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Berezin transform on line bundles
over bounded symmetric domains

Genkai Zhang
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Abstract. Let D = G/K be a bounded symmetric domain. We consider
the Berezin transform on line bundles over D. We find the symbol of the
Berezin transform as a function of the G-invariant differential operators on the
line bundles. We further calculate the symbol of the Berezin transform on the
compact dual of D.

1. Introduction

Let D be a bounded domain in a complex space and let H be a Hilbert space
of analytic functions on D with a reproducing kernel. The Wick quantization
associates to each function on D an operator on H, so that roughly speaking
the delta function at a point z gives to the projection onto the one-dimensional
space generated by the reproducing kernel at z. Its adjoint then associates to each
operator on D a function on D, called the covariant symbol of the operator. The
Berezin transform, also called Berezin quantization, maps a function on D to the
covariant symbol of its Wick quantization.

We consider now two Hilbert spaces H; and Hj; of holomorphic functions
on a bounded symmetric domain D = G/K and the corresponding Wick quanti-
zation, so that it associates a point z € D to the rank one operator that maps the
reproducing kernel of Hy at z to the reproducing kernel of Hy at z. Thus we get
similarly the Berezin transform. The Hilbert spaces we take will be the weighted
Bergman spaces, or the holomorphic discrete series on . The Berezin transform
now can be viewed as acting on a weighted L?-space on D, which can further
be viewed as a trivialization of the L%-space of sections of a line bundle over D.
This explains our title. The group G of biholomorphic mappings of D acts on the
weighted L?-space, and the Berezin transform is invariant under the group action.
Thus it is a function of the invariant differential operators. The function is also
called the symbol of the Berezin transform. See the remark 1 after Theorem 4.6
and [22] for the precise formulation in the case of trivial line bundle. In this paper
we will calculate this symbol.
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We remark that the decomposition of the weighted L?-space under G has
been given by Shimeno [19]. Our result can also be interpreted as a decomposition
of the Berezin transform under G'.

When D is the unit ball in C* the symbol has been calculated in our
previous paper [15]. The result was also used to find a product formula for higher
order Laplacian operators and to study the relative discrete series on the line
bundle. The Berezin transform is generally an integral operator; its symbol is
then the spherical transform of its integral kernel. In the case of unit ball in C?
the transform can be found by direct calculation, since the spherical function there
can be written as hypergeometric series. The spherical function for higher rank
domain is an integral over K of the generalized Harish-Chandra e-function (see
(9)). However for higher rank domain no explicit formula for the spherical functions
is known. One of our main contributions in this paper is an explicit formula for
the analogues of the Harish-Chandra e-functions; see Proposition 4.3. The symbol
is then obtained by directed computation of certain integral. This is similar to the
calculation in [22]; see also [1]. The paper is organized as follows. In §2 we briefly
recall the Jordan algebraic characterization of bounded symmetric domain. In §3
we introduce the Berezin transform on a bounded symmetric domain. We prove
that it is bounded in certain LP-spaces. Using the Siegel domain realization we
give an explicit formula for the generalized Harish-Chandra e-functions, which
are eigenfunctions of invariant differential operators with respect to the weighted
action of G. The symbol of the Berezin transform is calculated in §4. Finally in
85 we consider similar problem for the Berezin transform on compact symmetric
spaces. We find the corresponding symbol and give some application to tensor
product decomposition of representations. We would like to thank the referee for
his or her remarks on an early version of the paper.

2. Preliminaries

The general references in this section are [13] and [23].

Let D be an irreducible bounded symmetric domain in a complex n-
dimensional space V. Let Aut(D) be the group of all biholomorphic automor-
phisms of D, let G = Aut(D)y be the connected component of the identity in
Aut(D), and let K be the isotropy subgroup of G' at the point 0. Then, as a
Hermitian symmetric space, D = G/K . The Lie algebra g of G is identified with
the Lie algebra aut(D) of all completely integrable holomorphic vector fields on
D, equipped with the Lie product

[X,Y](2):= X'(2)Y(2) = Y'(2)X(2), X,Y €aut(D), z € D.

