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Abstract. In this paper, we are interested in studying the algebra D()
of invariant differential operators on a symmetric cone 2. We will give
some sets of generators of D(Q) and calculate the eigenvalues of spherical
functions under those generators. The explicit construction of our invariant
differential operators in D(f2) leads to introducing some differential opera-
tors on an irreducible bounded symmetric domain D in a complex vector
space Z. Some interesting results are obtained about these differential oper-
ators and their applications to the study of spaces of holomorphic functions
on D are given.

Introduction

It is known that the algebra of the invariant differential operators on a symmetric
space of rank r is generated by a set of r algebraically independent elements. An
important problem is to give such a set of generators explicitly. In the case that a
symmetric space 1s a symmetric cone, a set of generators has been given by Nomura
[14] in terms of some invariant polynomials. In part I of this paper, we shall further
study the algebra D(Q) of the invariant differential operators on a symmetric
cone ). For each complex number X, an invariant differential operator D) is
introduced. Tt is shown that for any r distinct numbers Ay,... A, Dy, ..., Dy,
is a set of algebraically independent generators of D(£). We also introduce r
”canonical” invariant differential operators K7y,..., K, which are constructed from
some canonical invariant polynomials, then express D, in termsof K;,..., K, and
vice versa. For any spherical function, its eigenvalues under D) and Kj; can be
computed explicitly.

In part II, we consider an irreducible bounded symmetric domain D in a
complex vector space 7 in the standard Harish- Chandra realization. In D there
is a subdomain D which is the unit ball of the complexification of a real simple
Euclidean Jordan algebra. Let GG be the the identity component of Aut(D) and
K the isotropy subgroup of G at 0. For each complex number A, using results
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obtained for tube type domains, we introduce a differential operator D,. For
any distinct numbers Aq,..., ., we also prove that D, ,...,D,, is a set of r
algebraically independent generators of the algebra of the differential operators
on Z that commute with the action of K. An important feature of D, is that
as a consequence of the commutativity with K, polynomials in the irreducible
subspaces of Schmid’s decomposition are eigenfunctions of D, , and, moreover, the
eigenvalues can be calculated explicitly. The applications of this result will be
given in part IIL.

In [4], for every A € C, the space of holomorphic polynomials on the
ambient space Z is equipped with the structure of a Harish-Chandra module,
denoted by P™ | and a composition series of P™)

My C My C -+ C My =PW

is determined. Each quotient M;/M;_;,5=0,1,...,q(}X),(M_; = 0) has a natural
invariant Hermitian form. Of particular interest is the case when the quotient is
unitarizable, that is, the corresponding Hermitian form is an inner product. In this
case, one has a corresponding Hilbert space of analytic functions on which G acts
unitarily. It is known that M;/M;_y is unitarizable, if and only if 7 = 0 or j = ¢())
with an appropriate A. In part III, we shall express the invariant inner products
in terms of integrals on D when the highest quotient is unitarizable. We shall also
characterize M , when it is unitarizable, by a corresponding canonical differential
operator K;. The space of harmonic polynomials in the sense of Upmeier [17],
which is equal to M for a particular value of X, is described in terms of a single
differential operator in [17]. Our result generalizes that of Upmeier. We shall
describe those Hilbert spaces of holomorphic functions corresponing to the cases
that the quotients M;/M;_; are unitarizable and obtain a generalization of the
classical Dirichlet space. Finally, we characterize the dual and predual of the
Bergman space L'(D) N H(D) which generalize the results in [19] to the case of
all bounded symmetric domains.

After the first version of this paper was finished, the author noticed a paper
of R. Howe and T. Umeda [8], which is relevant to §1 and §2 in this paper. In
particular, our Theorem 1.11 is motivated by a remark in [8].

Preprints of this paper were distributed in 1992. Some of its results were
then incorporated in the book [5]. Following the referee’s recommendation, the
present paper is now shorter than the original preprint. We have omitted the
proofs that appear also in [5].

1. Invariant Differential operators on Symmetric Cones

§1.1. Background and Notation of Symmetric Cones and Jordan Algebra

Let V' be a real simple Euclidean Jordan algebra, ) the symmetric cone in
V', i.e., the interior of the set of all squares in V. It is known that every
irreducible symmetric cone can be obtained in this way. We fix a complete system
of orthogonal primitive idempotents {cy,...,¢.} where r is the rank of V', then
the identity element e is equal to ¢; + -+ + ¢,. We denote by G(Q) the identity
component of the subgroup of GL(V') which preserves 2, L the isotropy subgroup
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of G() at e. Then every element z in V' can be written as
T = Z.Ztici, t; € R, [ € L, (1)
=1

and x € Q ifand only if ¢; >0, e =1,...,r.
There is a determinant polynomial A(z) and a trace polynomial tr(z) on
V' such that if = is written as in (1), then

and

For = € V, one defines the multiplication operator L(z):V — V by
Lz)y==zy, YyeV
and the quadratic representation P(z):V — V by
P(z) = 2L(x)* — L(2*).
For an idempotent ¢ and £ € R, let
Vie,k)={z € V| L(¢)z = kz},

V' has the Peirce decomposition

V= Z V;'ja
1<i<y<r
where Vj; = V(¢;, 1), and, for ¢ # 7, Vi; = V(¢;,1/2) NV (¢;,1/2). For all i # j,
all V;; have the same dimension, which will be denoted by a.
Now the subspaces k) — V(e 4+ 4 ek, 1)(1 <k <r) are subalgebras of
V. Let Py be the orthogonal projection onto V(). The principal minor Ag(z) is
the polynomial defined on V' by

where A®*) is the determinant polynomial with respect to the algebra V(*).
For an r— tuple of integers m = (my,...,m,) with m; > ---m, > 0,
abbreviated as m > 0, one defines a polynomial Ap,(z) on V' by

Am(z) = AT (@) A" (2) - AZTT () AT (). (2)

One observes that if z € Q, then for any r—tuple of complex numbers
s = (81,...,5,), replacing m by s, (2) defines a function Ag(z) on Q.

