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Abstract. A simple parahermitian symmetric space is a symplectic symmet-
ric space of a simple Lie group G with two invariant Lagrangian foliations. Such
a symmetric space has a nice G -equivariant compactification. In this paper, we
obtain the stratification of the compactification, whose strata are G -orbits. By
using this, we determine the automorphism group of the double foliation for each
simple parahermitian symmetric space.

Introduction

Let M be a smooth manifold. A pair (F±, ω) is called a parakähler structure
(or bi-Lagrangian structure) on M if ω is a symplectic form on M and F±

are two Lagrangian foliations. A significant property of parakähler structures
is that a coadjoint orbit of a semisimple Lie group is hyperbolic if and only
if it admits an invariant parakähler structure ([4]). A symmetric space G/H
of a Lie group G is called a parahermitian symmetric space (or bi-Lagrangian
symmetric space)([10]) if G/H admits a G-invariant parakähler structure (F±, ω).
The simplest example of parahermitian symmetric spaces is the symmetric space
SL(2,R)/R∗ , realized as the one-sheeted hyperboloid x2 + y2 − z2 = 1 in R3 =
Lie SL(2,R). The Lagrangian foliations F± are given by the two families of
rulings of the hyperboloid. Parahermitian symmetric spaces of semisimple Lie
groups were classified and characterized group-theoretically in [10,5]. A semisimple
symmetric space G/H is parahermitian if and only if H is an open subgroup of
the Levi subgroup of a parabolic subgroup with abelian nilradical. Semisimple
parahermitian symmetric spaces G/H are in one-to-one correspondence (up to
covering) with semisimple graded Lie algebras (shortly, GLAs) of the 1st kind
g = g−1 + g0 + g1 , in such a way that g = LieG and g0 = LieH . For the explicit
forms of simple parahermitian symmetric pairs, see the tables in 6.4 and 7.2.

Now let g = g−1 + g0 + g1 be a simple GLA, and let M = G/G0 be the
parahermitian symmetric space corresponding to the symmetric pair (g, g0), where
G is the largest possible open subgroup of the automorphism group of g such that
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G/G0 is realized as an Ad g-orbit in g . The subgroups U± := G0 exp g±1 are the
parabolic subgroups with LieU± = g0 +g±1 . The flag manifolds M± = G/U± are
symmetric R-spaces. Let r be the rank of M± . Then there are exactly r numbers
of sl(2,R)-triplets in g which are pairwise commutative and whose direct sum
is expressed as a graded subalgebra a−1 + a0 + a1 in g (cf. [8]). One has the
root system ∆(g, a0) of g with respect to the abelian subspace a0 . ∆(g, a0) is of
BCr -type or Cr -type ([8,1]). We say that G/G0 and the GLA g are of BCr -type
or Cr -type, if ∆(g, a0) is.

A fundamental problem of the geometry of parahermitian symmetric spaces
(M = G/H , F± , ω ) is to determine the automorphism group Aut(M,F±)—
the group consisting of diffeomorphisms of M leaving the double foliation F±

invariant. The aim of this paper is to settle this problem for an arbitrary simple
Lie group G . A partial answer was given by Tanaka [15] under the assumption that
G is classical simple. Let us describe our procedure to determine the automorphism
group. The first step is to obtain the G-orbit structure of M̃ = M−×M+ , which
is the natural G-equivariant compactification of M (cf. [6] and Sections 2 and 3).

The second step is to show that the G-orbit decomposition gives M̃ a stratification
whose strata are G-orbits. This is done in Sections 5 and 6.

The third step is concerned with BCr -type. We now assume that M
is of BCr -type. In terms of the root system ∆(g, a0), we construct a grading
g =

∑2
k=−2 gk(r) of the 2nd kind having the property that g±1(r) are expressed

as the direct sum of two equi-dimensional abelian subspaces, g+
±1(r) + g−±1(r) (cf.

(4.10),(4.14)). Such a grading is called a pseudo-product grading of g (Tanaka
[15]). Let Qr be the isotropy subgroup of G at the base point of the lowest
dimensional G-orbit M0 . The third step is to show that Qr is the parabolic
subgroup with LieQr = g−2(r)+g−1(r)+g0(r) (Proposition 4.8) and that its Levi
subgroup coincides with the automorphism group of the pseudo-product grading
(cf. Lemma 7.4 and Remark 7.1). The flag manifold M0 = G/Qr has the double

foliation F±0 induced from the product structure of M̃ . We denote by Aut(M0, F
±
0 )

the group of diffeomorphisms of M0 leaving F±0 invariant. Then Tanaka’s theory
[15] of Cartan connections for pseudo-product manifolds, together with the third
step guarantees the validity of the relation Aut(M0, F

±
0 ) = G .

For the case where M is of Cr -type, the minimal G-orbit M0 coincides
with G/U− = M− , and the double foliation F±0 becomes trivial. But, in turn,
M− has the generalized conformal structure K , which is obtained from the cone
defined as the union of singular G0 -orbits in g1 ([2]). We determined in [2] the
conformal automorphism group Aut(M−,K) for each symmetric R-space M− .

The fourth and the last step is to obtain the injective homomorphism
of Aut(M,F±) into Aut(M0, F

±
0 ) or into Aut(M−,K). For this purpose, the

stratification of M̃ is essential. Let f ∈ Aut(M,F±). Then f extends to M̃

as an automorphism f̃ of the product structure of M̃ . It follows that f̃ is
an automorphism of the stratification of M̃ (Corollary 6.14). In particular f̃

leaves M0 stable. It is shown that the assignment f 7→ f̃ |M0 gives the injective
homomorphism as desired. The main results are Theorems 8.1 and 8.4.

We want to supplement some details on the stratification of M̃ , since it
is a rather independent topic. By a stratification of a real analytic manifold X ,
we mean a partition X =

∐s
k=0 Ak which satisfies the following conditions: (S1)
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Each Ak is an analytic submanifold of X , (S2) the closure Ak of Ak is an analytic
set of X and coincides with A≤k :=

∐k
i=0 Ai (0 ≤ k ≤ s), and (S3) the singular

locus Sing(Ak) is given by A≤k−1 (1 ≤ k ≤ s− 1). Let M̃ =
∐r

k=0 Mk be the

G-orbit decomposition (G acts on M̃ diagonally), where dimMk > dimMk−1 and

Mr = M is open dense in M̃ . For the G-orbit decomposition of M̃ , the properties
(S1) and (S2) were already proved in [6]. We will verify (S3) in this paper.

Suppose first that the GLA g is of BCr -type. We consider the two abelian
subspaces of g : g1 = g2(r) + g−1 (r), g′1 := g2(r) + g+

1 (r). The direct sum g1 ⊕ g′1
is imbedded in M̃ as an open subset. We identify g1 ⊕ g′1 with its image in M̃ .
Let M∗

k := Mk ∩ (g1 ⊕ g′1), which is open dense in Mk . The closure M∗
k of M∗

k in

g1 ⊕ g′1 coincides with M∗
≤k :=

∐k
i=0 M

∗
i and it is an algebraic variety in g1 ⊕ g′1

(Theorem 5.14). Obviously we have Sing(M≤k) = G(Sing(M∗
≤k)). Thus, in order

to find the singular locus of M≤k , it is enough to find that of M∗
≤k . Now we look at

g2(r). The Levi subgroup L of Qr corresponding to g0(r) acts on g2(r). We have
a partition g2(r) =

∐r
k=0 Vk , where Vk is a union of equi-dimensional L-orbits

with dimVk > dimVk−1 . As a conclusion, the above partition is a stratification
of g2(r). The validity of (S1) and (S2) was proved in [8]; as was shown in [8],
V≤k (0 ≤ k ≤ r − 1) is an algebraic variety in g2(r). By Proposition 6.3, the
problem of finding the singular locus of M∗

≤k is reduced to finding that of V≤k . In
the case where the GLA g is of Cr -type, we have g1 = g′1 = g2(r). Therefore it
is enough to look at the determinantal varieties V≤k in g1 for the case where the
GLA g is of Cr -type. In the realization of g1 as a matrix space, V≤k is a complex
or real determinantal variety of classical or exceptional type. The determination
of Sing(V≤k) will be carried out in Section 6. Levasseur-Stafford [11] is a good

reference for the complex classical case. The final result on the stratification of M̃
is given by Theorem 6.13.

The class of simple parahermitian symmetric spaces of Cr -type contains
an interesting sub-class of symmetric spaces of Cayley type, which are causal
symmetric spaces. For a symmetric space M of Cayley type, M̃ is the causal
compactification of M (cf. [12]). As an application of the results of the present
paper, one can determine the full causal automorphism group of M . In the forth-
coming paper, we will treat this topic.

The author would like to thank MSRI, Berkeley, where most of this work
was completed during his stay in the fall, 2001. The author happily express his
thanks to Simon Gindikin for frequent valuable conversations.

The paper is organized as follows:

1. Preliminaries on parahermitian symmetric spaces.

2. Double foliation of M .

3. Orbit structure of M̃ .

4. Isotropy subgroups for boundary orbits.

5. Siegel-type realization of orbits.

6. Stratification of M̃ .

7. Double foliation on the minimal boundary orbit.

8. Determination of automorphism groups of M .
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Throughout this paper, a diffeomorphism always means a C∞ - diffeomorphism.
The group of diffeomorphisms of a smooth (i.e., C∞ ) manifold M is denoted by
Diffeo(M).

1. Preliminaries on parahermitian symmetric spaces

Let M be a connected 2n-dimensional smooth manifold, and let F± be two n-
dimensional completely integrable distributions on M . (F±) is called a paracom-
plex structure on M ([10]) if the tangent bundle TM of M can be expressed as the
Whitney sum F+⊕F− . In this case (M,F±) is called a paracomplex manifold. A
paracomplex manifold (M,F±) is called a parakähler manifold ([10]) if there exists
a symplectic form ω on M with respect to which F± are Lagrangian subbundles.
For a parakähler manifold (M,F±, ω), one can consider the two kinds of auto-
morphisms: By a paracomplex automorphism of M we mean a diffeomorphism
of M which leaves F± invariant. By a paracomplex isometry of M we mean
a paracomplex automorphism leaving ω invariant. We denote by Aut(M,F±)
(resp. Aut(M,F±, ω)) the group of paracomplex automorphisms (resp. paracom-
plex isometries) of M . The group Aut(M,F±, ω) is always a finite-dimensional
Lie group, but Aut(M,F±) is not in general.

Definition 1.1. ([10]). Let M = G/H be an almost effective symmetric coset
space of a Lie group G , and let (F±, ω) be a parakähler structure on M . If G
acts on M as paracomplex isometries with respect to (F±, ω), then (M = G/H ,
F± , ω ) is called a parahermitian symmetric space.