Let g = €+ p be the Cartan decomposition of g with respect to the involution
H(X)(z)_:z —X(—==2). There exists a quadratic form Q : V — End(V,V)

(where V' is the complex conjugate of V'), such that p = {{,;v € V}, where
£.(2) == v —Q(z)v. Let {z,v,w} be the polarization of Q(z)v, i.e.,

{z,v,w} =Q(z+ w)v — Q(z)v — Q(w)v.

The space V with this triple product V x V x V, is a JB*-triple; see [23]. Define
D(z,v)w = {z,v,w}. Then D(z,v) € End(V,V). The space V carries the K-

invariant inner product (z|w) := %TrD(z, w), where “Tr” is the trace functional on
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End(V'), and p = p(D) is the genus of D (see below). The subgroup K actson D
by unitary transformations. We let dz be the Lebesgue measure corresponding to
the inner product. Besides the Euclidean norm, V' carries also the spectral norm

el = 1 Dz, 212,

and the domain D is realized as the open unit ball of V' with respect to the
spectral norm, i.e. D ={z €V :|z]| <1}. Let us choose and fix a frame {e;}}_;
of triponents in V', where r is the rank of D. Then e :=e;+---+4¢, 1s a mazimal
tripotent. Let

V=Y @V (1)
0<j<h<r

be the joint Peirce decomposition of V' associated with {e;} where

;:17
Vir ={v e V;Dle,e)v = (6154 dip)v, 1 <1< 7},
for (5,k) # (0,0), Voo = {0}, and Vj; = Ce;, 1 <j <r. The integers
a:=dimVjz, (1<j<k<r); bi=dimVy;, 1<5<r)

are independent of the choice of the frame and of 1 <5 < k <r.
Let us define

Vi= > Vi and Vi =) Vi,
1<i<k<r =1
and let ny = dim(17), and n, = dim(V%). Then we have

r(r — 1)
2

The genus p = p(D) is defined by

ny = a+r, ng=rb, and n =mny; + ny.

1
pi= —TrD(e, e) = (r — 1)a + b+ 2.
r

Thus (ejle;) = %TrD(ej, ;) = iTrD(e, e) = 1, and this is true for every minimal
tripotent in V.

Let a=RE, +---+RE, . Then a is a maximal abelian subspace of p. Let
{/3]-}2-:1 C a* be the basis of a* determined by

Bj(fek) =20k, 1 < gk <,
and define an ordering on a* via

ﬂr>ﬂr—1>"'>51>0-

We will write an element A € (a*)€ as

A=) b
j=1
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The positive root system o*(g,a) consists of {8;;1 < j < r}, {(5;
Br)/2;1 < k < 3 <r},and {3;/2;1 < j < r}, with multiplicities 1, a, and
2b respectively. It follows that p, the half sum of the positive rools, is given by

r

E:ijgjzzb+]+;’(j_]>gj. (2)

i=1

Let n be the sum of the positive roots spaces. Then we have the [wasawa
decompositions g = n+a+€ and G = NAK. For g € G welet g = nexp(A(g))x(g)
be its cooresponding decomposition.

We now introduce Siegel domain realization of the Hermitian symmetric
space (G/K and the conical functions. In that realization the A-part in the above
Iwasawa decomposition and the Harish-Chandra e-function will have a rather
explicit form; see (9) and (13) below.

The subspace V% is not a Jordan subalgebra of V', but rather a module
over Vi. Precisely, the map R :V; — End(V1) defined by R(z)w := {zew}, z €
Vi,w € V% is a monomorphism of Jordan i—algebras, where the involution in
End(V%) corresponds to the A-invariant inner product ({|n). Let J = {z €
Vi;Q(e)z = z}. Then Vi = J +4J and J is a real Jordan algebra. The Cayley
transform ~ is defined for z = z; @z, € V (with z; € V§ and z; € V%) by

1(2) = 2@ R((e - =) )z

€c— 21

Its inverse is given for w = wy + wq, wy € Vi, wq € V% by

w) — €

77 w) = @ 2R (w0 + )

wy + €

Let F': V% X V% — Vi be the V]-valued Hermitian quadratic form
F(u,v) := {u,v,e).
It satisfies
Q(2)(F(z,w)) = F(R(x)z, R(x)w), Ya € J,Vz,w € V1.

