s, ·) restricted to C∞(I,H) is a diffeomorphism onto C∞(I,H) which
imply u(t)−1v̇(t) ∈ C∞(I,H).

Lemma 1.22 implies that

Theorem 1.23. Under the hypotheses of Theorem 1.21, H and G/H are reg-
ular diffeological Lie groups.

2. On the Integrability of some Generalized Kac-Moody Lie Algebras

Inspired by Borcherds we define a generalized Kac Moody Lie algebra by the given:

1) A real Hilbert space {H, 〈·, ·〉} together with a continuous nondegenerate
symmetric bilinear form (·, ·).

2) Suppose given a countable set of elements hi ∈ H such that (hi, hj) ≤ 0
if i 6= j and such that if (hi, hi) is positive, then 2(hi, hj)/(hi, hi) is an integer;
A = ((hi, hj)) is called a generalized symmetrized Cartan matrix of real numbers.

The generalized Kac-Moody algebra G = {G(A),H} is the Lie algebra
generated by the vector space H and symbols ei and fi , with defining relations:

[H,H] = 0; [ei, fj] = δijhi; [h, ei] = (hi, h)ei, [h, fi] = −(hi, h)fi.

If aii > 0, then ad(ei)
1−2aij/aii(ej) = 0 = ad(fi)

1−2aij/aii(fj).

We have the root space decomposition of G(A) =
∑
α∈H? Gα , where Gα =

{x ∈ G(A)|[h, x] = α(h)x for all h ∈ H} . Let’s recall that the height of a root is
defined by ht(

∑n
i=1 ziαi) =

∑n
i=1|zi| , where αi(h) = (hi, h).

The non-degenerate symmetric bilinear form (·, ·) on H uniquely extends to
a non-degenerate invariant symmetric bilinear form on G(A) satisfying (ei, fj) =
δij called the the canonical form.. Now define ω : G(A) → G(A) by ω(ei) =
−fi, ω(fi) = −ei, ω(h) = −h, h ∈ H and set (x, y)0 = −(x, ω(y)).

We now define on G(A) the positive definite inner product

(α+ + h+ α−, β+ + k + β−)1 = (α+, β+)0+ < h, k > +(α−, β−)0.

We shall suppose that
∑
i |aij|2 < E <∞,∀j . We have [5] ∃C > 0 so that

‖[z, z′]‖1 ≤ C(‖d(z)‖1‖z′‖1 + ‖z‖1‖d(z′)‖1) (?)

where d is a derivation of G(A) satifying d(x) = ht(α)x for x ∈ Gα(A).
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Now consider the subspace Ḡ(A) ⊂ ∏Gα(A), where α ranges over all the
roots of G(A), characterized by

{Mα} ∈ ¯G(A)

if and only if given any t ≥ 1 there exists a constant Kt so that∑
α,ht(α)=n

‖Mα‖ ≤ Kte
−t|n|.

On the vector space Ḡ(A), consider the Hausdorff locally convex topology
generated by the following fundamental system of neighborhoods of 0 ∈ Ḡ(A): to
each pair of positive real numbers (t, k), let

U(t, k) =

{Mα} ∈ Ḡ(A) :
∑

α,ht(α)=n

‖Mα‖ < ke−t|n|


With this topology Ḡ(A) is a Frechet space. In this topology, the bounded sets
are characterized by

Lemma 2.1. B ⊂ Ḡ(A) is bounded if and only if for any positive real number t
there exists a constant Bt such that {Mα} ∈ B implies ‖∑α,ht(α)=nMα‖ ≤ Bte

−tn .

It is not difficult to verify that all bounded sets are relatively compact.

Proposition 2.2. Given {gα}, {hα} ∈ Ḡ(A) then [{gα}, {hα}] = {kα} ∈ Ḡ(A);
further, [{gα}, {hα}] determines a topological Lie algebra structure on Ḡ(A).

Proof. Given {gα}, {hα} ∈ ¯G(A), let Gt (resp. H t ) be so that∑
α,ht(α)=n

‖gα‖ ≤ Gte
−t|n|,

∑
α,ht(α)=n

‖hα‖ ≤ Hte
−t|n|.