For each parahermitian symmetric space M = G/H , the Lie algebra g =
LieG has the structure of a GLA of the first kind g = g−1 + g0 + g1 ([10]). Under
the assumption of semisimplicity of g , the assignment M  g = g−1 + g0 + g1

induces a bijection between the set of local isomorphism classes of parahermitian
symmetric spaces and the set of isomorphism classes of effective semisimple GLA
of the first kind ([5]). In this case the original parakähler structure on M can be
recovered by the grading of g .

Let us start with a real simple GLA of the first kind

g = g−1 + g0 + g1. (1.1)

The automorphism group of the Lie algebra g is denoted by Aut g . Let (Z, τ) be
the associated pair of the GLA: Z is the characteristic element of the GLA, that is,
Z is a unique element of g0 satisfying the condition adZ = k1 on gk , k = 0, ±1,
and τ is a Cartan involution of g satisfying τ(Z) = −Z . Let σ = Ad exp(πiZ).
Then σ is the involutive automorphism of g such that σ = 1 on g0 and −1
on m := g−1 + g1 . Thus we have a symmetric triple (g, g0, σ). Let G0 be the
centralizer of Z in Aut g , and let G be the open subgroup of Aut g generated by
G0 and Ad g . Note that LieG0 = g0 and that G0 coincides with the group of
grade-preserving automorphisms of the GLA (1.1).

Proposition 1.2. The coset space M = G/G0 is a parahermitian symmetric
space corresponding to the symmetric triple (g, g0, σ). The group G acts on M
effectively by paracomplex isometries.
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Proof. If we put σ̃(a) = σaσ , a ∈ G , then σ̃ is an involutive automorphism
of Aut g . σ̃ leaves G stable. Let Gσ̃ be the subgroup of G consisting of all
σ̃ -fixed elements of G . Then, from the definition of σ , it follows that G0 is an
open subgroup of Gσ̃ . So M = G/G0 is a symmetric space. By the definition
of G0 , M is realized in g as the adjoint G-orbit through Z ∈ g . Therefore the
Kirillov-Kostant form

ω̃(X, Y ) = (Z, [X,Y ]), X, Y ∈ g (1.2)

induces a G-invariant symplectic form ω on M ,where ( , ) denotes the Killing
form of g . Let 0 ∈ M be the origin of M = G/G0 . We identify m with the
tangent space T0M of M at 0. Then the two G0 -invariant subspaces g±1 extend
to G-invariant distributions F± on M , which are Lagrangian with respect to ω
by (1.2). The complete integrability of F± has been proved in two ways, one
in [10] by a differential geometric argument, the other by an algebraic method
using dipolarizations. To prove effectivity of the G-action on M , first note that
the natural G0 -action on m can be identified with the linear isotropy group at
0 ∈ M = G/G0 . Let a ∈ G and suppose that a acts on M as the identity. Then
a ∈ G0 and a acts on m as the identity. Since g is simple, we have g0 = [g1, g−1] .
So it follows that a acts on g0 as the identity. This implies that a is the unit
element of G .

The parahermitian symmetric space (M = G/G0, F
±, ω) thus constructed is

called the parahermitian symmetric space associated to a simple GLA (1.1). The
parahermitian symmetric space M = G/G0 , which is a hyperbolic AdG-orbit, is
the bottom space with respect to the covering relation among the parahermitian
symmetric spaces corresponding to the symmetric triple (g, g0, σ).

2. Double foliations of M

Let (M = G/G0, F
±, ω) be the parahermitian symmetric space associated to a

simple GLA (1.1). We denote by F±(p) the leaves of F± through a point p ∈M .
It is easy to see that the leaves F±(0) through the origin 0 ∈ M are given by
the orbits (exp g±1) · 0. Consider the parabolic subgroups U± := G0 exp g±1 of
G . Note that u± := LieU± = g0 + g±1 . The flag manifolds G/U± are called the
symmetric R-spaces associated with M or with the GLA (1.1).

Lemma 2.1. Let M± be the sets of leaves of F± on M . Then M± are
identified with the flag manifolds G/U± .

Proof. Since F± are G-invariant, any element of G induces a permutation on
the sets of leaves of F± , which means that G acts on M± . The transitivity of G
on M± follows from that of G on M . Now let g ∈ G and suppose for example
gF+(0) = F+(0). Then the point g ·0 is in F+(0). One can write g ·0 = expX ·0
for some X ∈ g1 . Therefore g−1 expX ∈ G0 , which implies g ∈ U+ , and M+ is
expressed as G/U+ .

Lemma 2.2. For any point p ∈M , we have F+(p) ∩ F−(p) = {p}.
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Proof. One can assume p to be the origin 0. Any point q ∈ F+(0)∩F−(0) can
be expressed as q = expX · 0 = expY · 0 for X ∈ g1 and Y ∈ g−1 . This implies
that expX ∈ (expY )G0 ⊂ U− . Consequently expX ∈ U+ ∩ U− = G0 and hence
expX ∈ (exp g1) ∩G0 = (1), which implies X = 0. Thus we have q = p .

We denote the points F±(0) ∈M± by 0± , and let us consider the product
manifolds

M̃ = M− ×M+ (2.1)

with the origin (0−, 0+). M̃ has a double foliation arising from the product
structure. The leaves through the point (g10−, g20+), g1 , g2 ∈ G , are denoted by
M±(g10−, g20+). M−(g10−, g20+) is called the horizontal leaf and M+(g10−, g20+)
is called the vertical leaf. They are given by

M−(g10−, g20+) = Gg10− × {g20+} = G/g1U
−g−1

1 × {g20+},
M+(g10−, g20+) = {g10−} ×Gg20+ = {g10−} ×G/g2U

+g−1
2 .

(2.2)

Let us define a map ϕ of M to M̃ by putting

ϕ(p) =
(
F−(p), F+(p)

)
, p ∈M. (2.3)

Lemma 2.3. ϕ is a G-equivariant open imbedding of M into M̃ and preserves
the double foliations on M and M̃ ; actually we have ϕ

(
F∓(p)

)
⊂ M±(ϕ(p)

)
,

p ∈M .

Proof. Let g ∈ G . Then ϕ(g ·0) =
(
F−(g ·0), F+(g ·0)

)
= (g ·0−, g ·0+). From

this and Lemma 2.2 it follows that ϕ is G-equivariant imbedding. The openness
of ϕ follows from dimension counting. Now let q ∈ F−(p). Then F−(q) = F−(p)
and hence ϕ(q) =

(
F−(p), F+(q)

)
, which implies that ϕ(q) lies on the vertical leaf

through ϕ(p).

Since U− ∩ U+ = G0 , M has the structure of the double fibration over
M± . The projections π± : M →M± are given by

π±(g · 0) = g · 0±, g ∈ G. (2.4)

Lemma 2.4. For each point p ∈M , we have

F±(p) = (π±)−1
(
π±(p)

)
.

Proof. It is enough to prove the assertion for the case where p is the origin.
Choose a point (expX)0 ∈ F+(0), X ∈ g1 . Then we have π+

(
(expX)0

)
=

(expX)0+ = 0+ , and hence (expX)0 ∈ (π+)−1(0+) = (π+)−1
(
π+(0)

)
. Conversely,

let p ∈ (π+)−1(0+). Then π+(p) = 0+ . Consequently p can be written as p = u0,
where u ∈ U+ . If we write u = (expY )h , Y ∈ g1 , h ∈ G0 , then we have
p = (expY )0 ∈ F+(0).

If we denote the projections by $± : M̃ →M± , then we have $± · ϕ = π±

(cf. (2.4)). Therefore, under the identification of M with ϕ(M), the double

fibration of M is the restriction of the trivial double fibration of M̃ to M . Later
on we always identify M with its ϕ-image in M̃ . As was seen in the proof of
Lemma 2.3, M is an orbit through the origin (0−, 0+) ∈ M̃ under the diagonal
G-action.
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3. Orbit structure of M̃

We wish to consider the orbit structure of M̃ under the diagonal G-action. We
start with a simple GLA (1.1). Recall the decomposition g = g0 + m by σ (cf.
§1). Also we have the Cartan involution τ satisfying τ(Z) = −Z . The property
τ(Z) = −Z means that τ is grade-reversing, i.e., τ(gk) = g−k , k = 0, ±1. Let
g = k + p be the Cartan decomposition by τ , where τ = 1 on k and −1 on p .
Since σ and τ commute, we have the decomposition

g = k0 + mk + p0 + mp, (3.1)

where k0 = g0 ∩ k , mk = m ∩ k , p0 = g0 ∩ p and mp = m ∩ p . Note that Z ∈ p0 .
Choose a maximal abelian subspace a of p such that Z ∈ a . Then a is contained
in p0 . Let ∆ be the root system of g with respect to a . Let ( , ) denote the
Killing form of g . Then we have the partition of ∆ corresponding to the grading
of g :

∆ = ∆−1 q∆0 q∆1,

∆k = {α ∈ ∆ : (α, Z) = k }, k = 0,±1.

(3.2)

Choose a linear order in ∆ in such a way that ∆1 ⊂ ∆+ ⊂ ∆0 ∪∆1 , where
∆+ denotes the positive system of ∆ with respect to that order. Then choose a
maximal system of strongly orthogonal roots, Γ = {β1, . . . , βr} in ∆1 , such that
each βi has the same length and that θ = β1 > β2 > · · · > βr , θ being the highest
root in ∆. Here the number r is the split rank of the symmetric pair (g, g0). Note
that r is equal to the rank of the symmetric R-space G/U− .

Moreover choose a root vector Ei in the root space gβi ⊂ g1 (1 ≤ i ≤ r)
in such a way that

[Ei, E−i] = β̌i =
2

(βi, βi)
βi, 1 ≤ i ≤ r,

where E−i = −τ(Ei) ∈ g−βi ⊂ g−1 . Put Xi := Ei+E−i ∈ mp and Yi := Ei−E−i ∈
mk (1 ≤ i ≤ r). Then c =

∑r
i=1RXi is a maximal abelian subspace of mp . c

is a split Cartan subalgebra of the symmetric pair (g, g0). Note that c is also a
Cartan subalgebra of the noncompact dual of the symmetric R-space G/U− . It
is well-known that the root system ∆(g, c) of g with respect to c is of Cr -type
or BCr -type. Correspondingly we say that the GLA (1.1) and the parahermitian
symmetric space M = G/G0 are of Cr -type or BCr -type, respectively. Let a0 be
the subspace of a spanned by β1 , . . . , βr and $ be the orthogonal projection
of a onto a0 with respect to ( , ). Then either one of the following two cases
occurs ([13,6]):{

$(∆1) =
{

1
2
(βi + βj) : 1 ≤ i ≤ j ≤ r

}
,

$(∆+
0 )− (0) =

{
1
2
(βi − βj) : 1 ≤ i < j ≤ r

}
,

(3.3)

{
$(∆1) =

{
1
2
(βi + βj) (1 ≤ i ≤ j ≤ r), 1

2
βi (1 ≤ i ≤ r)

}
,

$(∆+
0 )− (0) =

{
1
2
(βi − βj) (1 ≤ i < j ≤ r), 1

2
βi (1 ≤ i ≤ r)

}
,

(3.4)

according as ∆(g, c) is of Cr -type or BCr -type, respectively. Here ∆+
0 = ∆0∩∆+ .