Define Q to be the cone of positive elements in J, Q = {z* 2z € J, det(z) # 0}.
Then € i1s a symmetric convex cone. The bilinear map F' is then positive with
respect to Q, i.e., Fu,u) € Q forall u € V%. Define for z = 21429, w = w1+ wy €
V' (where z;, wy € V}, and 2, w, € V%)

T(z,w) := il ; Y F(zg,wg) and 7(2) :=17(z,2) = Rzy — F(z2,22), (3)

21427

where Rz = is the real part of z; with respect to the spliting Vi = J +1.J.
The Cayley transform v is then a biholomorphic transformation from D into the
Siegel domain

T)=T(Q,F):={we V;r(w) € Q}.
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Finally we introduce the conical functions and the Gindikin-Koecher
Gamma function, see [8]. Let {e;}i_; be the fixed frame, put w; := >7;_, ex,
g =1, ,r. Let U; := {z € V;D(uj,uj)z = z}. Then U; is a Jordan *-
subalgebra of V; with a determinant polynomial A;. We extend A; to all of V' via
Aj(z) := Aj(Py,(2)), where Py, is the orthogonal projection onto U;. The poly-
nomials A; are called (principal) minors. Notice that A,(w) = A(w) = det(w).
For any a = (ay, -+ ,a,) € C" consider the associated conical function

A1) = AP () AF= (w) -~ A (w), w € V.

Notice that if w = 7"_, wje; then A,(w)=[[_, w;?. Thus the conical func-
tions are generalizations of the power functions. The Gindikin-Koecher Gamma

function associated with the convex, symmetric cone € is defined by

Fala) i= / A () Ale) 2 da,
Q

where the integral converges if and only if R(e;) > (j—1)a/2 for j=1,2,--- r.
Moreover, the convergence is absolute, and uniform on compact sets of a. We
remark that A(z)~ 7 dz is the Aut(Q)-invariant measure on Q. This allows one

to get for w € Q +1.J
/ e DA (2)A(2)"F de = Ta(a)Aa(w™) = Ta(a) AL (w),
) a

where for a = (aq,0y, - ,a,) € C' we denote o* := (—a,,—,_1, -, —a1),
and AE is the conical function with respect to the frame {e,,e,_1,€,_9, - ,€1}.

Moreover, the Gamma function T'g is expressed in terms of the ordinary Gamma
function

Fa(a) = (20) /% [] Pla = (7 = 1)a/2)

Thus I'g extends to a meromorphic function in all of C". We also adopt the

notation I'q(X) = To(A A, -+, A).

3. Weighted L?-space on bounded symmetric domains and tensor
products of Bergman spaces

Let h(z) be the unique K-invariant polynomial on V' whose restriction to Re; +

.-+ + Re, is given by

r r

h(Y aje;) =] —a).

i=1 i=1

Let h(z,w) be the sesqui-holomorphic extension of h(z) to V x V| i.e.
- 0 "0
h(z,w) = exp Z Zj—— exp Z w;—h(&)]e=o-
7=1 af] 7=1 aé‘]

Denote

dps(z) = Coh" P (z)dm(z)



116 ZHANG

where

1 Tg(o)
7" Lol —2)

r

Cy =

is a normalization constant. We let L*(D,p,) be the corresponding L*-space of
functions on D. The group G acts unitarily on L*(D, u,) via the following

a

U f(2) = Jp=i(2)7 f(g7"2), (4)

where J,-1 is the complex Jacobian of g='. We will hereafter drop the supscript
o. To avoid some technical difficulty involving the universal covering group of G
we will assume throughout this paper that ¢ is an integer.