For a linear transformation X on V', X will be its transpose with respect
to the inner product (, )y, where (, )y is induced from the trace form on V,

Le., (z,y)y = tr(zy).
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Let Gq be the Lie algebra of G(), and Lg the Lie algebra of L. One has
the following Cartan decomposition corresponding to the involution 8 : Go — Gq,
X - -'X,

Ga = La + Pa. (3)
Then .
Ao = {thL(Cz)| LeR=1,...,r}
i=1

is a maximal abelian subspace of Pg. One has

(exp A).e = {D wici| u;>0,i=1,...,r}. (4)

=1

When there is no confusion caused, we will identify (exp .Ag).e with the subgroup
Aq = exp Ag of G(2) or the subalgebra Ag of Gg. The following two coordinate

systems on (exp Ag).e will be used in our later calculations.

(1) ¢:(expAq).e =+ R", go(zr: wici) = (ug, ..., u,),

=1

(I1) ¢ : (exp Ag).e = R, Zucz (Y55,

where y; = logu;, 1 =1,...,r

According to our convention, (I) and (II) will also be used as coordinate
systems of Aq and Agq.

We define linear functionals «a;;,1 <14,7 <r,i # 5 on Ag by

oz”ZthZ = t—t)

then a;;,1 <i,7 <r,i# j consist of all the restricted roots of the pair (Gq, Lq).

Let N = exp N where N is the direct sum of all the root spaces corre-
sponding to a;; with 1 <1 < 57 < r. Then G(Q) has the following Iwasawa
decomposition

G(Q) = LAgN. (5)
Let p = %a Yi<icj<r @ij, and €’ be the function defined on Ag by

ep(u) — rllogu)

for u € Aq, where log is the inverse of exp : Ag — Aq.

§1.2. Differential Operators Associated with Polynomials
In this section, most of our notation is from [5],[7] and [14].

For a real vector space E of dimension n with the inner product (), we
will denote by P(F) the space of all complex-valued polynomials on E. For every
polynomial p € P(FE) we define the unique linear differential operator p( —) by

0
p(%)e(xly) — p(y)e(xly)’ Vy € E. (6)
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The uniqueness of p(aa—x) follows immediately from (6); its existence can be seen
by taking an orthonormal basis of F, expressing p in terms of the coordinates as
p(z1,...,2,) and then formally replacing z; by 52, (1 < j <n).
J
For a polynomial p(z,y) on E x F, similarly, we can define the unique
differential operator p(z, %) by the following equation

p(z, 8_J:)e($|y) — p(x’y)e(xly)_ (7)

We denote by W the Weyl group corresponding to the root system {a;;},
then W is isomorphic to the full permutation group S,. Let D() be the algebra
of the invariant differential operators on €, Dw(A) the algebra of W—invariant
differential operators on Ag with constant coefficients, and Iw(Agq) the algebra
of W—invariant polynomials on Agq. See [7, Ch.5]. In our case, Iw(Agq) is the
algebra of symmetric polynomials in r variables.

We write a for (ag,...,o.), u® for ui’---u” and (a‘a—u)" for
(8871)011 ...(azr)ar.

In coordinate system I,

Dir(Aa) = Ip(umo)lp € T(Aa)}, )

where p(u%) =5 bau“(%)“ if p(y) =X, bay”.
In coordinate system TI,

Div(Aa) = ((5)lp € Il o)) (9)

In the following, we study the structure of D(€) as a vector space. The
Fischer inner product on P(V) is defined by

(p.0)r = (P )2)0),

for p,q € P(V). There is a natural representation = of the group G(£2) defined
on P(V) by
(m(g)p)(x) = plg™"x) (10)

for g € G(Q),p € P(V). The following is known, e.g. see [5].

Theorem 1.1. P(V) is the orthogonal direct sum of the spaces Py (V) (m >
0) which are mutually inequivalent irreducible representation spaces of G(Q).
Moreover,

Pm(V) = span{m(g)Am: g€ G(Q)}.

For each m > 0, there is a unique L-invariant polynomial o in Pu(V') which is

defined by
om() :/Am(l.x)dl.
L
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Under the Fischer inner product (, )z every Py (V) is a Hilbert space and
has a reproducing kernel K™ (z,y) = K*(z), that is,

ply) = (p, K"k Yp € Pm(V).

If {{(z),i = 1,...,dw} is an orthonormal basis of Py(V), where dp, is the
dimension of Pp(V), then

It is known, e.g.see [5], that

l'\"m(g.x,tg_].y) = [\"m(.r,y) (]1)

for all g € G(Q), and
K™(z,y) = K™(y, z). (12)

Let PS®) be the subspace of P(V x V) spanned by {K™(z,y),m > 0}
and

P(V)¥ ={pe P(V)lx(l)p=p,Vl € L}.

Then the spherical polynomials {py,}, m > 0 form a basis of P(V).
The following can be proved easily by using Proposition 14.1.1 in [5] or
directly by using some ideas from [14].

Proposition 1.2. {K™(z, %),m > 0} is a basis of the vector space D().

When we say that a function F(z,y) defined on € x V' is polynomial in
y, we mean that F(z,y) can be expanded as 3, an(x)y™ with only finitely many
nonzero terms.

Remark 1.  Every linear differential operator D on € defines a function Fp(z,y)
on Q x V', which is polynomial in y, by the following equation

D, etl¥) = Fn(zv,y)e(x|y). (13)

Conversely, a function F(z,y) on © x V which is polynomial in y, deter-
mines a unique differential operator F(z, aa—x) by (13).

Remark 2. It follows from the proposition that every D € D(f) can be

extended to a differential operator on V' with polynomial coefficients.