Now let K be the subgroup of G consisting of elements which commute with τ .
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Then K is the maximal compact subgroup of G with LieK = k . We denote the
identity component of K by K0 , and define the elements al (0 ≤ l ≤ r) in the
normalizer NK0(a) of a in K0 by putting

 al = exp
(
−π

2

l∑
i=1

Yi
)
, 1 ≤ l ≤ r,

a0 = 1.

(3.5)

The following theorem gives the G-orbit structure of M̃ .

Theorem 3.1.

(i) The points (0−, al 0
+) ∈ M̃ , 0 ≤ l ≤ r , are a complete set of representatives

of G-orbits in M̃ .

(ii) Let Ml = G(0−, ar−l 0
+), 0 ≤ l ≤ r . Then the closure Ml of Ml in M̃ is

given by

Ml = Ml qMl−1 q · · · qM0, 0 ≤ l ≤ r.

(iii) Mr = M is a single open G-orbit, and hence M̃ is a G-equivariant com-
pactification of M .

(iv) A single closed G-orbit M0 has the property : If M is of Cr -type, then
M0 = M− and ar U

+a−1
r = U− holds. If M is of BCr -type, then M0 is a

flag manifold of the second kind. M0 has the double fibration:

G/U− = M−(0−, ar 0+)←−M0 −→M+(0−, ar 0+) = G/ar U
+a−1

r .

Proof. Let us denote by G0 the identity component of G . In [6] we proved
the theorem for the G0 -action. But, by Theorem 4.12 in [6], dimMl is strictly
increasing, as l increases. Let g ∈ G . Since g normalizes G0 , g(Ml) is still a
G0 -orbit which has the same dimension as Ml . Therefore g(Ml) = Ml . In other
words, G leaves each G0 -orbit stable.

4. Isotropy subgroups for boundary orbits

We go back to a real simple GLA g in (1.1). We wish to construct a certain class
of gradings of g of the second kind in terms of the subsets Γl = {β1, . . . , βl} ,
1 ≤ l ≤ r , of Γ. When g is of Hermitian type, this type of grading corresponds
to the realizations of the bounded symmetric domain (corresponding to g) as a
Siegel domain of the third kind for 1 ≤ l ≤ r − 1 and that of the second (or first)
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kind for l = r . Let 1 ≤ l ≤ r , and put

∆2(l) =
{
α ∈ ∆1 : $(α) = 1

2
(βi + βj), 1 ≤ i ≤ j ≤ l

}
,

∆1(l) =

{
α ∈ ∆ :

$(α) = 1
2
(βi ± βj), 1 ≤ i ≤ l, l + 1 ≤ j ≤ r, or

$(α) = 1
2
βi, 1 ≤ i ≤ l

}
,

∆0(l) =


α ∈ ∆ :

$(α) = 0, or

$(α) = ±1
2
(βi − βj), 1 ≤ i < j ≤ l or

l + 1 ≤ i < j ≤ r, or

$(α) = ±1
2
(βi + βj), l + 1 ≤ i ≤ j ≤ r, or

$(α) = ±1
2
βi, l + 1 ≤ i ≤ r


,

∆−1(l) = −∆1(l),

∆−2(l) = −∆2(l).

(4.1)

Then, for a fixed 1 ≤ l ≤ r , we have a partition of ∆:

∆ =
2∐

k=−2

∆k(l). (4.2)

By using (3.3) and (3.4) we easily have

Proposition 4.1. Let 1 ≤ l ≤ r , and let c(a) be the centralizer of a in g. If
we put

g0(l) = c(a) +
∑

α∈∆0(l)

gα,

gk(l) =
∑

α∈∆k(l)

gα, k = ±1,±2,
(4.3)

then we have the grading of g of the second kind

g =
2∑

k=−2

gk(l), (4.4)

whose characteristic element is Zl =
∑l

k=1 β̌i .

Remark 4.2. Gyoja and Yamashita[3] obtained the above gradings for g com-
plex simple, in which case there are no roots α ∈ ∆ such that $(α) = 0.

Let sβi be the reflection on a corresponding to the root βi (1 ≤ i ≤ r), and
let sl = sβ1sβ2 . . . sβl (1 ≤ l ≤ r) and s0 = 1. It is known [13] that Ada al = sl ,
0 ≤ l ≤ r . Let Ql (0 ≤ l ≤ r) be the isotropy subgroup of G at (0−, al 0

+).
Then the G-orbit Mr−l can be expressed as

Mr−l = G/Ql, 0 ≤ l ≤ r,

where Ql = U− ∩ al U+a−1
l . The Lie algebra ql := LieQl can be written as

ql = c(a) +
∑
α∈Ψl

gα, 0 ≤ l ≤ r, (4.5)

where
Ψl := {α ∈ ∆0 ∪∆−1 : sl(α) ∈ ∆0 ∪∆1 }, 0 ≤ l ≤ r. (4.6)
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Lemma 4.3.

Ψl = ∆0 ∩∆0(l)q∆−1(l)q∆−2(l). (4.7)

Proof. First we will show the inclusion ⊃ in (4.7). Let α ∈ ∆. Then we have

(
sl(α), Z

)
= (α, Z)−

l∑
k=1

(α, β̌k)(βk, Z)

= (α, Z)−
l∑

k=1

2($(α), βk)(βk, βk)
−1.

(4.8)

Now let α ∈ ∆0 ∩ ∆0(l). By using (4.8) it follows from (3.4) and (4.1) that(
sl(α), Z

)
= 0, or equivalently sl(α) ∈ ∆0 and hence α ∈ Ψl . Suppose next that

α ∈ ∆−1(l). Then, by (4.1), there are three possibilities: $(α) = −1
2
(βi + βj) or

−1
2
(βi − βj) for 1 ≤ i ≤ l , l + 1 ≤ j ≤ r , or $(α) = −1

2
βi for 1 ≤ i ≤ l . In

view of (3.4) and (4.8), we have α ∈ ∆−1 and
(
sl(α), Z

)
= 0 for the first case,

and α ∈ ∆0 and
(
sl(α), Z

)
= 1 for the second case. For the third case, there are

two possibilities (cf. (3.4)): α ∈ ∆0 or α ∈ ∆−1 . Then we have from (4.8) that(
sl(α), Z

)
= 1 or 0, according as α ∈ ∆0 or α ∈ ∆−1 , respectively. Consequently

sl(α) ∈ ∆0 ∪ ∆1 for α ∈ ∆−1(l). Suppose α ∈ ∆−2(l). Then by (3.4) and (4.8)
we have α ∈ ∆−1 and

(
sl(α), Z

)
= 1.

To prove the converse inclusion ⊂ in (4.7), let α ∈ Ψl and suppose that
α does not belong to the right-hand side of (4.7). Then the following three cases
occur:

(i) α ∈ ∆2(l),

(ii) α ∈ ∆1(l) and

(iii) α ∈ ∆0(l)−∆0 .

For (i), we have α ∈ ∆1 , contradicting the assumption that α ∈ Ψl . For (ii), we
have three possibilities: $(α) = 1

2
(βi + βj) or 1

2
(βi − βj) both for 1 ≤ i ≤ l ,

l + 1 ≤ j ≤ r or $(α) = 1
2
βi for 1 ≤ i ≤ l . For the first case we have

α ∈ ∆1 , which contradicts α ∈ Ψl . For the second case, we have α ∈ ∆0 .
Consequently, by using (4.8), we have that

(
sl(α), Z

)
= −1, that is, sl(α) ∈ ∆−1 .

This contradicts the assumption α ∈ Ψl . For the third case, we have either α ∈ ∆1

or α ∈ ∆0 . In view of the condition α ∈ Ψl , we have the only choice α ∈ ∆0 ,
in which case

(
sl(α), Z

)
= −1, still contradicting the assumption α ∈ Ψl . Let

us consider the case (iii) finally. Since α lies in Ψl ∩
(
∆0(l) −∆0

)
, we have that

$(α) = −1
2
(βi + βj), l + 1 ≤ i ≤ j ≤ r , or $(α) = −1

2
βi , l + 1 ≤ i ≤ r . In

particular α ∈ ∆−1 . Therefore, in both cases, we have
(
sl(α), Z

)
= −1, which

contradicts the assumption α ∈ Ψl .

Proposition 4.4. The isotropy subalgebra ql of g at the point (0−, al 0
+) is

given by

ql = g−2(l) + g−1(l) + g0(l) ∩ g0, 0 ≤ l ≤ r.
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Proof. This follows immediately from Lemma 4.3 and (4.5).

In this paragraph we will determine the isotropy subgroup Qr of G at the
point (0−, ar 0+) ∈M0 . Let us consider the special case l = r . Then (4.1) has the
following simple form:

∆2(r) =
{
α ∈ ∆1 : $(α) = 1

2
(βi + βj), 1 ≤ i ≤ j ≤ r

}
,

∆1(r) =
{
α ∈ ∆+

0 ∪∆1 : $(α) = 1
2
βi, 1 ≤ i ≤ r

}
,

∆0(r) =
{
α ∈ ∆ : $(α) = 0 or = ±1

2
(βi − βj), 1 ≤ i < j ≤ r

}
,

∆−k(r) = −∆k(r), k = 1, 2.

(4.9)

We have the grading of the second kind

g =
2∑

k=−2

gk(r). (4.10)

Remark 4.5. In the case of Cr -type, we have ∆1(r) = Ø, ∆2(r) = ∆1 and
∆0(r) = ∆0 . Hence the grading (4.10) is reduced to the grading (1.1).

Lemma 4.6. qr = g−2(r) + g−1(r) + g0(r). In particular, qr is a parabolic
subalgebra of g of the second kind.

Proof. Since ∆0(r) ⊂ ∆0 , we have the inclusion g0(r) ⊂ g0 .

Now we put

∆+
1 (r) = ∆1(r) ∩∆+

0 ,

∆+
−1(r) = ∆−1(r) ∩∆−1,

∆−1 (r) = ∆1(r) ∩∆1,

∆−−1(r) = ∆−1(r) ∩∆−0 .
(4.11)

Then we have
∆±1(r) = ∆+

±1(r)q∆−±1(r). (4.12)

We define the following four subspaces of g :

g+
±1(r) =

∑
α∈∆+

±1(r)

gα, g−±1(r) =
∑

α∈∆−±1(r)

gα. (4.13)

Those four subspaces are equi-dimensional and abelian ([6]). We have the decom-
positions

g1(r) = g−1 (r) + g+
1 (r), g−1(r) = g+

−1(r) + g−−1(r). (4.14)

The original grading (1.1) of g can be reconstructed as

g−1 = g−2(r) + g+
−1(r),

g0 = g−−1(r) + g0(r) + g+
1 (r),

g1 = g−1 (r) + g2(r).