Notice that the restriction of the Jacobian to K gives rise to a character of

K:

= Jk('z)%’ kekK, (5)

S5

7o (k) := J,(0)

since K acts on D by linear transformation. The space L*(D, u,) is a trivialization
of the L*-space of sections of the homogeneous line bundle over D induced from
the one-dimensional character of K.

Let 0 > p—1 and let A%? be the weighted Bergman space of holomorphic
functions in L*(D, yi,). It is invariant under the action of G. Let v > p—1. We
consider the Bergman spaces A*?, A**%% and their tensor product A**%? @ A»2,
Here A%2 is space consisting of the complex conjugates of the functions in A»? and
Avto2 @ Av2 is realized as the space of functions F(z,w) holomorphic in z and
anti-holomorphic in w that are in L*(D X D, py4, X ), with the corresponding
G-actions. Tt is proved in [15] that the operator R : A¥t92 @ Av2 — L*(D, u,):

RF(z) = F(z,z)h(z, z)"

is a bounded G-intertwining operator. The operator R*, the Hilbert space con-
jugate of R, is then the Wick quantization operator, see [22], [25]. The Berezin
transform is defined by

B Coto RR
— L
v,o Ca (6)

normalized so that B,,1 = 1. Explicitly it is given by

By, f(z ”*” / F(w) 12 yh(w w) —dpi, (w). (7)

The Berezin transform is G-invariant:

UyB,, = B,,U,. (8)

We study first the boundedness property of B, .

Proposition 3.1.  Suppose v,0 > p—1. Then B,, is a bounded operator on
LP(D,duy) for 1 <p <oo.
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Proof. = We prove first that B,, is a bounded operator on L'(D,du,). Let
ferL'=LYD,dus). Then

w h(z’z)yh(wvw)y w z
/Df( >|h(2‘,w)"|2h(zyw)adﬂ°’( )‘dua()

< Cu [ 10y ([ Gt (4)) o0

Now by the Faraut-Koranyi’s generalization [7] of the Forelli-Rudin inequality, the

||Bu,o'f“L1 S Ou,o’/
D

inner integral is, up to a constant, dominanted by
h(w,w)™",

Therefore, we obtain

wmmmsqémmmmm=cwm,

and B,, is bounded on L'. Since B,, is a formally self-adjoint operator it is
bounded on (L')* = L*. Our claim now follows from interpolation. ]

Remark 3.2.  The above proposition is still valid if the condition on v and o
and if the measure dy, and dy, are not normalized. (Note that the normalizing
constant C, has sigularity when o < 2.) The same applies to Theorem 4.6 in the
next section. We thank the referee for pointing out this to us.

For g € G let g = nexp(A(g))k(g) be its Iwasawa decomposition in G = NAK,
with n € N,exp(A(g)) € A, and k(g) € K. We define the following generalized

Harish-Chandra e-function on D
ero(z) = e 7 (1(g))(1,(0))7,2=9-0 and g€ G, (9)

where 7, is defined in (5). It is clear that the right hand side is independent of
the representative g € (7, that is, the function is well-defined. (Notice that in our
formula we use A + p instead of A + p as in the standard formula for Harish-
Chandra e-function.) We note that it transforms under N A-group according to

ero(gz) = e(A+£)A(g)(Jg(z))_%eﬁﬁ(z), g€ NA. (10)

When o = 0 this is the Harish-Chandra e-function. Denote D,(D) the algebra
of invariant differential operators on C'*°(D) with respect to the G-action (4). It
is commutative; see [21] and [20].

Theorem 3.3. The functions e,, defined in (9) are eigenfunctions of all in-
variant differential operators D, (D).