Among those K™(z, %

K" (x, %),j =1,...,r where 1; is the r-tuple of integers with 1 as its first jth

),m > 0, of particular interest to our study are

components and 0 the remaining components.

§1.3. Generators of D(Q)

The purpose of this section is to study D() as an algebra and give some generators
of D(€Q). This section contains the main results of part I.
Recall that G/(Q) has the Iwasawa decomposition

G(Q) = LAGN.
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Let Ry(D) denote the N—radial part of D € D(Q) defined as in [7,p.259]. One
defines a linear mapping I' from D(Q) into the algebra of differential operators
on Aq by

I'(D)=e?Rn(D)oe’, YD € D(Q).

One has the following special case of a result of Harish-Chandra.
Theorem 1.3.  TI' is an isomorphism of D(Q) onto Dw(A).
Proof.  See, e.g. [7, Cor. 5.19]. u
For A € R, we define

Dy = A AT) 0 A

then it is easy to verify that D, € D().

Now we have

Theorem 1.4. The image of Dy under the mapping 1" is given by

0
I'(Dy) = pa(=
(D) =nm(5)
or equivalently,
T(D,) = p/\(u%)

where p/\(l‘) = Hle(rl + X4+ %(r — 1)) € [W(.AQ).

Proof.  See p.296 in [5]. u
Let S;(z) be the jth elementary symmetric polynomial of 1, ..., z,, then
r a .
(@) = 2 A+ Z(r = 1)) 85 (x). (14)
7=0

If Ap,..., A are all different, then it follows immediately from (14) that
pa,(2), ..., pa, () are algebraically independent generators of Iy (Ag). As a corol-
lary of Theorem 1.3 and 1.4, now we have

Theorem 1.5.  If Aj,..., A\, are distinct, then D,,,..., D, are algebraically
independent generators of D(Q).

Now, we wish to express D) as a linear combination of Ky,..., K,. Fol-
lowing Remark 1 after Proposition 1.2, we proceed to find the polynomial Fp,
corresponding to Dy as in next lemma.

Lemma 1.6. For A€ R, z,y € Q,
r ] -1 1

PEVEINE STERILTIRY | (¢ St L S P R CE)
7=1 J =1 2 clT—J
Proof.  See p.295 in [5]. u

Now we have the following expansion
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Theorem 1.7.  For any real number X,
r r r=j l__ 1 .
D= (T + ok, (16)
7=0 J =1 2

e K= (o D
where K; = oy Kb (x,5-).

Proof.  The theorem follows from Lemma 1.6 and Remark 1 in §1.2. ]

Remark 1.  The above expansion has also been obtained independently by
J.Arazy.

We let A = —iTTla,z' = 1,...,r in (16), we have r equations with a

nonsingular coefficient matrix. Solving this system of equations, we obtain

Theorem 1.8. Ki,;v = 1,...,r, are algebraically independent generators of

D(€2). Moreover,

2 7‘—]+]

Y (0" D,

=1

1
[X’j = ]—(

ol

Corollary 1. For j=1,...,r,

r—j+41

M) =42 3 0 ()

ol
r. =1

Remark 2.  Letting A take distinct values Aq,..., A, in (16), gives a system
of r equations, as a consequence of Theorem 1.5 and 1.8, one obtains that the
coefficient matrix of the system of r equations is nonsingular.

Finally, motivated by Theorem 1.7, for any complex number A, we define

r r—j

Dy= YO TIO

7=0 =1

a)Kj .

By Proposition 7.1.6 in [5], analytic continuation, Theorem 1.1 and Schur’s lemma,
we have

Theorem 1.9.  For m > 0 and any complex number X,

r

Dip=[J(m; + X+

=1

r—1

2

a)p, ¥p € Pm(V). (17)

Next, we have



YAN 9

Theorem 1.10. Form >0 and j=1,...,r

. ro._ —1
Kp=(.)" > H (miy + =5—a)p, Vp € Pu(V). (18)
J 1< <<y <r =1
Proof. By Theorems 1.8 and 1.9, we have
1o ratt r—j Sy
KiAm =2y~ 3 (=0 (") I + ———a)Am.  (19)
rl*a =1 ! =1 2
Now, it is sufficient to show that
. 2., a4t r—j g r—1—i
(r=5! > H = ()7 X (=00 et ———a).
1<iy << j<r 1=1 a =1 i=1
(20)

When a = 2, Q is the cone of positive definite Hermitian matrices. In this

case, () = GL(n,C) and L = U(n), then by (11.1.15) in [§]
KAm=(")" % H mi, 4 j — 1)Am
J 1<6 <<y <r =1
This and (19) implies that we have obtained a special case of (20)

r—j+1 . r

. -3 .
(r=it > H (mi+j—0) = Z C O Memitr—1=9. (21)

1<y << <=1 i=1
However, both sides of (21) are polynomials of r variables my,...,m,, and they

are equal for all m > 0. It follows easily that (21) holds for all m € C". In
particular, we have for all m > 0,a # 0

2 " '7+1 1 T—j r 2 .
> HCmti-0= 3 0 T w4 r—1-0. 2
1< <ige <t <ri=1 =1 =1

This yields

2. I 2., "I P r—1—i

=Y > H mit——a)=(=)" > (=1'(" ;1) [Init——F—a) (23)

@ 9<iy<<ij<r =1 a o i=1
proving (20). [ ]

It is known, for instance see [5], that every spherical function on  can be

written as
- / Ag(lz)dl
L

One can readily see that replacing p by s and m by s, (17) and (18) still
hold. Therefore, we have

for some s € C".
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Theorem 1.11.  For every s€ C”, then

(i) for any complex number X

r

D)\SOS = H(Sz + A+

=1

r—1

a)ps; (24)

(i) if j=1,...,r,
r (-1 4 ) — 1
PR VI | (s (25)

1<iy < e < 1=1

Kips = (

2. Differential operators commuting with the action of K

In this part, we shall introduce and study some differential operators on Z which
commute with the action of the isotropy group K. Their applications will be given
in the last part of this paper.