(4.15)

Let C(Zr) be the centralizer of Zr in Aut g . Then the normalizer N(qr)
in Aut g of qr can be written as

N(qr) = C(Zr) · exp
(
g−2(r) + g−1(r)

)
. (semi-direct) (4.16)
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Qr is a subgroup of U− ∩ N(qr) = NU−(qr), the normalizer of qr in U− . (4.15)
implies that

NU−(qr) =
(
C(Zr) ∩ U−

)
· exp

(
g−2(r) + g−1(r)

)
. (4.17)

Lemma 4.7. Let C(Z,Zr) be the centralizer of both elements Z and Zr in
Aut g. Then we have C(Zr) ∩ U− = C(Z,Zr).

Proof. Let a ∈ C(Zr) ∩ U− . We write a = b expX , b ∈ C(Z), X ∈ g−1 .
Then [X,Zr] ∈ g−1 and hence

[
X, [X,Zr]

]
= 0. Therefore we have

Zr = (Ad a)Zr = (Ad b)(Ad expX)Zr = (Ad b)Zr + (Ad b)[X,Zr] ⊂ g0 + g−1.

Hence (Ad b)[X,Zr] = 0. Ad b being invertible on g−1 , we have [X,Zr] = 0.
Consequently X ∈ g0(r) ∩ g−1 = (0), and a = b ∈ C(Z).

Proposition 4.8. The isotropy subgroup Qr of G at (0−, ar 0+) ∈M0 is given
by

Qr = C(Z,Zr) exp
(
g−2(r) + g−1(r)

)
.

Proof. By Lemma 4.5 and (4.17) we have

NU−(qr) = C(Z,Zr) exp
(
g−2(r) + g−1(r)

)
.

Recall Qr ⊂ NU−(qr). To prove the converse inclusion, it suffices to show that
C(Z,Zr) ⊂ Qr . By using (4.8), one sees sr(Z) = Z − Zr , and consequently

a−1
r C(Z)ar = C

(
(Ad a−1

r )Z
)

= C
(
sr(Z)

)
= C(Z − Zr),

a−1
r C(Zr)ar = C

(
(Ad a−1

r )Zr
)

= C
(
sr(Zr)

)
= C(Zr).

As a result, a−1
r C(Z,Zr)ar = C(Z − Zr) ∩ C(Zr) = C(Z,Zr) ⊂ U+ . Hence we

have C(Z,Zr) ⊂ U− ∩ ar U+a−1
r = Qr .

Corollary 4.9. G = C(Z,Zr)G
0 .

Proof. We have M0 = G/Qr = G0/Qr ∩ G0 = G0Qr/Qr , which implies
G = QrG

0 = C(Z,Zr)G
0 .

Corollary 4.10. Suppose that M is of Cr -type. Then Qr = U− = ar U
+a−1

r

and M0 = G/U− = M− .

Proof. By Remark 4.5 and Proposition 4.8, we see that Qr = C(Z) exp g−1

= U− , and hence U− = Qr = U− ∩ ar U+a−1
r ⊂ ar U

+a−1
r . Hence we have

U− = ar U
+a−1

r .
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5. Siegel-type realization of orbits

Lemma 5.1.

sr
(
∆k(r)

)
= ∆−k(r), k = 0,±1,±2, (5.1)

sr
(
∆±−1(r)

)
= ∆±1 (r). (5.2)

Proof. Let α ∈ ∆k(r). Then
(
sr(α), Zr

)
=
(
α, sr(Zr)

)
= −(α, Zr) = −k ,

which implies that sr(α) ∈ ∆−k(r). Let α ∈ ∆+
−1(r). Then, by (4.8) we have(

sr(α), Z
)

= 0, and hence sr(α) ∈ ∆0 . One can write $(α) = −1
2
βi for

some i . Hence we have $
(
sr(α)

)
= sr$(α) = sr(−1

2
βi) = 1

2
βi , proving that

sr(α) ∈ ∆+
1 (r).

Lemma 5.2. The operator Ad ar is grade-reversing with respect to the grading
(4.10). Moreover Ad ar interchanges g±−1(r) with g±1 (r), respectively.

Proof. Since Ad ar induces sr on a (cf. 4.1), the lemma is immediate from
Lemma 5.1.

Up to the present, we have expressed M̃ as M− ×M+ . Here M± are just
the leaves of the product foliation through the origin (0−, 0+). In order to get the
Siegel-type realization of G-orbits, we choose the point (0−, ar 0+) ∈ M0 as the

new origin of M̃ . Then M̃ can be expressed as

M̃ = M−(0−, ar 0+)×M+(0−, ar 0+) = G/U− ×G/ar U+a−1
r . (5.3)

For simplicity we write (M+)r for G/ar U
+a−1

r . We identify the tangent space
T0−(G/U−) with g1 = g2(r) + g−1 (r) (cf. (4.15)), and T0+(G/U+) with g−1 =
g−2(r) + g+

−1(r). Then the tangent space Tar 0+(G/ar U
+a−1

r ) can be identified
with (Ad ar)g−1 = g2(r) + g+

1 (r) by Lemma 5.2. We will denote (Ad ar)g−1 by
g′1 . Let us consider the exterior direct sum of the vector spaces g1 and g′1

g1 ⊕ g′1 =
(
g2(r) + g−1 (r)

)
⊕
(
g2(r) + g+

1 (r)
)
. (5.4)

We define the map ξ of g1 ⊕ g′1 into M̃ = M− × (M+)r by

ξ(X,X ′) =
(
(expX)0−, (expX ′)ar 0+

)
. (5.5)

Then ξ is an open dense imbedding of g1 ⊕ g′1 . We will always identify g1 ⊕ g′1
with its ξ -image.

Lemma 5.3. Let a±l = exp
(∑l

i=1 E±i
)

(1 ≤ l ≤ r). Then

a−1
r (a−l )−1ar = a+

l , 1 ≤ l ≤ r. (5.6)
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Proof. Consider the elements in sl(2,R)

e+ =

(
0 1
0 0

)
, e− =

(
0 0
1 0

)
.

By an easy computation we have

exp
(π

2
(e+ − e−)

)
exp(−e−) exp

(
−π

2
(e+ − e−)

)
= exp e+.

Let ϕi : sl(2,R)→ g (1 ≤ i ≤ r) be the maps defined by ϕi(e±) = E±i . By the
strong orthogonality of the βi , we have [ϕi, ϕj] = 0 (i 6= j ). ϕi can be extended
to the homomorphism of SL(2,R) to G , denoted again by ϕi .

LHS of (5.6)

= exp

(
π

2

r∑
i=1

(
ϕi(e+)− ϕi(e−)

))
exp

(
−

l∑
i=1

ϕi(e−)

)
exp

(
−π

2

r∑
i=1

(
ϕi(e+)− ϕi(e−)

))

=
r∏
i=1

ϕi

(
exp
(π

2
(e+ − e−)

)) l∏
i=1

ϕi
(
exp(−e−)

) r∏
i=1

ϕi

(
exp
(
−π

2
(e+ − e−)

))
=

l∏
i=1

ϕi

(
exp
(π

2
(e+ − e−)

)
exp(−e−) exp

(
−π

2
(e+ − e−)

))
=

l∏
i=1

ϕi(exp e+) = exp

( l∑
i=1

ϕi(e+)

)
= exp

( l∑
i=1

Ei

)
.

The following lemma was proved in [9]. Note that we do not use there the
assumption that ∆(g, c) is of Cr -type.

Lemma 5.4. a−l a
−1
l a−l = a+

l .

Lemma 5.5. (0−, alar 0+) ≡ (a+
l 0−, (a+

l )2ar 0+) mod G.

Proof. First note that al 0
± = a−1

l 0± . In fact, Ad a2
l is the identity on a ,

which implies that a2
l lies in the centralizer C(Z) = U+ ∩ U− . Also note that

a−1
l ar = ara

−1
l , since al and ar commute. Consequently, in view of Lemmas 5.4

and 5.3, we have

(0−, alar 0+) = (0−, aral 0
+) = (0−, ara

−1
l 0+) = (0−, a−1

l ar 0+)

≡ (a+
l a
−
l 0−, a+

l a
−
l a
−1
l ar 0+) = (a+

l 0−, (a+
l )2(a−l )−1ar 0+)

= (a+
l 0−, (a+

l )2ara
+
l 0+) = (a+

l 0−, (a+
l )2ar 0+) mod G.

Let us put 0l =
∑l

i=1 Ei ∈ g2(r), 1 ≤ l ≤ r , 00 = 1.

Proposition 5.6. The point (0l, 2 0l) ∈ g1⊕ g′1 (identified with its ξ -image) is
a representative of the G-orbit Ml for 0 ≤ l ≤ r .
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Proof. We have

Ml = G(0−, ar−l 0
+) = G(0−, alar 0+) = G(a+

l 0−, (a+
l )2ar 0+)

= G
(
(exp 0l) 0−, (exp 0l)

2ar 0+
)

= G
(
(exp 0l) 0−, (exp 2 0l)ar 0+

)
= G

(
ξ(0l, 2 0l)

)
.

A preliminary step for Siegel-type realization of orbits was done by Tanaka
[15], which is needed for later consideration. Let Q̂r be the parabolic subgroup

of G opposite to Qr , that is, Q̂r = C(Z,Zr) · N , where N = exp n and n =
g2(r)+g1(r) = g2(r)+g+

1 (r)+g−1 (r). The group G acts on the vector space g1⊕g′1
birationally through ξ . But the subgroup Q̂r acts on it as affine transformations.

Proposition 5.7. (Tanaka [15]). Let a, x, y ∈ g2(r), b+ , v+ ∈ g+
1 (r), b− ,

u− ∈ g−1 (r) and h ∈ C(Z,Zr). Then the ξ -equivariant action of Q̂r is given by

exp(a+ b+ + b−)
(
(x, u−)⊕ (y, v+)

)
= (x+ a+ [b+, u−] + 1

2
[b+, b−], u− + b−)

⊕ (y + a+ [b−, v+] + 1
2
[b−, b+], v+ + b+),

(5.7)

h
(
(x, u−)⊕ (y, v+)

)
=
(
(Adg2(r) h)x, (Adg−1 (r) h)u−

)
⊕
(
(Adg2(r) h)y, (Adg+

1 (r) h)v+
)
.

(5.8)

Definition 5.8. We define a surjective submersion Φ of g1 ⊕ g′1 onto g2(r) as
follows: For X = (x, u−) ∈ g1 , Y = (y, v+) ∈ g′1 ,

Φ(X ⊕ Y ) = y − x+ [v+, u−].

Φ has the following
(
Q̂r, C(Z,Zr)

)
-equivariance property.