Setting gn =
∑
ht(α)=n gα (resp. hn =

∑
ht(α)=n hα ),∑

n∈Z
‖[gn+e, h−n]‖ ≤ C{

∑
n∈Z

(|n+ e|+ |n|)GtHte
−t(|n+e|+|n|)

≤ CGtHt

∑
n∈Z

(|n+ e|+ |n|)e−(t−s)(|n+e|+|n|) · e−s|e|

≤ CGtHt

∑
n∈Z

2|n|e−(t−s)|n| · e−s|e|,

where C is the constant of (?) above and s < t . Setting
Kt,s =

∑
n∈Z 2|n|e−(t−s)(|n|) , the inequality∑

n∈Z
‖[gn+e, h−n]‖ ≤ CGtHtKt,se

−s|e| (??)

implies that the above bracket gives to Ḡ(A) the structure of a topological algebra
which contains the Kac-Moody Lie algebra G(A) as a dense subalgebra, thus Ḡ(A)
is a topological Lie algebra.
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We recall that a Hausdorff, sequentialy complete, locally convex topological
vector space V is called strongly bornological (resp. bornological) when any subset
(resp. convex subset) absorbing all the bounded subsets of V is a neighborhood
of the origin. In general in this paper the topological vector spaces with which we
deal will be strongly bornological. Note that metrisable locally convex topological
vector spaces are strongly bornological as are countable inductive limits of strongly
bornological spaces.

In what follows we shall make use of a sequence of functions defined itera-
tively as follows:

F0(t, q) =
∑
n∈Z

(|n+ q|+ |n|)e−t(|n+q|+|n|),

Fk+1(t, q) =
∑
n

(|n+ q|+ |n|)Fk(t, n+ q)e−t|n|, t > 0, q ∈ Z.

One readily verifies the following lemmas:

Lemma 2.3. F0(t, q) is bounded by some constant D for 1 ≤ t0 < s < t, q ∈ Z
and satisfies F0(t, q) ≤ F0(t− s, q) · e−s|q| .

Corollary 2.4. Fk(t, q) ≤ Fk(t− s, q) · e−s|q| .

Lemma 2.5. There exists a constant κ ≥ 1 such that∑
n∈Z

(|n+ q|+ |n|)e−t(|n|) < κ|q| for all t > t0 ≥ 1,

where κ is independent of t.

Corollary 2.6. Fn(t, q) ≤ D(κ|q|)n .

Lemma 2.7. Define φ(t, q) =
∑
n≥0

Fn(t,q)
n!

, then |φ(t, q)| ≤ Deκ|q| .

Lemma 2.8. Given ξ = {ξα} , η = {ηα} ∈ ¯G(A) such that ‖ξn‖ ≤ Xte
−tn

and ‖ηn‖ ≤ Yte
−t|n| , where ξn =

∑
α,ht(α)=n ξα, ηn =

∑
α,ht(α)=n ηα . Then ‖[ξ, η]‖ ≤

CXtYtF0(t, q), where C is the constant of (?).

Lemma 2.9. Given the hypotheses of Lemma 2.8, then

‖[[ξ, η1], η2]‖ ≤ C2XtY
2
t F1(t, q),

where η1, η2 satisfy the conditions of Lemma 2.8.

By iteration, we obtain

Lemma 2.10. Given the hypotheses of Lemma 2.8, then ‖adηk ◦. . .◦adη1(ξ)‖ ≤
CkXtY

k
t Fk−1(t, q), where ηk, . . . , η1 , and ξ satisfy the conditions of Lemma 2.8.

We have from [13]:
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Theorem 2.11. Let A be a graded Hausdorff complete locally convex topolog-
ical Lie algebra with a strongly bornological underlying vector space topology such
that given any bounded set B ⊂ A there exists a balanced convex bounded set C
such that

∑∞
n=k (1/n!)Bn → 0 as k →∞ in AC =

⋃
\ \C with the C−gauge norm

topology; that is, |α|C = inf{λ > 0 : α ∈ λC}, where Bn+1 = [B,Bn]. Then the
canonical diffeological structure on A is pre-integrable.

Lemmas 2.3–2.10 imply

Theorem 2.12. If G(A) is a generalized Kac-Moody Lie algebra, then Ḡ(A) is
an integral pre-integrable diffeological Lie algebra.

Definition 2.13. Given two smooth paths f, g : I → L into a diffeological
Lie algebra, L, {, } : I → L we say then are Lie homotopic when there exists
smooth maps from the square V,W : I × I → L such that V (t, 0) = f , V (t, 1) =
g,W (0, s) ≡ 0, W (1, s) ≡ 0, Vs −Wt = [V,W ].

Now let E ⊂ H , where H is a Hilbert space be an Hausdorff, sequentially
complete, locally convex topological vector space with a topology finer than the
induced topology from the Hilbert space, we suppose E furnished with the canon-
ical diffeology from its locally convex topology, and let End(E) be the algebra of
smooth linear endomorphisms of E . We suppose that End(E) has the diffeology
induced from F (E,E).