§2.1. Some Background on Bounded Symmetric Domains

Our notation follows that of [4]. Let G be the Lie algebra of G, and K the Lie
algebra of K, then G is a simple real Lie algebra with Cartan decomposition

G=K+P.

G€ will be its complexification and G€ will be the adjoint group of G€. A
basis of root vectors {e,} will be so chosen that Te, = —e_,,[en,6_0] = ha,
[hoy €+a] = 2644, where 7 is the conjugation with respect to the real form K +iP.
®* will denote the set of positive non-compact roots, and setting

Pi = Z Ce:toza

acdt

one has
GC =P +K°+ Pt
Define a Hermitian inner product (|) on P* by (z|w) = —B(z,7w) where B is
the Killing form.
It 1s known that in the Harish-Chandra realization, D is a bounded sym-
metric domain in Pt and K acts on P by unitary transformations which co-

incide with the adjoint action. Let vi,...,7, be the strongly orthogonal roots of
Harish-Chandra with the ordering v; > --- > .. We simply write

r
€;=¢y, (J=1,...,7), e:Zej.
=1

The Cayley transform is defined by ¢ = expi(%)(e — 7¢). We write °G for
the Lie algebra of ¢Gc¢™' and Gr for the fixed point set of G under Ad(c*). Let
Kr,Pi,Pit and Py denote the intersections of K, P, P+, P~ with GF respectively,
then one has the corresponding decompositions Gr = Kr + Py, G = Py +KS +
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P, Ad(c?) is the Cartan involution of K7, the corresponding decomposition is
Kr=Lr+ Q. Let K% = K7 +1:Q; be its noncompact dual.

Now N = G N P{ is a real form of P; . In particular, V" has the
structure of a real simple Euclidean Jordan algebra as described in [11], e coincides
with the identity element of the Jordan algebra Ni™ and eq,....e, form of a
complete system of orthogonal promitive idempotents. P; becomes a complex

Jordan algebra. The operator D(w,w), for w € Py, is defined by
D(w,w) = L(ww) + [L(w), L(w)],

where  is the conjugate of w with respect to the real form NjF. Let || D(w,w) ||
denote the operator norm, then the unit ball

Dy ={z € P{| || D(z,%) ||< 1}

is equal to DN Pf. Dr is a bounded symmetric domain in P;" (the "tube type
subdomain” of D).

K7, K3 and G will denote the analytic subgroups in G corresponding to
the Lie algebras Kp, K% and G respectively. Then Dy is the standard realization
of Gr/Kr as a bounded symmetric domain. KZ.e is the symmetric cone in N,
that is, the interior of the set of all squares in N".

Let ‘H™ be the real span of h.,,...,h, , then H™ is a Cartan subalgebra
of the pair (°G,°K), and the iH~—roots of °G are £3(v; £ ), £7j,£37; (1 <
7,k <r) with respective multiplicities a,1 and 2b. See [13].

Let P1i/2 be the root space in Pt for %’yj, and P = 2 P+i/2. Then
P+ =Pf +Pf.

§2.2. Polynomials and their corresponding diflerential operators

Let U be a complex vector space of dimension n with a Hermitian inner product
(| ) and coordinates (z1,...,2,), P(U) the space of holomorphic polynomials on
U, and P(U x U) the space of polynomials on U/ x U which are holomorphic in
the first variable and antiholomorphic in the second variable.

We call D a holomorphic differential operator if in coordinates D can be
expressed as

D= A5,

where a = (aq,...,a,) and (;—Z)a = (%)al (%)a"
Each p € P(U) defines a unique holomorphic differential operator p(aa—z) by
0

p(g)e('z'“’) = p(lb)e(z|w) Vz,w e U.
Similarly, each p(z,w) € P(U x U) defines a unique holomorphic differential
operator p(z, ;—z) by

a (z]w)

p(z, @)6 = p(2,111)e(2|w) Vz,w e U.

Two such differential operators p(z, ai), q(z, 88—2) are equal if and only if

z

p(Z,U]) = q(Z,UJ).
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Let u be a unitary operator on U and let it act on functions defined on U
by (u.f)(2) = f(u=".z). Then for p € P(U xU), p(z, 88—2) commutes with v if and
only if

plu.z,uw) = p(z,w), Vz,welU. (1)
The Fischer inner product on P(U) is defined as follows
J .
(na)rw = (p(5-)a)(0) (2)

where g(z) = ¢(z).

In the following, we will apply the above discussion to the complex vector
spaces P;jt and Pt without further mentioning. Since N} is a real form of P;,
a holomorphic polynomial is determined by its restriction to A5, thus there is
one-to-one correspondence between P(P;) and P(N;).

Similarly, a complex-valued polynomial p(z,y) on Nj" x N} determines a
unique polynomial p(z,w) in P(P; x 73—{")

The Fischer inner products on P(N7") and P(P;") are denoted respectively
by (, )F,./\f1+ and (, )F,P;L'

For simplicity, we will use the same p to denote a polynomial in P(N7")
or in P(N7F x Ni") and its corresponding polynomial in P(P;") or P(P; x 73—1’")

Under this convention, it is easy to see that

(P @+ = (P, Q) ppy (3)

The following result is known, e.g., see [4], [16], [17].

Theorem 2.1. The space P(PT) of holomorphic polynomials on Pt (resp.
Pi ) decomposes into irreducible subspaces under Ad(K) (resp. Ad(K7)) as

P(PT) = D Pu(PY)

m>0

and
P(PY) = D Pu(PY).
m>0
For each m > 0, A, € Pm(731+), and its extension AL to Pt is in Pm(PT).
For each m > 0, restriction of polynomials maps Py(PT) onto Py(Pi).