Proposition 5.9. ([15]). Φ is invariant under the action of N . Moreover let
h ∈ C(Z,Zr) and let X ′ ⊕ Y ′ = h(X ⊕ Y ). Then

Φ(X ′ ⊕ Y ′) = (Adg2(r) h)Φ(X ⊕ Y ).

We restate Lemma 3.8 [15] as follows:

Lemma 5.10. N acts on g1 ⊕ g′1 freely. Moreover let X ⊕ Y ∈ g1 ⊕ g′1 and
let X = (x, u−), Y = (y, v+). Then we have

exp(−v+) exp(−x− u−)(X ⊕ Y ) = (0, 0)⊕
(
Φ(X, Y ), 0

)
. (5.9)

Note that the group C(Zr) is the group of grade-preserving automorphisms
with respect to the grading (4.10) and LieC(Zr) = g0(r). C(Z,Zr) is an open
subgroup of C(Zr).

Let Q̂r
0 and C0(Zr) be the identity components of Q̂r and C(Zr), respec-

tively. The following proposition follows from Proposition 5.9 (cf. [15]).
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Proposition 5.11. There exists a bijection between the set of Q̂r
0 -orbits in

g1 ⊕ g′1 and the set of C0(Zr)-orbits in g2(r). More precisely, the Φ-image of a

Q̂r
0 -orbit is a C0(Zr)-orbit, and the complete inverse image by Φ of a C0(Zr)-

orbit is a Q̂r
0 -orbit.

We are interested in the intersection of a G-orbit with g1 ⊕ g′1 . Let
M∗

l = Ml ∩ (g1 ⊕ g′1), 0 ≤ l ≤ r , which is a dense open set in Ml . M
∗
l is stable

under Q̂r , and hence it can be expressed as the union of Q̂r
0 -orbits contained in

M∗
l . Those Q̂r

0 -orbits are open in M∗
l ([15]). This fact can also be proved by

using Proposition 4.4. Let us consider the (reductive) graded subalgebra of g

gev(r) = g−2(r) + g0(r) + g2(r), (5.10)

which contains the simple graded ideal

g′ev(r) = g−2(r) + [g−2(r), g2(r)] + g2(r). (5.11)

By the table of (g, gev) in [7], or by the property of roots forming ∆2(r), it turns
out that g2(r) has the structure of a real simple Jordan algebra and the adjoint
action of C0(Zr) on g2(r) coincides with the identity component of the structure
group of this Jordan algebra. Therefore we have the rank decomposition ([2])

g2(r) = Vr q Vr−1 q · · · q V0, (5.12)

where Vl is the union of equi-dimensional C0(Zr)-orbits. Vr is open dense in
g2(r), dimVk > dimVk−1 , and V0 = (0).

Lemma 5.12. Let p = X ⊕ Y ∈ g1 ⊕ g′1 . Then Φ−1
(
Φ(p)

)
is the N -orbit

through the point p.

Proof. This is an easy consequence of Proposition 5.9 and Lemma 5.10.

Proposition 5.13. M∗
l = Φ−1(Vl), 0 ≤ l ≤ r .

Proof. By Proposition 5.6, we have M∗
l = Ml∩(g1⊕g′1) = G0(0l, 2 0l)∩(g1⊕g′1),

which contains the orbit Q̂r
0(0l, 2 0l) of the same dimension. On the other hand

Q̂r
0(0l, 2 0l) = Φ−1

(
C0(Zr)Φ(0l, 2 0l)

)
= Φ−1

(
C0(Zr) 0l

)
.

Let

0p,q =

p∑
i=1

Ei −
p+q∑
j=p+1

Ej.

Note that 0l = 0l,0 . Let Vp,q = C0(Zr) 0p,q . It is known [8] that Vl =
∐

p+q=l Vp,q .

Those spaces Vp,q in the right-hand side exhaust all C0(Zr)-orbits of the dimension

equal to dimC0(Zr) 0l . By Lemma 5.12, Φ−1(Vp,q), p+ q = l , are the Q̂r
0 -orbits

of the same dimension. Therefore, by Proposition 5.11, we have

Φ−1(Vl) = Φ−1

( ∐
p+q=l

Vp,q

)
=
∐
p+q=l

Φ−1(Vp,q) = M∗
l .

We say that Φ−1(Vl) is the Siegel-type realization of the G-orbit Ml . Let
P : g2(r)→ End g2(r) be the quadratic operator of the Jordan algebra g2(r). Then
we have
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Theorem 5.14. The Siegel-type realization of the G-orbit Ml , 0 ≤ l ≤ r , is
given by

M∗
l = Φ−1(Vl) = { (x, u−)⊕ (y, v+) ∈ g1⊕g′1 : rkP (y−x+[v+, u−]) = il }, (5.13)

where il = rkP (0l). In particular, when l = r , the Siegel-type realization of the
parahermitian symmetric space M = G/G0 is given by

M∗
r = Φ−1(Vr) = { (x, u−)⊕ (y, v+) ∈ g1 ⊕ g′1 : ν(y − x+ [v+, u−]) 6= 0 }, (5.14)

where ν denotes the generic norm of the Jordan algebra g2(r).

Proof. By Proposition 5.13, we have

M∗
l = Φ−1(Vl) = { (x, u−)⊕ (y, v+) ∈ g1 ⊕ g′1 : y − x+ [v+, u−] ∈ Vl }. (5.15)

Also we have [2] that

Vl = {x ∈ g2(r) : rkP (x) = il }. (5.16)

Note that the condition rkP (x) = ir is equivalent to the condition ν(x) 6= 0.

Remark 5.15. (5.14) is an analogue of the Siegel domain realization of a
bounded symmetric domain. In the case of Cr -type, (5.13) was obtained in [9], in
which case v+ = u− = 0.

The closure Vl of Vl in g2(r), was given by V≤l :=
∐l

i=0 Vi ([2]). Therefore,
from (5.16) it follows that Vl = V≤l is an algebraic variety in g2(r), which we
call a generalized determinantal variety. In the case of g2(r) = Mn(C), Symn(C)
(resp. Alt2n(C)), the number l is just the rank (resp. one-half of the rank) of
a matrix for Mn(C) and Symn(C) (resp. Alt2n(C)). In those cases, V≤l is a
usual determinantal variety. By the definition of M∗

l , we have the following
decomposition

g1 ⊕ g′1 =
r∐
l=0

M∗
l ,

which is viewed as the rank decomposition of g1 ⊕ g′1 by Theorem 5.14.

6. Stratifications of M̃

We wish to construct a polynomial map Ψ of g1 ⊕ g′1 to g2(r) × n (cf.5.3).
Choose a point p = (x, u−) ⊕ (y, v+) ∈ g1 ⊕ g′1 , and consider the element np =
exp(−v+) exp(−x− u−) ∈ N . np can be written as

np = exp(−x+
1

2
[v+, u−]− v+ − u−).

Since exp : n→ N is diffeomorphic, one can define Ψ to be

Ψ(p) =
(
Φ(p), log np

)
=
(
y − x+ [v+, u−],−x+

1

2
[v+, u−]− v+ − u−

)
. (6.1)

Lemma 6.1. The polynomial map Ψ is a diffeomorphism of g1 ⊕ g′1 onto
g2(r)× n. Ψ−1 is also a polynomial map.
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Proof. Let p , q ∈ g1 ⊕ g′1 , and suppose Ψ(p) = Ψ(q). Then we have Φ(p) =
Φ(q) and np = nq . By Lemma 5.10, we have that np(p) = (0, 0) ⊕

(
Φ(p), 0

)
=

(0, 0)⊕
(
Φ(q), 0

)
= nq(q) = np(q), which implies that p = q , proving the injectivity

of Ψ. Now let (a,X) ∈ g2(r)×n , and let p := (exp −X)
(
(0, 0)⊕(a, 0)

)
∈ g1⊕g′1 .

Then, by Lemma 5.12,Φ(p) = Φ
(
(0, 0) ⊕ (a, 0)

)
= a , and hence, by Lemma 5.10,

we have (exp X)p = (0, 0) ⊕
(
Φ(p), 0

)
= np(p). Since N acts freely on g1 ⊕ g′1 ,

it follows that (a,X) = (Φ(p), log np), proving the surjectivity of Ψ. On the
other hand, Ψ−1 is given by Ψ−1(a,X) = (exp−X)

(
(0, 0) ⊕ (a, 0)

)
, which is a

polynomial in a and X by (5.7).

From the expression of Ψ−1 in the above proof, we have

Lemma 6.2. Let V be a C0(Zr)-orbit in g2(r). Then, for the corresponding

Q̂r
0 -orbit Φ−1(V ), we have Ψ(Φ−1(V )) = V × n.

Let M≤k and M∗
≤k denote the unions

∐k
i=0 Mi and

∐k
i=0 M

∗
i , respectively.

By Theorem 3.1 and Proposition 5.13, the closure M∗
k of M∗

k in g1 ⊕ g′1 is given
by M∗

k = M∗
≤k = Φ−1(V≤k), which is an algebraic variety in g1 ⊕ g′1 (cf. Theorem

5.14). Since V≤k is an algebraic variety in g2(r) ([2]), V≤k × n is an algebraic
variety in g2(r)× n . We will denote the singular locus and the regular locus of an
algebraic variety A by Sing(A) and Reg(A), respectively.

Proposition 6.3. The algebraic variety M∗
≤k is isomorphic to the algebraic

variety V≤k × n, for 0 ≤ k ≤ r − 1. We have

Ψ(Sing(M∗
≤k)) = Sing(V≤k)× n, 0 ≤ k ≤ r − 1.

In other words,

Sing(M∗
≤k) = Φ−1(Sing(V≤k)), 0 ≤ k ≤ r − 1.

Proof. The first assertion is an immediate consequence of Lemmas 6.1 and 6.2.
The other assertions follow from the first one.

We wish to find the singular locus Sing(V≤k) of a generalized determinantal
variety V≤k in g2(r). In the case where (g, g0) is of BCr -type, V≤k is determined
by the graded subalgebra (5.10) or (5.11) of the first kind. As is seen from the
classification of simple GLA’s of the 2nd kind([8]), the simple GLA (5.11) is of
Cr -type in this case. As for the case where (g, g0) is of Cr -type, the GLA (5.11)
coincides with the original GLA (1.1), more precisely, we have g±2(r) = g±1 and
g0(r) = g0 . Therefore one has only to consider the generalized determinantal
varieties arising from a simple GLA (1.1) of Cr -type.