Proposition 2.14. End(E) is a diffeological algebra.

Proof. To show that multiplication is a smooth map from End(E) × End(E)
to End(E) it suffices to consider smooth maps f, g : U → End(E) and apply the
chain rule to the composition gḟ(x, e) = g(x)(f(x)(e)). As the composition of
plots is smooth and the addition of plots is by definition smooth it follows that
End(E) under composition with the normal diffeology is a diffeological algebra.

Lemma 2.15. Given a > 0, let p : (−a, a) → End(E) be a path through the
identity, p(0) = id ∈ End(E); if [p] = 0 ∈ Tx(End(E)),then Dt=0p(t)(x) = 0 for
each x ∈ E.

Proof. Suppose [p] = 0 ∈ Te(End(E)), then for every smooth linear map
functional F : E → R , we have 0 = Dt=0(F ◦ p) = F ◦ Dt=0(p); therefore,
Dt=0p(t)(x) = 0 for each x ∈ E , by the Hahn-Banach theorem.

Remark 2.16. Lemma 2.5 implies that there exists a canonical homomorphism

κ : Tx(End(E))→ End(E)

Now we shall give conditions which imply that a representation of the Lie
algebra, L , of a simply connected regular diffeological Lie group L ,

L → End(E )

is the derivative of a multiplicative homomorphism of L→ End(E), where End(E)
has the canonical Lie algebra structure: [A,B] = AB −BA .

Notation: Given a diffeological vector space, E , and a smooth map, f :
I → E , where I = [0, 1], designate by f̂ the convex hull of f(I) ⊂ E .
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Definition 2.17. Let E ⊂ H , where H is a Hilbert space, be an Hausdorff,
sequentially complete, bornological, locally convex topological vector space with a
topology rendering continuous the canonical injection into H , and suppose that
L is a regular diffeological Lie group with diffeological Lie algebra, L. A smooth
representation F : L → End(E), where End(E) has the diffeology induced by the
function space diffeology, is called regular when given any smooth map, f : I → L
and any bounded subset, B ⊂ E , we have that

∑∞
n=k (1/n!)L(f̂)n(B) → 0 as

k → ∞ in AC =
⋃
n nC with the C − gauge norm topology; that is, |α|C =

inf{λ > 0 : α ∈ λC}, where C is some bounded convex subset of E .

We are able to define the fundamental group of a diffeological space by
means of the connected components, given by smooth arcs, of the diffeological
space Ω(X, x0) ≡ {f ∈ F (R,X) : f(t) = x0, t < ε, t > 1 − ε, 0 < ε < 1/2} .
By iteration one defines the higher homotopy groups and can show that an exact
sequence of homotopy groups for diffelogical fibrations exists. Iglesias [7] has shown
that for a connected diffeological space a universal covering space exists; that is,
he establishes a unique principal fibration with discrete fiber isomorphic to the
fundamental group. By a straightforward generalisation of classical strategies one
can show that a connected diffeological group has a unique universal covering
diffeological group such that the covering map is a smooth homomorphism.

As an direct consequence of the theory of linear differential equations on
bornological spaces [13] we have

Lemma 2.18. Let L be a simply connected regular diffeological Lie group, with
Lie algebra L, H : L → End(E) a smooth regular representation of Lie algebras,
and f : I → L a smooth function, then there exists an unique smooth path
k : I → End(E) such that k′(t) = H(f(t))(k(t)), such that k(0) = id ∈ End(E).

Theorem 2.19. Let L be a regular simply connected diffeological Lie group,
under the hypotheses of Lemma 6, there exists an unique multiplicative smooth
homomorphism φ:L→End(E) such that κ ◦ Te(φ) = H , where κ : Te(End(E))→
End(E) is the homomorphism of the remark after Lemma 8.

Proof. Given the identity e ∈ L let f : I → L be a smooth path such that
f(0) = e ∈ L and f(1) = ` and designate by F : I → L the logarithmic derivative
of f . Set φ(`) = k(1), where k : I → End(E) is the unique smooth path in
End(E) satisfying

k′(t) = H(F (t))(k(t)) (???)

such that k(0) = id ∈ End(E). The simple connectivity of L and the assumption
that E has a topology finer than the induced topology from a Hilbert space implies
that φ is unique. That φ is smooth follows from the existence and uniqueness
theorem for differential equations with parameters on the class of bornological
spaces in which bounded sets are compact (see [13]).