Proof. = We use the Helgason’s idea and prove the following functional equality

for f(z) = ers(2),

/I (U £)(k2) s (0) 5k = f(a-0) /I (U7 )T (0 Rk, e G
(11)
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(See also [11], Chapter IV, Proposition 2.4.) Write z =y -0, y € GG. Then
(Usf)(kz) = f(zky - 0)Jo(kz)7 = eAFDAR 1 ((wky)) Tony (0)7F To(k2)7.

Let © = nexp(A(z))k(z) be the NAK-decomposition of z and let ky = x(2)k.
We rewrite the first two factors. We have

Alzky) = A(z) + A(k(x)ky) = A(x) + A(k1y)
since A normalizes N, and
k(zky) = k(k(2)ky) = s(ky).

The last two factors can be written as, using k = r(z)™ "k,

LSIEY

Ty (075 Jp(k2)% = Jiy(0)”
= Ju(m)-1 (Fry - 0>_%Jk’1y(0>_%
= Ta(/i(:v))Jkly(O)_%.
Thus
(Unf)(kz) = eA+DA@ LADARD L (1 (2)) Ty, (0)7F 7, (K (Kry)).

Performing the change of variables k = k(z)7'ky, the integral on the left hand
side of (11) is

O (DO [ A b)) Ol
K

= f(z-0) [ flkyz)dk, (12)

K

= f(z-0) /I/V(Uklf)(Z)Jkl(O)_%dk’la

i.e., the right hand side of (11). Now for any differential operator L in D,(D) we
let L act on the equality (11) with respect to the variable z. Using the invariance
we get

| L) s (0)
== 0>/ (U= L.F)(2) =1 (0) 7 dk.

K

Letting z = 0 we get
Lf(x-0) = Lf(0)f(x-0);

that is, f is an eigenfunction of L with eigenvalue Lf(0). [ ]

4. Berezin transform on bounded symmetric domains

The next result follows from the invariance of the Berezin transform (8) and the
transformation formula of €, ,. We omit the proof; see [1], Lemma 1.1 for the case
oc=20.
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Proposition 4.1.  Suppose e, € L'(D,h"du,) then it is an eigenfunction of
B, , and the eigenvalue is B, ey ,(0)

We note that, by (7),

Cl/ a
G e w)h (w)dpg ().
o D

By’a 65’0(0) =

Thus ey, € LI(D, h¥du,) if and only if the integral B, e\, (0) is absolutely con-
vergent. The eigenvalue B, ,€e,,(0) is then the symbol of the Berezin transform.
We have charaterized in [1] those e,, in L'(D,du,). To find those A for which
exo € L'(D,h”du,) and to calculate the symbol we will use the Siegel domain
realization of D. Recall that the Cayley transform 5 then maps D biholomor-
phically onto the Siegel domain T(€Q). The group yGv~! then acts on T(Q).
With some abuse of notation we write this group also by GG and its correspond-
ing Iwasawa decomposition by NAK. One can similarly formulate the Berezin
transform in terms of the Bergman spaces on the Siegel domain. We give now the
corresponding formulas. Recall also the definition of 7 in (3). The measure y, on
D now corresponds to

dpg (w) = OUA(T(w))J_pdw,

on T(9), where C, = 4""C,. The group G acts on L*(T(R),u,) by the same

formula (4). Using the transformation formulas

det(y™')'(§) = 2"Ale + &) 7"

and
h(v~HE), 77 Hm)) = 4" Ale+ &) THA(T(En)) Ale + &)

we can now prove the following

Lemma 4.2. The operator

SIE]

Uf(w) = f(y~" (w))Jy=1 (w)

is a unitary intertwining operator from L*(D, u,) onto L*(T(), 115)
The Berezin transform on T'(Q) is formally UB, ,U~" and it takes the form

Fote)= 5 [ 10 (R ) Seemp

Let ey, (w) = Ueyo(w). Thus by Proposition 4.1 ey, is an eigenfunction of /35:,

if the integral B,,e),(0) = B, ,€y,(€) is convergent; the later is

Crto — A(r(w))” 1 o
/ o ) i (w).