Consider a simple GLA (1.1) of Cr -type. In this case g1 is a simple Jordan
algebra on which G0 acts as the structure group. As for (5.12) we have the rank
decomposition

g1 = Vr q Vr−1 q · · · q V0, (6.2)

where Vr is an open subset and V0 = (0). If we denote by G0
0 the identity

component of G0 , then Vk is a union of the equidimensional orbits [8]:

Vk = qp+q=kG0
00p,q, 0 ≤ k ≤ r, (6.3)
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where 0p,q is the same as in the proof of Proposition 5.13. (5.16) is still valid by
replacing g2(r) by g1 . Therefore V≤k is an algebraic variety in g1 defined over
R . We have V≤r−1 = {x ∈ g1 : detP (x) = 0} . Since detP (x) is a power of the
generic norm ν of the Jordan algebra g1 , the defining ideal I(V≤r−1) of V≤r−1 is
generated by the irreducible polynomial ν . The variety V≤k is a conic variety, since
G0

0 contains the one-dimensional center acting on g1 as homotheties. Therefore
the defining ideal I(V≤k) of V≤k is a homogeneous ideal. Let I(V≤k)m denote the
totality of homogeneous polynomials in I(V≤k) of degree m .

Proposition 6.4. For a simple GLA (1.1) with r ≥ 2, the singular locus
Sing(V≤1) of the generalized determinantal variety V≤1 in g1 coincides with V0 =
(0).

Proof. Let a1 be the linear span of E1, · · · , Er in g1 . Then it is known [1,8]
that

g1 = G0
0a1. (6.4)

First we claim that I(V≤1)1 = Ø. Suppose the contrary. One can then choose
a nonzero linear form f on g1 such that f(V1) = 0. Since r ≥ 2, there exists
a point x0 ∈ g1 such that f(x0) 6= 0. By (6.4) one can assume that x0 lies
in a1 . Since Ei is conjugate to E1 under G0

0 , E1, · · · , Er belong to V1 . By
the assumption for f we have that f(Ei) = 0, 1 ≤ i ≤ r , which implies that
f is identically zero on a1 . This contradicts the fact that f(x0) 6= 0, which
shows the claim that I(V≤1)1 = Ø. Recall that the variety V≤1 is defined over R
(cf.6.2). One can choose a generator {f1, · · · , fs} of the ideal I(V≤1) such that
each polynomial fi is homogeneous and defined over R . From the above argument,
it follows that deg fi ≥ 2. Consequently (dfi)0 = 0, 1 ≤ i ≤ s , which shows that
0 is a singularity of V≤1 . Obviously we have that Reg(V≤1) ⊃ V1 . Therefore we
conclude Sing(V≤1) = V0 .

In this paragraph we treat the case where the GLA (1.1) is complex simple
of Cr -type. The subspace g1 is then a complex simple Jordan algebra. The
following is a list of complex simple Jordan algebras.

Type g1 r
I Mn(C) n
II Alt2n(C) n
III Symn(C) n
IV C

n 2
VI H3(OC) 3

Here H3(OC) denotes the exceptional simple Jordan algebra of 3 × 3 Hermitian
matrices with entries in complex octonions OC .

Proposition 6.5. For any complex simple Jordan algebra g1 with r ≥ 2, we
have

Sing(V≤k) = V≤k−1, 1 ≤ k ≤ r − 1. (6.5)

Proof. (i) For the case of types I or III, X ∈ V≤k if and only if rkX ≤ k . For
the case of type II, X ∈ V≤k if and only if rkX ≤ 2k . In those three cases, (6.5)
is well-known (see for example [11]).
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(ii) Consider the case of type IV. In this case we have r = 2 and g1 =
V2 q V1 q V0 . Therefore (6.5) follows from Proposition 6.4.

(iii) Now we consider the case of type VI. In this case g1 can be identified
with H3(OC) in a such a way that Ei(i = 1, 2, 3) is sent to the diagonal matrix
(δi1, δi2, δi3). An element x ∈ H3(OC) is expressed as

x =

ξ1 c b̄
c̄ ξ2 a
b ā ξ3

 , ξi ∈ C, a, b, c ∈ OC. (6.6)

The generic norm ν(x) of x is given by

ν(x) = ξ1ξ2ξ3 − ξ1n(a)− ξ2n(b)− ξ3n(c) + t(abc),

where n and t denote respectively the norm and the trace of an octonion. We
express an element a ∈ OC as a =

∑7
i=0 aiei , where {ei} is the canonical basis of

O
C . The variety V≤2 is defined by the single equation ν(x) = 0, x ∈ g1 . We then

have

dν =
(
ξ2ξ3 − n(a)

)
dξ1 +

(
ξ1ξ3 − n(b)

)
dξ2 +

(
ξ1ξ2 − n(c)

)
dξ3

+
7∑
i=0

(
−2ξ1ai +

∂

∂ai
t(abc)

)
dai +

7∑
i=0

(
−2ξ2bi +

∂

∂bi
t(abc)

)
dbi

+
7∑
i=0

(
−2ξ3ci +

∂

∂ci
t(abc)

)
dci.

(6.7)

Now let x ∈ V≤1 . From (6.4) and (6.3) it follows that there exists an
element g ∈ G0

0 such that gx ∈ a1 ∩ V≤1 , in other words, gx is a diagonal matrix
diag(ξ1, ξ2, ξ3) ∈ V≤1 , which implies that at least two of ξ1 , ξ2 , ξ3 are zero.
Therefore we have from (6.7) that

(dν)gx = ξ2ξ3 dξ1 + ξ1ξ3 dξ2 + ξ1ξ2 dξ3 = 0

Therefore, in view of the relative invariance of ν under G0 , we have (dν)x = 0.
By the Jacobian criterion, we obtain V≤1 ⊂ Sing(V≤2). On the other hand, clearly
we have V2 ⊂ Reg(V≤2). Consequently we conclude that V≤1 = Sing(V≤2). The
equality V0 = Sing(V≤1) follows from Proposition 6.4.

We denote the defining ideal of an algebraic variety A by I(A).

Corollary 6.6. Let V≤k(1 ≤ k ≤ r − 1) be a generalized determinantal variety
in a complex simple Jordan algebra g1 . Then there exists a basis {f1, . . . , fsk} of
I(V≤k) such that each fi is defined over R and that dfi ∈ I(Sing(V≤k)), 1 ≤ i ≤ sk ,
in other words, (dfi)p = 0, 1 ≤ i ≤ sk for each point p ∈ Sing(V≤k).

Proof. Note that V≤k is defined over R (cf.6.2). For types I and III, we choose,
as a generator of I(V≤k), the totality of (k + 1)-minors of a generic element of
g1 . For Type II, we choose, as a generator of I(V≤k), the totality of the Pfaffians
of principal (2k + 2)-submatrices of a generic element of g1 . Then the assertion
is well-known for those cases (cf.[11]). For the remaining two cases, the assertion
was shown in the proof of Propositions 6.4 and 6.5.
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In this paragraph we wish to show that Proposition 6.5 is valid for a real
simple Jordan algebra. Let us consider a real simple but not complex simple
GLA(1.1) of Cr -type: g = g−1 + g0 + g1 . r is the split rank of the symmetric pair
(g, g0). In this case g1 is a real simple but not complex simple Jordan algebra.
Consider the complexification of the GLA g :

gc = gc−1 + gc0 + gc1

Let r̄ be the split rank of the symmetric pair (gc, gc0). The following is a list of
real simple GLAs of Cr -type and their complexifications:

Type I
(gc, gc0, g

c
1) =

(
sl(2n,C), sl(n,C) + sl(n,C) + C,Mn(C)

)
, r̄ = n,

(g, g0, g1) =

{ (
sl(2n,R), sl(n,R) + sl(n,R) + R,Mn(R)

)
, r = n,(

su(n, n), sl(n,C) + R, Hn(C)
)
, r = n,{

(gc, gc0, g
c
1) =

(
sl(4n,C), sl(2n,C) + sl(2n,C) + C,M2n(C)

)
, r̄ = 2n,

(g, g0, g1) =
(
sl(2n,H), sl(n,H) + sl(n,H) + R,Mn(H)

)
, r = n,

Type II


(gc, gc0, g

c
1) =

(
so(4n,C), gl(2n,C),Alt2n(C)

)
, r̄ = n,

(g, g0, g1) =

{ (
so(2n, 2n), gl(2n,R),Alt2n(R)

)
, r = n,(

so∗(4n), gl(n,H), Hn(H)
)
, r = n,

Type III{
(gc, gc0, g

c
1) =

(
sp(n,C), gl(n,C), Symn(C)

)
, r̄ = n,

(g, g0, g1) =
(
sp(n,R), gl(n,R), Symn(R)

)
, r = n,{

(gc, gc0, g
c
1) =

(
sp(2n,C), gl(2n,C), Sym2n(C)

)
, r̄ = 2n,

(g, g0, g1) =
(
sp(n, n), gl(n,H), SHn(H)

)
, r = n,

Type IV
(gc, gc0, g

c
1) =

(
so(n+ 2,C), so(n,C) + C,Cn

)
, r̄ = 2,

(g, g0, g1) =
(
so(p+ 1, q + 1), so(p, q) + R,Rn

)
, r =

{
1 (p = 0),

2 (p ≥ 1),

p ≤ q, p+ q = n,

Type VI 
(gc, gc0, g

c
1) =

(
EC7 , E

C

6 + C, H3(OC)
)
, r̄ = 3,

(g, g0, g1) =

{ (
E7(7), E6(6) + R, H3(O′)

)
, r = 3,(

E7(−25), E6(−26) + R, H3(O)
)
, r = 3.
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In the above list, H denotes the quaternion algebra. O , (resp. O′ ) denotes
the octonion (resp. split octonion) algebra. Hn(F),F = C,H,O,O′, denotes
the Jordan algebra of n × n F -Hermitian matrices. SHn(H) denotes the Jordan
algebra of n × n skew-Hermitian quaternion matrices. Note that the generalized
determinantal varieties in a complex simple Jordan algebra are defined over R .

From a result of Takeuchi [14] we have

Proposition 6.7. Let g1 and gc1 be as above, and let g1 = qrk=0Vk and gc1 =

qr̄k=0Ṽk be the rank decomposition (cf.(6.2)) of g1 and gc1 , respectively. Suppose
that r̄ = r . Then V≤k(1 ≤ k ≤ r−1) coincides with the set of R -rational points of

the complex algebraic variety Ṽ≤k . Suppose that r̄ = 2r . Then V≤k(1 ≤ k ≤ r−1)

coincides with the sets of R -rational points of the algebraic varieties Ṽ≤2k and of

Ṽ≤2k+1 .

From Proposition 6.7, we obtain

Lemma 6.8. Let f1 , . . . , fsk be real polynomials on g1 , and let f̃i(1 ≤ i ≤ sk)
be the natural extension of fi to gc1 . Then I(V≤k)(1 ≤ k ≤ r − 1) is generated by

f1 , . . . , fsk if and only if I(Ṽ≤k) (resp. I(Ṽ≤2k)) is generated by f̃1 , . . . , f̃sk for
r̄ = r (resp. r̄ = 2r.).