To prove that φ is multiplicative, suppose that f, g : I → L are smooth
paths from the identity in L to g and h respectively, then the logarithmic deriva-
tive of f × g : I → L is given v+ φv(t, w(t)) where v (resp. w) is the logarithmic
derivative of f (resp. g ) and φv is the unique flow of the differential equation
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Dt(φv(t, w)) = [v, φv(t, w)] satisfying the initial condition φv(0, w) = w .To prove
that φ is multiplicative, It suffices to show that when ki(t), i = 1, 2 satisfy
k′1(t) = H(v(t))(k1(t)) and k′2(t) = H(w(t))(k2(t)), then k(t) = k1(t) × (k2(t))
satisfies H(v + φv(t, w(t)))(k(t)) = k′(t). From the theory of linear differential
equations on bornological topological vector spaces it follows that (see [13]) so-
lutions to (?) define unique invertible linear maps in End(E). It then becomes
straightforward to show that H(v + φv(t, w(t)))(k(t)) = k′(t).

References

[1] Borcherds, R., Generalized Kac-Moody Lie Algebras, J. of Algebra 115
(1988), 501–512.

[2] Bourbaki, N., “Espaces Vectoriels Topologiques,” Chap. III and IV.

[3] Dazord, P., Lie Groups and Algebras in Infinite Dimensions: a new ap-
proach XXXIIIrd Taniguchi Symposium, Symplectic Geometry and its ap-
plications (1993).

[4] Donato, “Geometrie Symplectique & Mecanique,” Lecture Notes in Math.
(Springer) 1416 (1990), 84–104.

[5] Garland, H., The Arithmetic Theory of Loop Groups, Publ. Math. I.H.E.S.
52 (1980), 5–136.

[6] Goodman, R. and Wallach, N. R., Structure and unitary cocyle represen-
tation of loop groups and the group of diffeomorphisms of the circle, Jour.
r. angew. Math. 347 (1984), 69–133.

[7] Iglesias, P., Thesis, L’Universite de Provence, 1985.

[8] Kac, V. and Peterson, D. H., Unitary structure in representations of infi-
nite dimensional groups and a convexity theorem, Invent. math. 76 (1984),
1–14.

[9] Kac, V., “Infinite Dimensional Lie Algebras,” Cambridge Univ. Press -
1985.

[10] —, Constructing Groups Associated to Infinite-Dimensional Lie Algebras,
in: “Infinite Dimensional Groups with Applications,” V. Kac Ed., Springer-
Verlag, 1985.

[11] Leslie, J., On the Lie Subgroups of Infinite Dimensional Lie Groups, Bull.
of Amer. Math. Soc. 16 (1987), 105–108.

[12] —, On a Super Lie Group Structure for the Group of G∞ Diffeomorphisms
of a compact G∞ supermanifold, Geometry & Physics 24 (1997), 37–45.

[13] —, Lie’s Third Theorem in Supergeometry, Algebras, Groups, and Geome-
tries 14(1997), 359–405.

[14] Mathieu, O., Construction du groupe de Kac-Moody et applications, C.R.
Acad. Sci. 1 (1988), 227–230.

[15] Milnor, J., Remarks on Infinite Dimensional Lie Groups, Proc. of Summer
School on Quantum Gravity, (1983).

[16] Moody, R. V., and K. L. Teo, Tits’ systems with crystallographic Weyl
groups, J. Algebra 21 (1972), 178–190.



442 Leslie

[17] Omori, H., A remark on non-enlargible Lie algebras, J. Math. Soc. Japan
33 (1981), 707–710.

[18] Pressley, A., and G. Segal, “Loop Groups,” Oxford Science Publications,
1986.

[19] Ray, U., Generalized Kac-Moody Algebras and Some Related Topics, Bull.
Amer. Math. Soc. 38 (2001), 1–42.

[20] Sikorski, R., “Differential Modules,” Colloquiuum Mathematicum, XXIV,
1971.

[21] Souriau, J. M., in: “Feuilletages et Quantification geometrique,” Travaux
en Cours, Hermann, 1984, 365–398.

[22] Suto, K., Differentiable Vectors and Analytic Vectors in Completions of
Certain Representation Spaces of a Kac-Moody Algebra, Proc. Japan Acad.
63 Ser. A (1987), 225–228.

[23] Tits, J., Groups and Group Functors Attached to Kac-Moody Data, Lecture
Notes in Mathematics 1111 (1984), 193–223.

Joshua Leslie,
Mathematics Department,
Howard University
Washington, DC
USA
jleslie@howard.edu

Received February 4, 2002
and in final form January 24, 2003