Cy A(r(e,w))[? A(r(e, w))”

We will evaluate the integral and at the same time find those A for which the
integral is absolutely convergent. For that purpose we will first find an explict
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formula for the function ey ,. On the Siegel domain T'(Q), where w = e instead
of z =0 is the base point, the formula (9) now takes the form

é;:;(w> = G(A-}-B)A(g)Ta(K’(.q>>*]g(e>_%v w=4g:-e, g€ G.

The first factor is
cA+p)Al9) — AA+£(T(“)))’

see [22]. We take g € NA such that g-e = w, so that x(g) =1 and 7,(x(g)) = 1.

Recall the transformation formula of the function A(T(U))_"

A(r(g- )™ = Alr(0)) 7| g(e) 7 |
see [22]. In particular taking v = e we find
Alr(w))™ = [Jy(e) 77 2.

However for g € NA the Jacobian .J, is positive since NA acts on T(§) by

translation and multiplication by elements in Q; see e.g. [22]. Thus
Jo(e)”7 = Afr(w))™7.
Consequently we obtain

Proposition 4.3.  In the Siegel domain realization the function ey, is given by

Exno(w) = Angp(w)A(r(w)) 2.

wla

(13)

Theorem 4.4.  Let v,0 > p — 1. Suppose ) € (a*)€ satisfies
c p—1

RO <vt T - T

Then ey, (and ey,) is an eigenfunction of B, , (respectively B:;) with eigenvalue

TaQA+p+v+Z-2ToX +p +v+%) (14)
Fa(W)la(v+0—7) '

Proof. We calculate /B:,:,éz;(e). Disregarding the constant 4"7"7C, 4, , it 1s

e A(T(w))”""’_p
A 7(w))A(7(w))™2 dw
iy DA e e
a A vto—p
= [ Surpacte STy,
T@ Afr(ie, w)) "+ A(r(ie, w))”

Now w € T(2) can be written as w = w1 +w; € V = Vl—{—V%, with wy = €411 €
Vi=J+41uJ,and y = — F(ws,wy) € Q, and dw = dy dn dw,, where dw, dy, dn
and dw, are the Lebesgue measure on V', 1, J and V% respectively. The above
integral is

R RTINSO R
Q Vi (15)
X / Ale+y+ F(wg,wy) —in) """ Ale + y + F(wz, wy) — in)~vdn.
J
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We change the variable in the inner integral, n = Q((y + e + F(wy,wy))"/?)(1).

Then A(Q(y)(1)) = Ay)*A(t) and det(Q(y)) = A(y)@, for t,y € Vi (see [§],
Chapter III). The inner integral is

A(y+e+F(w2aw2)>nTl_2y/A(e—it)_”_"A(e—it)‘”dt.
J

Since A(e + it)_” is the Fourier transform of
1
Ta(v)

where xq is the characteristic function of 2, we get by Parseval’s formula

A (@) xa().

/ 1
S—
7 Ale—it)"+7 Ae — ut)”
(2m)™ / —2tr(x) 2uto— 221
— r(x A v+o - d
Ta(v+o)Ta(v) Jo* (=) '
™ lo(2v +o0—"21)

= 92rv4ro—2n FQ(V+ G')FQ(I/)’
see [8], Chapter VII. Thus the integral (15) is

FQ(21/ + 00— ”r—l)
Fa(v 4+ o0)la(v)

(16)
X /QAA+g(y)A(y)”+%"pdy (/V Ay + e+ F(w27w2))71"2”"”dw2) :

1
2

7_[_7’L1 227’L1

The rest of the calculation is similar to that in [22] and [1]. We write

n

Ay + e + F(ws, wg))Tl_Ql’_”

1
- (e P ) A (24—
FQ(QI/—l—o'—”—l)\/Qe (‘I)

r

2y 17
T dz. ( )

Therefore, using Fubini’s theorem, the integral (16), disregarding the constant in
front of the integral, is