For m > 0, we denote by PE(AN7) the restriction of holomorphic polynomi-
als in Py, (PyF) to NiF. Then it follows from Theorem XI.2.4 in [5] that PE(NF)
is equal to Pm(N;") where Py(NjT) is the corresponding irreducible subspace
occuring in the decomposition in Theorem 1.1.

Let K™(z,y), for m > 0, be the reproducing kernel of Py, (N;") with re-
spect to the Fischer inner product (, )F,J\/1+ , then it follows from (3) that KJ*(z,w)
is the reproducing kernel of Py, (P;") with respect to the Fischer inner product
(, )F,P+- It is this fact that relates our study in part T to the following work.

'For 7 =1,...,r, we define
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and

1
KT:—m?@ha

For each m > 0, let K™(z,w) be the reproducing kernel of Pp(P*). Fol-
lowing Theorem 1.7, we define, for any complex number X, holomorphic differential
operators Dy and DI respectively by

, oo r—1
7=0 =1
and ‘
T " T = r— l T
D =S (I - kT,
7=0 J =1 2

(We note that the parameter A has been shifted by —"1a.)

More generally, we define, for any positive integer &,

k
/D/\ = ,D/\ ] /D/\+1 O --- /D/\+k_1.

It turns out, as one may expect, that Dy (resp. DI ) is diagonal on the
polynomial space P(P*) (resp. P(Pi)) corresponding to the Schimid decompo-
sition. The main purpose of this section is to calculate the eigenvalues of D) on
the corresponding irreducible spaces.

The idea is as follows: roughly speaking, the action of DI on Py (P;)
is almost the same as that of Dy on Pn(N]"), then the eigenvalues of DI can
be immediatedly obtained from the results in §1.2. Thus what is left is to find
the relation between the eigenvalues of K™(z, 38—2) and K™(z, 3871) Fortunately,
they will be seen to have the same eigenvalues on the corresponding irreducible
polynomial spaces.

We write (21, 22) for z € PT with 21 € P{", 2z, € Pf. For a function f on
Pit, we define its extension f¥ on Pt by

[(z1,22) = [(=1).
For a function F' on P*, we define its retriction F¥ to P; by
FR(Zl) = F(Zh 0)
We note that if p € P(Py), then pP € P(P*);if p € P(P*), then p® € P(P]).
Similarly we define p® for p € P(P* x P+).
It is easy to verify that for p € P(Py), q € P(P*),

(P, a") s = (7 @) Epe (4)

The relation between K™ (z,w) and K{™(z1,w) is given as follows
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Lemma 2.2.  For each m >0,

K™(z1,wy) = K{™(z1,w1), Vzi,w, € P

Proof. It follows from (4) and the reproducing property that for all z;,wy,

K (zr,w1) = ((K5,)" K eps = (K1, (K2 ) pps

= (([X’an])R7 [X’ﬂ]u)l )F7P1+ — [X’m(217 wl>,

For a differential operator D on P* following [7], we define its projection
DP by
(Dpf)(21) = (DfF)(=1)

for any function f defined on P;f. Writing a polynomial p(z,w) € P(P*+ x PT)

in terms of coordinates (z1,...,z,), it is easy to see that
0 R 0
, — - 5
4z e = P21, o) (5)

As a consequence of (5) and Lemma 2.2, we have

Lemma 2.3. For all m > 0,

[\'rm(Z,g)P = (F(Zl,a—Zl>.

For each m > 0, we have
K™(k.z,kw) = K™(z,w), Vz,we Pt VkcK;

[X’P](kl.zl,kl.wl) = [X’m(217w1)7 Vzl,wl € ,P]-I-, Vk’l € [(T.
and then (1) implies that

a ¢ -
Klm(z]’a—zl> 0k = ki o Ki"(z, 8—21>’ Vk, € K.

It follows from Theorem 2.1 and Schur’s lemma that for each n > 0,
K™(z, 2) (resp. K™(21,-2)) acts on Po(P) (resp. Po(Pi)) as a scalar multiple

? 9z 21, Az

of the identity, that is,
O .
K, Dl = Daa(P) i o

and

m d ;
K™ (21, a_zl)lpn(m*) = Xam(Pi)id | pty,
)

for some constants Ay m(PT) and /\n,m(P{l').
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For the same reason, we have

m 0 .
K™(z, %NPD(N;) = )\n,m(Nf’)zd|p“(Nl+),

for some constant )\mm(Nf").
By the relation between K™ (z,y) and K™(z,w;), it is obvious that

Aam(Pr) = Anm(NT) (6)
Now we have
Theorem 2.4. Forall m >0,n >0,
)\II,IH(/P-I-) = )\n7m(731+) = )\nvm(N;-) (7)

Proof. For each n > 0, by Theorem 2.1, Ap € Po(PiH), AF € Po(PT) (in [4],
AF is still denoted by Ay). Since e € Py and Ay(e) = 1, applying Lemma 2.2,
we have

Dam(P*) = Aam(PHAE() = (K™(z, T)AE)) = (K™(z, S )pAn)(e)
4 z
m 0
= (K1 30)80)(6) = dum(PP) () = dam(PF)
This proves the theorem. ]

As a consequence of Theorems 1.9, 1.10 and Theorem 2.4, we have our main
result in this section

Theorem 2.5. For m > 0, and any p € Pm(,P+>)
(i) "
D\ p = 1) (N, (8)
where ) (X) =TT, THZa(A +mi + j — 5ta);

(i)

gl 2 _.’"_j P R . r—i—1
K = A S0 T e+ e
J rla = [ 1:1_[1 2
"o —1 ! g1
= O Y Hemt S a )
1<0 << <r =1

§2.3 The Algebra of the Holomorphic Differential Operators that Commute with
the Action of K
Let PX be the subspace of polynomials in P(PT x P+) defined by

P¥ ={pe P(P* x PT)| plk.z, kw) = p(z,w), Vk € K},

and DX the space of holomorphic differential operators on Pt that commute with

K.
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Lemma 2.6.  If p,q € PX and p(z,e) = q(z,€) for all z € P+, then p=gq.