Proposition 6.9. For a real simple (not complex simple) Jordan algebra g1 ,
we have

Sing(V≤k) = V≤k−1, 1 ≤ k ≤ r − 1.

Proof. Let θ be the conjugation of gc1 with respect to g1 . Since Ṽ≤k is θ -

stable, Sing(Ṽ≤k) is also θ -stable. Let
(
Sing(Ṽ≤k)

)
θ

be the set of θ -fixed points

in Sing(Ṽ≤k). Suppose first r̄ = r . Since Ṽ≤k is a conic variety defined over

R (cf.6.2), one can choose a generator {f̃1, . . . , f̃sk} of I(Ṽ≤k) such that each

f̃i is homogeneous and defined over R . By Corollary 6.6, df̃i ∈ I(Sing(Ṽ≤k)).

Let fi = f̃i|g1 . Then {f1, . . . , fsk} is a generator of I(V≤k), by Lemma 6.8.

Let p ∈
(
Sing(Ṽ≤k)

)
θ
. Then p ∈

(
Ṽ≤k
)
θ

= V≤k , by Proposition 6.7. We have

(dfi)p = (df̃i)p = 0, which implies that p ∈ Sing(Ṽ≤k). Hence, by Propositions 6.5
and 6.7, we have

V≤k−1 = (Ṽ≤k−1)θ =
(
Sing(Ṽ≤k)

)
θ
⊂ Sing(V≤k). (6.8)

In view of the inclusion Vk ⊂ Reg(V≤k), we conclude V≤k−1 = Sing(Ṽ≤k)θ =
Sing(V≤k). As for the case r̄ = 2r , we should replace (6.8) by the equality

V≤k−1 = (Ṽ≤2k−2)θ = (Ṽ≤2k−1)θ =
(
Sing(Ṽ≤2k)

)
θ
⊂ Sing(V≤k).

Combining Propositions 6.5 and 6.9, we have

Theorem 6.10. Let g = g−1 + g0 + g1 be a simple GLA of Cr -type, and
let g1 = qrk=0Vk be the rank decomposition. Then the closure V̄k of Vk is the
generalized determinantal variety V≤k , and Sing(V≤k) = V≤k−1 for 1 ≤ k ≤ r− 1.

From Theorem 6.10 and Proposition 6.3 we have
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Theorem 6.11. Let g = g−1 + g0 + g1 be a simple GLA, and let r be the split
rank of the symmetric pair (g, g0). Let g1⊕g′1 = qrk=0M

∗
k be the rank decomposition

(cf. 5.4) of the vector space g1 ⊕ g′1 . Then the closure M∗
k of M∗

k in g1 ⊕ g′1 is
the algebraic variety M∗

≤k , and

Sing(M∗
≤k) = M∗

≤k−1, Reg(M∗
≤k) = M∗

k , 1 ≤ k ≤ r − 1.

Now we go back to the full G-orbits Mk .

Lemma 6.12. M≤k (0 ≤ k ≤ r − 1) is a real analytic set in M̃ .

Proof. Choose a point p0 ∈ M≤k . Then one can find an element g ∈ G such

that g(p0) ∈ g1 ⊕ g′1 . Choose a neighborhood U of p0 in M̃ in such a way that
U ′ := g(U) ⊂ g1 ⊕ g′1 . Let p ∈ U . Then we have that p ∈ U ∩M≤k if and only if
g(p) ∈ U ′ ∩M∗

≤k . Let {f1 , . . . , fsk} be a basis of the ideal I(M∗
≤k). Then M≤k

is expressed in U as

U ∩M≤k = { p ∈ U : (fi ◦ g)(p) = 0, 1 ≤ i ≤ sk },

which implies that M≤k is a real analytic set of M̃ .

A point p ∈M≤k is a regular point of M≤k , if there exists a neighborhood

U of p in M̃ such that U ∩M≤k is a smooth manifold of dimension dk := dimMk .
Otherwise we say that p is a singular point of M≤k . We denote by Reg(M≤k)
(resp. Sing(M≤k)) the regular (resp. singular) locus of M≤k . Finally we get the

following theorem which gives the stratification of M̃ by G-orbits.

Theorem 6.13. For 1 ≤ k ≤ r−1, we have Reg(M≤k) = Mk and Sing(M≤k) =
M≤k−1 .

Proof. Let p ∈ Reg(M≤k). Choose an element g ∈ G such that g(p) ∈ M∗
≤k .

Then, since p is a regular point of M≤k , g(p) lies in Reg(M∗
≤k) = M∗

k by Theorem
6.11. This implies p ∈ Mk , or equivalently, Reg(M≤k) = Mk . Similarly we can
show Sing(M≤k) = M≤k−1 .

Corollary 6.14. Suppose that a diffeomorphism f of M̃ leaves the open orbit
Mr stable. Then f leaves all other orbits Mk (0 ≤ k ≤ r − 1) stable.

Proof. When r = 1, the assertion is trivial. Assume that r ≥ 2. By the
assumption, f leaves M≤r−1 stable. Let k be an integer, 1 ≤ k ≤ r − 1.
Then it is enough to prove that if f(M≤k) = M≤k , then f(Mk) = Mk . Put
f(Mk)

∗ := f(Mk) ∩ (g1 ⊕ g′1). First we want to show f(Mk)
∗ ⊂ M∗

k . Let
p ∈ f(Mk)

∗ . Since f(Mk) is an open C∞ -submanifold of M≤k , f(Mk)
∗ is

expressed, in a neighborhood of p in g1 ⊕ g′1 , by the same polynomial equations
as for the algebraic variety M∗

≤k . Consequently the tangent spaces Tp(M
∗
≤k) and

Tp(f(Mk)
∗) are identical, which implies that

dimTp(M
∗
≤k) = dimTp(f(Mk)

∗) = dim f(Mk) = dimMk = dimM∗
≤k.
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Therefore it follows that p is a regular point of M∗
≤k . By Theorem 6.11, we

have p ∈ M∗
k , and hence f(Mk)

∗ ⊂ M∗
k . Now suppose that f(Mk) 6⊂ Mk .

Then we have f(Mk) ∩ M≤k−1 6= Ø. Since M∗
≤k−1 is open dense in M≤k−1 ,

we have f(Mk)
∗ ∩M∗

≤k−1 = f(Mk) ∩M∗
≤k−1 6= Ø. This contradicts the inclusion

f(Mk)
∗ ⊂M∗

k . We have thus proved f(Mk) ⊂Mk . The converse inclusion can be
proved by replacing f by f−1 in the assumption f(M≤k) = M≤k .

7. Double foliation on the minimal boundary orbits

In this section, we always assume that M is of BCr -type. In §2, we considered the
double foliation on M̃ , M± = {M±(g10−, g20+) : g1, g2 ∈ G } . M± naturally
induce a double foliation F±0 on the minimal boundary orbit M0 . The leaves
F±0 (p) of F±0 through a point p ∈M0 are given by the intersection M∓(p) ∩M0 .

Lemma 7.1. The leaves of F±0 through the origin (0−, ar 0+) ∈ M0 are given
by

F−0 (0−, ar 0+) = U−(0−, ar 0+) = U−/Qr,

F+
0 (0−, ar 0+) = ar U

+a−1
r (0−, ar 0+) = ar U

+a−1
r /Qr.

Proof. By the definition, F±0 (0−, ar 0+) = M∓(0−, ar 0+) ∩ G(0−, ar 0+). Let
(g0−, gar 0+) ∈ F+

0 (0−, ar 0+), g ∈ G . Then (g0−, gar 0+) ∈ M−(0−, ar 0+),
which implies that gar 0+ = ar 0+ , or equivalently, g ∈ ar U

+a−1
r . Conversely,

let u ∈ U+ . Then arua
−1
r (0−, ar 0+) = (arua

−1
r 0−, ar 0+) ∈ G( 0−, ar 0+) ∩

M−(0−, ar 0+).

Lemma 7.2. The double foliation F±0 arises from the subspaces g±1 (r) of the
GLA (4.10).

Proof. Let u± = LieU± . By Lemma 7.1, the tangent spaces at (0−, ar 0+) to
the leaves F±0 (0−, ar 0+) are identified with the factor spaces u−/qr and (Ad ar)u

+/qr .
By (4.15) and Lemma 4.6, we have

u− = g−1 + g0 = g−2(r) + g−1(r) + g0(r) + g+
1 (r) = qr + g+

1 (r). (7.1)

Also, by (4.15) and Lemma 5.2, we have

(Ad ar)u
+ = (Ad ar)

(
g−−1(r) + g0(r) + g+

1 (r) + g−1 (r) + g2(r)
)

= g−1 (r) + g0(r) + g+
−1(r) + g−−1(r) + g−2(r)

= qr + g−1 (r).

(7.2)

Therefore u−/qr and (Ad ar)u
+/qr can be identified with g+

1 (r) and g−1 (r), re-
spectively.

Let E := Zr − 2Z . Then E is a central element of g0(r). It follows from
(4.14) and (4.15) that

adE =


0 on gev(r),
1 on g+

±1(r),
−1 on g−±1(r).

(7.3)
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Lemma 7.3. Let g ∈ C(Zr) and let I = adg1(r) E . Then the following three
conditions are equivalent :

(i) g
(
g±1 (r)

)
= g±1 (r),

(ii) gI = Ig on g1(r),

(iii) g(E) = E .

Proof. The only non-trivial assertion is the implication (ii) → (iii). Suppose
(ii). Since Z , Zr ∈ a , we have τ(Zr) = −Zr and τ(Z) = −Z , and hence
τ(E) = −E . This implies that

τ
(
adg1(r) E

)
τ = − adg−1(r) E. (7.4)

Consider the inner product < , > on g1(r) defined by < X, Y >=
−(X, τY ). Let us denote by g± the restrictions of the actions of g to g±1(r),
and denote by g∗+ the adjoint operator of g+ with respect to < , > . Then we
have that I is self-adjoint with respect to < , > , and hence, by (ii) we have
(g∗+)−1I = I(g∗+)−1 . We also have g− = τ(g∗+)−1τ . Therefore it follows from (7.4)
that

g−(adg−1(r) E)(g−)−1 = τ(g∗+)−1τ(adg−1(r) E)τ(g∗+)τ

= −τ(g∗+)−1(adg1(r) E)(g∗+)τ = −τIτ = adg−1(r) E,

which implies that g− commutes with adg−1(r) E . Combining this with (7.3) and
(ii), we have that g commutes with adE on the whole g . This implies (iii).

Lemma 7.4. C(Z,Zr) =
{
g ∈ C(Zr) : g

(
g±1 (r)

)
= g±1 (r)

}
.

Proof. Let g ∈ C(Zr). Then g ∈ C(Z,Zr) if and only if g(E) = E . Hence
the assertion follows from Lemma 7.3.