! —tr(a) 7 ()2
r(z) A vto—==dx
FQ(QI/‘I‘O‘—Z—])/QB (=) v
(18)
X / e_(y|x)A§+y_p(y>dy / e—(F(11/2,11/2)|x)dw2
Q \2)

2

Now

b

(F (w2, we)|z) = (Q(z'/) F(w, wa)le) = (F(R(z'*)ws, R(x')w,)|e).

n

Since for z € Q, detg(R(z~'/?)) = A(.r)_%, we get

n2

/ e~ Fluzwa)le) gy, — a2 A (1), (19)
Vi

z
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Thus, (18) is

"2

—tr(Z) A\ (g)2v+o—P ~(ylo) . 2
Fo(2v + 0 — T;—l) /Qe Afe) du </Q € Aﬁ"‘ﬂ"‘”"‘?—P(y)dy) . (20)

The inner integral is absolutly convergent if and only if

c n a,. )

%()‘J>+IOJ>_V_§+;+§(7_])7 .7:1727"'7T7 (2])
and its value is

o n
Pa(d+p+ v+ 2= DAy g () 22)
Therefore, (20) is
nzFQ(A—{_I)—{_V—{_%_%) —tr(z) A * v4o—
N T —— /ne T e g () A @) ()

e T{'n? —tr(r)A* . d
Fo(2v + o — 1) /Q6 A zom(T)de.

r

This integral is absolutely convergent if and only if
oc_a,. .
%()\j)+£;+1/+5>§(]_]>3 a]:]v"'vr (23)

and in that case its value is
o
)
The inequalities (21) and (23) are equivalent to the condition in our Theorem,
after a simplication. Taking into the account of the disregarded constants, we find

now that the integral B, e, (e) is

Po(A"+p" +v+

Fo(2v+o0—-")ToA+p+v+5-7) o
4n—rp0y 022n1 ny+ne r [ 2 r F /\* * s
2 v o)Tal)  Ta@rfo—m) @ e tves)
TeA+p+rv+§— 1A +p" +v+3)
Po(v)Ta(v+o—17) '
This proves the theorem ]

Denote b,,()A) the eigenvalue (14) of B, ,. Note that the function b, ,(\)
can be written as

b (}) =

r

 CAE Ak ) \URS Sl ),
P(v =255+ p))T(v + 0 = 555 = p))

j=1

using the usual Gamma-function. This should be compared with the case ¢ = 0
n [22]. We define as usual the spherical function corresponding to character 7, ,

bro(z) = / ero(k2)dE.
)

Corollary 4.5.  Lel v,0 and X\ € (a*)€ as in Theorem 4.4. Then ¢y, is an
eigenfunction of B, , with eigenvalue b, ,()\)

We can then reformulate the previous calculation in terms of operator calculus.
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Theorem 4.6.  Let v,0 > p—1. The Berezin operator B, , acts on L*(D,u,)
as a bounded operator and its spectral symbol is b, ()

Proof.  The boundedness of B,, on L*(D,u,) is proved in Proposition 3.1.
Now under the G-action U° the space L*(D, u,) is decomposed into a direct sum
of integrals of irreducible representations of GG and relative discrete series, see [19].
The representations appearing in the decomposition are generated by certain ¢, ;
the corresponding parameter A = Egzl A;3; satisfies

See [19] Theorem 6.7. (Note that our A; are 2); there, and the our o is their —/;
see also [5] for the identification of the space L?(D,pu,) with the representation
space of (¢ induced from an one-dimensional representation of K studied in [19].)
Now by Corollary 4.5 we see that for those A the function ¢, , is an eigenfunction
of B,, with the corresponding eigenvalue b, ,(A). ]

Remark 4.7.  The function b,,(A) is a Weyl group invariant function of A.
Now a basis of the G-invariant differential operators on L*(D, ;) can be chosen
so that their symbols are the fundamental symmetric polynomials in A. In this
way B, , can be viewed a function of the invariant differential operators. See [21]
and [20] for the study of invariant differential operators on line bundle over D.