Proof.  The fact that the orbit K.e is the Shilov boundary S of D, together
with the K-invariant property of p and ¢, implies

p(z,6) = q(2,€), VzePHEes.
Since p,q are antiholomorphic in w, we have
p(z,w) = g(z,w), Vz,we Pt
finishing the proof. .

For m > 0, define polynomials ¢l on Pm(P;) and pm on Py (P*) by

o7 (2) = /LT Am(l.2)dl

and

oml(2) = /LAm(l.z) di

where Lz (resp. L) is the isotropy subgroup of K7 (resp.K) at e.
Proposition 2.7.  {K™(z,w),m > 0} is a basis of PX.

Proof.  Suppose p(z,w) € P%, then p(z,¢e) is an L-invariant polynomial in
P(P*), by Theorem 2.1 in [4], we have

plz,e) = Zamcpm(z) = Zami K™(z,e).

Now Lemma 2.6 yields

am ..
p(z,w) = C—m (™ (2, w).
m

Finally, since {¢m, m > 0} are linearly indpendent, an argument similar to the
above shows that { K™ (z,w),m > 0} are linearly independent. ]

As in §1.2, we have the following lemma

Lemma 2.8.  FEvery D in DX determines a unique polynomial Fp(z,w) in
PX. Qonve7"sely, if p € PX, then p(z, 38—2) € DX Moreover, if p(z, 88—2) = q(z, 38—2)
in DX, then p=q.

Now Proposition 2.7 and Lemma 2.8 imply

Proposition 2.9.  {K™(z,Z2),m > 0} is a basis of D

The following result is an analogue of Theorem 1.8



YAN 17

Theorem 2.10. (i) {K"(z, 88—2), ooy K (2, 88—2)} is a set of algebraically in-
dependent generators of DX .

(ii) DX is a commutative algebra.
o ) commute mutually since {K"(z, i) act on

We note that the K'(z, = 2
Pm(Pt). Thus (ii) follows from (i) immediately.

To prove Theorem 2.10, we need the following lemma which is due to
A.Koranyi.

Lemma 2.11.  ¢my, = (¢5)” for all m > 0.

Proof.  The proof follows immediately from tha fact in [9] that || ¢m ||Fr=
I em 7 m

Proof.  (of Theorem 2.10) We will use the fact that {¢] ,...,¢] } is a set of
algebraically independent generators of the algebra of Lp—invariant polynomials.
First we show by induction that for each m > 0, there is a polynomial P

in r variables such that K™(z, %) = P(K"(z, 88—2), ooy K (2, %))

In fact, since pm, = (pL)¥ by Lemma 2.11, there is a polynomial P, such
that

cmpm(2) = Pi(pr,(2), - 01,(2) = (K2 (=), K7 (2)).
Then Lemma 2.6 gives that

K™(z,w) = P/(K" (z,w)),..., K" (2,w)).

One can easily see that the differential operator

——— 1, O 1, 0
K (Zv E) - Pl([X (27 E)v R K (Zv E))

has order < my + --- 4+ m,. By induction, there is a polynomial ) such that

. 0 . ; 0 . . 0

K™z, 57) = UK (2, 7)o KV (2, 7)) = QoK1 (2, 7)o K (2, 7))
Now P = P + 91 gives the solution.
Next we prove that K''(z, 8%)’ ooy K (2, ;—z) are algebraically indepen-

dent. For a monomial u" ---u2", we define

weight(ul' -+ uy™) = ar 4+ 20 + ... + ro,.

A polynomial p in r variables is of weight i if p is the sum of monomials of weight
i.
Suppose that there exists a polynomial @) in r variables such that

d 0
11 _ 71y _ —
QK" (=, az),...,[& (2, 82:)) 0.
Then
QK" (2 3) LK (z 2))e@lw) = 0. (10)
782 9 9 ’aZ



18 YAN

We write Q = Y7, Q; with weight(Q;) =1 and @, # 0. It follows easily from
(10) that

Qn(Kll(z, w),. .., Klr(z, w)) = 0.

Thus,
0 = Q (K" (z,€),..., K" (2,¢))
= Qnlcen(2),...,a, 991 (2))
= (0118011(Z> ) €1, 991 (2))
for all z € P;". But golTl, ceey LplTT are algebraically independent, we have a contra-
diction. Therefore, we have proved the theorem. ]

From the definition of Dy, Theorem 1.9, and Remark 2 in §1.3, we imme-
diately obtain

Theorem 2.12.  For any distinct numbers Ai,..., ., Dy, ..., Dy, is a set of
algebraically independent generators of DX .

3. Spaces of Holomorphic Functions

In this part, we shall apply our results in part I to the study of some spaces of
holomorphic functions on a bounded symmetric domain.

§3.1. More notation
For s = (s1,...,s,) € C", one defines

where (a)y = a(a+1)---(a+k—1), (a)o = 1. For any complex number s, we
write s1 for (s,...,s). With some abuse of notation, we also write s + a for
(31+a,...,5r+a).

For s € C", let T'g(s) be Gindikin’s Gamma function, that is,

Ta(s) HF (i — 1)a/2).