Remark 7.5. Lemmas 7.2, 7.4, Proposition 4.8 and Corollary 4.9 imply that
our flag manifold (M0 = G/Qr , F±0 ) with double foliation F±0 is a so-called
pseudo-product manifold associated to the simple GLA (4.10) with decomposition
(4.14), in the sense of Tanaka [15].

We give a list of simple parahermitian symmetric spaces M of BCr -type
and the corresponding minimal boundary orbits M0 . The list is obtained by
extracting those ones satisfying (4.14) among all simple GLAs of the second kind
classified in [7].

Type I (r = p).

M = SL(n,F)/ S
(
GL(p,F)×GL(n− p,F)

)
, F = R,H,C,

1 ≤ p < n− p,

M0 =


SO(n)/ S

(
O(p)×O(n− 2p)×O(p)

)
, F = R,

Sp(n)/ Sp(p)× Sp(n− 2p)× Sp(p), F = H,
SU(n)/ S

(
U(p)× U(n− 2p)× U(p)

)
, F = C.
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Type II (r = n).

{
M = SO0(2n+ 1, 2n+ 1)/GL0(2n+ 1,R),
M0 = SO(2n+ 1)× SO(2n+ 1)/ SO(2n),{
M = SO(4n+ 2,C)/GL(2n+ 1,C),
M0 = SO(4n+ 2)/U(2n) · T1.

Type V

{
M = E6(6)/ Spin(5, 5) · R+, (r = 2),
M0 = Sp(4)/ Spin(4)× Spin(4),{
M = E6(−26)/ Spin(1, 9) · R+, (r = 1),
M0 = F4/ Spin(8),{
M = EC6 / Spin(10,C) · C∗, (r = 2),
M0 = E6/ Spin(8) · T2.

8. Determination of the automorphism groups of M

Let (M = G/G0, F
±) be the parahermitian symmetric space associated with a

simple GLA (1.1). In this paragraph we assume M to be of BCr -type. For the
minimal boundary orbit (M0 = G/Qr, F

±
0 ) with double foliation F±0 , we define

the automorphism group by

Aut(M0, F
±
0 ) = { g ∈ Diffeo(M0) : g∗F

±
0 = F±0 }.

Tanaka [15] determined this group by establishing a Cartan connection on M0 and
by showing that (M0 = G/Qr, F

±
0 ) is the model space for the Cartan connection.

Therefore, taking Remark 7.5 into account, we have

Aut(M0, F
±
0 ) = G. (8.1)

Theorem 8.1. Let (M = G/G0, F
±) be a parahermitian symmetric space of

BCr -type associated with a simple GLA (1.1). Then

Aut(M,F±) = Aut(M0, F
±
0 ) = G.

Proof. We identify M with its ϕ-image in M̃ . Since G acts on M effectively
and F± are G-invariant, the inclusion G ⊂ Aut(M,F±) is clear. Now let f ∈
Aut(M,F±). Then, by Lemma 2.4, f preserves the fibers of the double fibration

M− π−←−M
π+

−→M+ . Hence f induces the diffeomorphisms f± of M± such that
π± ◦ f = f± ◦ π± . Let f̃ := f− × f+ . Clearly, the diffeomorphism f̃ preserves
the product structure of M̃ . We claim that f̃ |M = f . In fact, let p ∈M , and let
q = f(p) ∈M . We write p = (p−, p+) and q = (q−, q+), where p± , q± ∈M± . The
relation $± ·ϕ = π± (cf. §2) implies that q± = $±(q) = $±

(
f(p)

)
= f±

(
π±(p)

)
=

f±(p±). Hence f(p) = (q−, q+) =
(
f−(p−), f+(p+)

)
= (f− × f+)(p−, p+) = f̃(p).

Since f̃ leaves M invariant, by Corollary 6.14 f̃ leaves M0 invariant. Obviously
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f0 := f̃ |M0 belongs to Aut(M0, F
±
0 ). We wish to show that f̃ can be uniquely

recovered by its restriction f0 . Corresponding to the expression M̃ = M−×(M+)r ,

one can express f̃ as f̃ = f1 × f2 , where f1 and f2 are diffeomorphisms of M−

and (M+)r , respectively. It follows from Lemma 7.1 that the leaves of its double

foliation F±0 arise as the fibers of the double fibration M− π−0←− M0

π+
0−→ (M+)r

given in Theorem 3.1 (iv). Moreover this double fibration of M0 is just the

restriction of the trivial double fibration M− $−0←− M̃
$+

0−→ (M+)r (cf. (5.3)).
Therefore, if we denote by f−0 and f+

0 the diffeomorphisms of M− and (M+)r
induced by f0 , then it follows that f−0 = f1 and f+

0 = f1 . We have thus shown

that f̃ is uniquely recovered from f0 . As a result, the correspondence f 7→ f0 is
an injective homomorphism of Aut(M,F±) into Aut(M0, F

±
0 ). Consequently, in

view of (8.1) we have that Aut(M,F±) = G .

In this paragraph we are concerned with Cr -type. Under this assumption,
for the GLA (4.10) we have g±1(r) = (0), g±2(r) = g±1 , g0(r) = g0 , Zr = Z
and hence C(Zr) = C(Z) = G0 . The rank decomposition (5.12) becomes g1 =∐r

k=0 Vk , where Vk is a union of equi-dimensional G0 -orbits. Now consider the
G0 -stable conic algebraic set V≤r−1 , which is the boundary ∂Vr of Vr . One can
extend the cone ∂Vr to a cone field on the whole M− by using the G-action on
M− . We call the cone field a generalized conformal structure K ([2]). One can
consider the automorphism group Aut(M−,K), the totality of diffeomorphisms
leaving the cone field K invariant. This group was determined for each symmetric
R-space M− ([2]):

Aut(M−,K) =

{
G, r ≥ 2,
Diffeo(M−), r = 1.

(8.2)

Recall that U− = ar U
+a−1

r for Cr -type (cf. Theorem 3.1). This is equivalent to
the condition ar 0+ = 0− , and the new origin (0−, ar 0+) becomes (0−, 0−). By

(5.3), M̃ takes the form M̃ = M−(0−, 0−) ×M+(0−, 0−) = M− ×M− . Further
the minimal boundary orbit M0 becomes M0 = G(0−, 0−) = G/U− = M− , the

diagonal set of M̃ = M− ×M− .

Now let f ∈ Aut(M,F±), and let f̃ = f− × f+ be the extension of f

to M̃ given in 8.1. Let us express f̃ as f̃ = f1 × f2 corresponding to the
expression M̃ = M− × M− . By Corollary 6.14, f̃ leaves M0 , the diagonal
of M̃ , invariant, from which we have f1 = f2 , that is, f̃ = f1× f1 . Thus it follows
that the correspondence f 7→ f1 is an injective homomorphism of Aut(M,F±)
into Diffeo(M−). The following lemma is essentially due to Tanaka [15].

Lemma 8.2. Suppose that (0−, 0−) is a fixed point of f̃ . Then the differential
(f1)∗ at 0− leaves the cone ∂Vr stable.

Proof. Let Y ∈ ∂Vr . Then (0, tY ) is a path in M∗
≤r−1 . By the assumption, the

curve f̃(0, tY ) lies in M∗
≤r−1 for |t| sufficiently small. Therefore Φ

(
f̃(0, tY )

)
=

Φ
(
f1(0), f1(tY )

)
= f1(tY ) − f1(0) = f1(tY ) lies in ∂Vr . Hence (f1)∗0−(Y ) =

limt→0
1
t
f1(tY ) ∈ ∂Vr .
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Lemma 8.3. Let f̃ = f1 × f1 be the extension of f ∈ Aut(M,F±) to M̃ =
M− ×M− . Then f1 ∈ Aut(M−,K).

Proof. Let K = {(∂Vr)p}p∈M− , where (∂Vr)p denotes the cone at a point
p ∈M− belonging to the field K . Note that, if p = b · 0− , b ∈ G , then (∂Vr)p is
just the cone b∗(∂Vr). We have to show that (f1)∗(∂Vr)p = (∂Vr)f1(p) . Choose an

element a ∈ G such that a−1f1b(0
−) = 0− . Then the transformation a−1f̃ b on M̃

is the extension of a−1fb ∈ Aut(M,F±). Decompose a−1fb as a−1f1b × a−1f1b

corresponding to the decomposition M̃ = M−×M− . By Lemma 8.3, we see that
(a−1f1b)∗0− leaves ∂Vr invariant. Consequently we have

(f1)∗p(∂Vr)p = (f1)∗p(∂Vr)b·0− = (f1)∗pb∗0−(∂Vr) = a∗0−(∂Vr) = (∂Vr)a·0− = (∂Vr)f1(p).

This implies that f1 ∈ Aut(M−,K).

Theorem 8.4. Let (M = G/G0, F
±) be the parahermitian symmetric space of

Cr -type associated with a simple GLA (1.1), and let K be the above generalized
conformal structure on the symmetric R-space M− = G/U− . Then

Aut(M,F±) = Aut(M−,K) =

{
G, r ≥ 2,
Diffeo(M−), r = 1.

Proof. Suppose r ≥ 2. As we noted before Lemma 8.2, the correspondence
Aut(M,F±) 3 f 7→ f1 ∈ Diffeo(M−) is injective. But, by Lemma 8.3, the image f1

lies in Aut(M−,K). Hence we have the injective homomorphism Aut(M,F±) ↪→
Aut(M−,K). Since G is a subgroup of Aut(M,F±), it follows from (8.2) that
G ⊂ Aut(M,F±) ' Aut(M−,K) = G . Suppose next r = 1. Then the G-orbit

decomposition of M̃ leaves M̃ = M q M− . So, for any diffeomorphism f1 of
M− , (f1×f1)|M is an element of Aut(M,F±). Therefore we have Aut(M,F±) '
Aut(M−,K) = Diffeo(M−) (cf. (8.27)).

Remark 8.5. As is seen in the table in 6.4, the parahermitian symmetric space
M of C1 -type is SO0(1, q + 1)/ SO(q) · R+ , and the corresponding symmetric R-
space M− is the conformal q -sphere.

Remark 8.6. In case where Aut(M,F±) = G in Theorems 8.1 and 8.4, we
also have

Aut(M,F±) = Aut(M,F±, ω).

Remark 8.7. A parahermitian symmetric space M = G/H associated to a
simple GLA (1.1) is diffeomorphic to the cotangent bundle of the associated
symmetric R-space M− = G/U− . Let M− be the quaternionic Grassmannian
Gr2(H4) of quaternionic 2-planes in H4 . There are two parahermitian symmetric
spaces:

SL(4,H)/ SL(2,H)× SL(2,H)× R+ and E6(6)/ Spin(5, 5) · R+,

which have Gr2(H4) as the associated symmetric R-spaces. The first one is of
C2 -type; the second one is of BC2 -type. Theorems 8.1 and 8.4 tell us that the
cotangent bundle of Gr2(H4) has two different paracomplex structures which are
both homogeneous.
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