Remark 4.8. When o = 0, namely the case of trivial line bundle, the above
result is proved in [22].

Remark 4.9.  When the domain D is the unit ball in C* the above result
is proved in [16] by direct integration; in that case the spherical function is the
classical hypergeometric function; see also [12].

Remark 4.10.  Similar to The above proposition is still valid if the condition
on v and o and if the measure dp, and du, are not normalized. (Note that the
normalizing constant C, has sigularity when o < 2.)

5. Berezin transform on line bundle over compact Hermitian
symmetric spaces

We consider the Berezin transform on the compact Hermitian symmetric spaces. In
[25] the symbol of the Berezin transform is obtained for the compact case from the
non-compact case. We can apply the same method to derive the following results,
but omit their proofs. We refer to [25] for the exact formulation. Let X = G*/K
be the compact dual Hermitian symmetric space of the domain D = GG/K. The
vector space V' can be realized as a dense subspace of X. For ¢ a positive integer
we consider the space L2(V) of L?-functions on V with respect to the measure

coh(z,—2)""Pdm(z),
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where

_ Ta(o+p)
FQ(U +p— n/r)
The group G* acts on L2(V) via the following

U f(2) = Jp=(2)77 f(g72).

L2(V) can also be realized as a space of sections of a line bundle over X .

Co

The representations of G* that appear in LZ(V) have been described in
[18], which we recall below.

Extend the maximal abelian subspace a of p to a Cartan subalgebra a+ g
of g=p+E Let iZ € q be in the center of € chosen as in [18]. Let VA be an
irreducible representation of G* with highest weight A. If VA appears in L:(V)
then the restriction of A on q is 7%, where Z* is the dual of 7. Suppose now
A satisfies this condition. Let

m:m(/\):mlﬁl‘l"l'mrﬂr

be its restriction to a. Then A appears in L2(V) if and only if the following
conditions hold: o
my, — 5 € N
and
m; —m; €2N, 1 <<y <

Here N is the set of nonnegative integers. Define similarly the Berezin transform
B, on L:(V'), with the weighted Bergman spaces A¥t7* and A"? being replaced
by the subspaces A**7*(X) and A"?(X) of analytic functions in L} (V) and
L:(V), respectively. (Actually they contain holomorphic polynomials on V.)

Theorem 5.1. The Berezin operator B, , on L%(V) is a diagonal operator un-
der the decomposition of L*(V) into G* -irreducible subspaces V. Ils eigenvalue
on VA is given by

Pa(v +o+plalv+p—17)
Tov+S+p—m)la(v+%+p—n/r—m)

Remark 5.2.  We note that the above theorem gives an evaluation for the
integration over X of the K-invariant function h(z, —z)7" against the spherical
polynomials @, ,, corresponding to the one dimensional character 7_, of K,
realized as a function on pt (also called the generalized Jacobi polynomials, see
[9], [10]); explicitly we have

Coto /p+ h(z,—2) " ®m o (2)h(z, —2) " dm(z)

Pa(v+o+plalv+p—17)
Tov+Z+p—m ) lo(v+2%+p—n/r—m)

(24)

This might be of independent interests in the theory of special functions.

We apply the above theorem and get a decomposition formula for A**7*(X) ®
Av2(X); see [25] for the proof when o = 0.
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Theorem 5.3.  Suppose v, are positive integers. Then the tensor product

AT (X)) @ A¥2(X) admils the orthogonal decomposition

AHTAX) @ AN = Y VA

m7<§u+%

with multiplicity one.

Theorem 5.1 can now be interpreted as a formula for certain Clebsch-Gordan

coefficients. The vector h¥(z,—z) in A*T7?*(X) @ A»2(X) is K-invariant, each
VA contains a (up to a constant) unique K-invariant vector, namely the spherical
polynomial @, ,. Theorem 5.1 gives the coefficient of the expansion of h”(z, —z)
in terms of the spherical polynomials; see also [25] for the case o = 0.
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