Then

Fa(A)
We denote by h(z) the K-invariant polynomial on P* whose restriction to
{3y ae; | a; € Ryi=1,...,r} is given by

Zacz =ﬁl—a?).
=1

(N =

Let . 5 . 5
h(z,w) = expjzz:l zja—zj expjzz:l Wa—z_jh(z),
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then
h(z,w)™? = K(z,w)

where p = (r — 1)a + b+ 2 and K(z,w) is the Bergman kernel of D. See [4].
We write H, (A > p —1) for the Hilbert space of holomorphic functions f
on D such that < f, f >, is finite where

(o = [ F()gCh(=) 7z, (1)

and
1 Ta(X)
= —— "t
™ Lo(X —n/r)
then H, has K\(z,w) = h(z,w)™ as its reproducing kernel. For an element

g € G, one can define a linear transformation U,(g) on H, by

(Ux(9))(2) = fg™" &) Jpma ()7, ] € H, (12)

where J, is the complex Jacobian determinant of g and we use the principal
branch of the power functions. It is pointed out in [4] that on H,, (2) defines a
unitary representation U, of &, the universal covering group of G. This is the
scalar-valued holomorphic discrete series of representations of G.

For A > p—1, (1) is equal to

(L@ =D (Nmlf 9)r. (13)

m

When A < p—1, there is no nonzero holomorphic function f satisfying (f, f)x <
oco. However, for those A > %a, (3) still defines a nonzero Hilbert space H)
of holomorphic functions on D. (2) again defines a unitary representation of G,
the analytic continuation of the holomorphic discrete series. For details about the
holomorphic discrete series and its analytic continuation, see [4], [15],[18].

For A € C, we denote by P®) the set P(Pt) equipped with the structure
of a Harish-Chandra module obtained by analytic continuation of the holomorphic
discrete series, see [4]. For m > 0, let ¢(A,m) be the multiplicity of A as a zero
of the polynomial X' — (M)m. Set ¢(A) = supm>oq(A,m). Clearly, ¢(X) < r. For
J=0,1,...,q9(}), let

MP={7ePOf=" 3 fumfm € Pu(PH}

m>0,g(A\,m)<j

According to Theorem 5.3 in [4], g(A) > 0 if and only if X\ — %a or A — %a is
a nonpositive integer, and
MY c MM oo M) =P
is a composition series of P, Morever, for every integer 0 < j < (), M](/\)/M(A)
has a U)-invariant Hermitian form given by
(X — X

(fs9)r; = Al}_rg W(fag>17 (14)
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for f,g € Pm(P).

The Hermitian form (, )yo on My i
A = j% with an integer 0 < 7 < r —1. For j > 1,(, )r; on M /M'J(/\1
definite if and only if 5 =q(N) A is an integer. In either case, 7 = 0
or q(A), M /M is said to be unitarizable. We are mainly interested in the

-1

unltarlzable cases. In particular, we shall express (4) in terms of integrals on D
in the next section.

§3.2. Integral Formulas
In this section We give some integral formulas for the invariant Hermitian form (4)
when M / 1 is unitarizable.

Accordmg to (1.11) in [4], first we have

fyete = e [l [ f a3 e

7=1

2 H T 12 = g dty - - (15)

i<k

where ¢ is a constant whose exact value can be found in [10].
Next, we establish some lemmas

Lemma 3.1.  If fm € Pu(PT),gm' € Pm/(PT), then

o TR} = B () v )

t?e; and om(z) is the unique L-invariant polyno-

— 3 e 12 —
where t = 3.7 _ Lie, t° = 30 1

mial in Pm(PT), L is the isotropy subgroup of K at e.

Proof.  We follow the proof of Lemma 3.1 in [4].
By K™(k.z,k.w) = K™(z,w), we have

fm(kat) - (fma[ )F—(fma (k>[(;n)F
gm’(k-t> = (gm’al‘k.t>F—(gm‘a (@Kf,mI)F'

Since the spaces Pm(P) and Pp/(PT) are not equivalent, if m # m’, and ir-
reducible, applying the Schur orthogonality relations to the representation space

P(P*) of K, we have

[ fun b R
= [ U 7R K)o 7 (R Kl

Omom’ o)
= d—’([‘t > ) (fmygm’)
1)

e )
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where dp, is the dimension of Py (P*). By Lemma 3.1, 3.2 and Theorem 3.4 in

4],
K™(1,1) (1)

dm (n/7)m

This proves the lemma. [ |

Lemma 3.2. [ft=737_,le;, then, foralla>p—1

1 1 r T
CAC/O o /0 em() [T TT(1 = )P I 1t: — t;]%dty - - dt,
i=1 1

()

(@)m

Proof.  The proof follows immediately from Theorem 3.6 and its proof in [4].

|
Rewriting (8) in Theorem 2.5, we have

DMp = (A \ 16
y p= (At m)uap. (16)

A direct computation gives the following lemma.
Lemma 3.3. For any complex number X and any positive integer k, we have
Mmtr = Mm(A+m)p (17)
Wmse = WiaA+ Fm (13)

For z € P*, we define
2] = [] It (19)
=1

if z = k.>_;tie;. By Corollary 1.3 in [12], (9) is well-defined. The set of the
points in D for which |z| = 0 is of dimension less than n. We observe that when
D is of tube type,

2] = [A(2)]. (20)

We have

Lemma3.4. Ifa>p—1,fm € Pu(PT),gm' € Pm/(Pt) with m, > s, then

Ca /D fm(z)gm/(z)wdv(z)

|Z|25
1

B (@) m—s(n/r + m — s)s (fm, gm') - (21)
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Proof. Lemma 3.1 and (5) imply that the left hand side of (11) is equal to

1 1 - r .
cacJ/ ---J/ J/ Fon () g (D) T (1 — 12)77
0 0 K =1
x o 20 JLes 2 TN = adled - dt,
i=1 i<k

= Cacﬁ(fmagm' / /me s i: 1—tf)“‘p

]___[t2b"'1 [T 162 = e§|dty - - - dt,

i<k

Using the variable change t? — t; and Lemma 3.2, this is seen to be equal to

fm;gm’ / / b
m— 5 1—t «= pllt || t: —1.|%dt
TL/ ¥ | ]‘9| 1°

=1 j<k
. (fm, gm’)F (N/T)m—s B 1
 (/M)m (W)mes  (@)mes(n/r+m—8)g (S G ) -
The last equality follows from Lemma 3.3. .

Case:

o equals P(PT). In this case, we give
the following integral formula for the 1nvar1ant inner product (4).

Theorem 3.5. p—1,
then
= D%k [ DE Y (2)g(2)h(z, 2) PV 99
(ﬂMM—Om_JAﬁ@%@@ﬂ) V(e 2
for all f,g € P(PT).
Proof.  First, from Lemma 3.3 we obtain
Mi1(A 4 E)m
(A+mﬂp:L£%W—l— (23)

Using Lemma 3.4, we note that it suffices to show (12) for f,g € Py (P*). Since
Dif =(A+m)uf,

o fp (DA)(E)g(Ih(z, 2) Hrav (2)
= (v m)uen [ J(glEh( ) V()

— ()\‘l‘m)kl fv )

o
(A+k)m
The last equality follows from Cor. 3.7 in [4]. By (13), this is seen to be equal to

1
Mk 35—
(Mm

We have proved the Theorem. ]

(fag)F-
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Case: )\ =

Let nqy =71 ( )a + r. Next we consider the case when M /M (-1
unitarizable, i.e., /\ = ny/r —s, s is an integer. Two types of mtegldl founulds
for (4) will be given, the first one analogous to (12) and the second one leading to

characterizing the completion of Mq(f\,\))/Mq((A)?)

, as a Dirichlet-type space.

When s < 0,A > %a + 1, this is the case we have discussed. In the
following, we assume s > 1.

Lemma 3.6.  For A =n,/r — s,k > s, we have
(i) if m, <s, then (A +m),; =0

(i) if m, > s, then

k=1 r —
(/\+m)k1:HH(mZ—|— 5 a)>0.
7=01:=1
Proof.  Since ni/r = (r —1)a/2 + 1, we have
k=1 r i —1
A+m); = (nifr4+m;—s+j— a)

7=01=1 2
k—=1r—1 —’L

= (mi+1—-s+j+ a)
7=01=1
k—1

(e +1— 54 ) o4)

7=0

If m, < s, then the last term in (14) is zero. If m, > s, each term in (14) is
positive. This proves the lemma. ]

Let

Lemma 3.7.  For A = ny/r — s, we have
(i) if m, < s, then 11— = 0;
(i) if m, > s, then

()\ + m>k1 ~ 1
[EETEIO™

where (X),, means thal the zero faclors are omitled.
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Proof. By definition,

r—1

(Mm = [T(n1/r = $)m, - (1= 5)m,

=1

We note that ¢(A,m) = q(A) implies (1 — s),,, = 0. If m, < s, it is easy to see

that (1 — s)m # 0, thus ¢(A, m) < gq(A), then ﬁ =0.

Now suppose m, > s. For A = %L — s, then

<

(= I a5 +) (26)
M = T e+ 0

Since the numbers of zero terms in both (16) and (17) are equal to ¢g(}) , we get

O O T S O\ RN C P i
A=A ()\')m PSS (,\/ _ )\>q(A) (/\,)m

-1
- (MMW (28)

m

For those A" such that (A + &)y # 0, by Lemma 3.3, we have

(A +m)p _ (A k1
NVt D~ V) (29)

Letting A’ — X in (19) and using (18), we obtain (15). ]

Now we have

Theorem 3.8. If A =mn,/r —s,s > 1, then, for k € Z with A\+k >p—1, we

have

1 -
(f:9)na00) = —~CA+k/ (DA)(2)g(2)h(z, 2)***PdV (2) (30)
(A1 D
for all f,g € P(PT).
Proof.  For the same reason as in the proof of Theorem 3.5, it is enough to

show (20) for f,g € Pyu(PT).
(i) if m, < s, by (6) and Lemma 3.6, the R.H.S. of (20) is equal to zero; by Lemma
3.7, the L.H.S. of (20) is also equal to zero.
(ii) if m, > s, then
ere [ (DEN)()g(Ih(z, 2)F7av (2)
= (A macrns [ (=)=, 2) 7V (2)

= (A+ m)klﬁ(ﬁg)F

Now the theorem follows from Lemma 3.7. ]

The following result gives another integral formula for (1, )y 4.
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Theorem 3.9. If A=ny/r—s,s > 1, then, for k € Z with k >n/r—1,k > s,
we have

Cos Jrtk 712,,2’“_”/’"
By = G s PN v, 61

Jor all f,g € P(PT). When D s of tube type, then (21) becomes

ALt [ (AL DEAR A e v () (32)

for all f,g € P(PT).

Proof. If m, < s, as shown in the proof of Theorem 3.8, both sides of (21) are
zero. It is enough to consider the case m, > s. By Lemma 3.4, we have

h(Z, Z)k—n/r

|Z|25

uprie [ (DA(DE)E) av(2)

h(z, z)ktm/r=p
|Z|23

= b+ ma - ekl ml/r)m_s(f,gﬁ

= (bt m)a(A m)a [ f()902) dv(z)

()\ + m)kl
(B+ A+ 8)m-s

The identity (A + &)s1(k+ A+ $)m-s = (A + k)m and Lemma 3.7 imply that this
is equal to

(A +m)s
(A4 £)m

This proves (21). Finally, (22) follows from the observation that when D is of
tube type

(A+ k)51 - (f.9)r = A+ E)a (Vi (Nl 9)r-

(D3NP gy = (MG DA (A 0) ).

Corollary 3.10. If A=n;/r —s <0 and s > n/r — 1, then, we have

c — h(z, z)ndr
([9)0000) = (;);1 (A”;/’:); /D ('D§+bf)(z)(73§g)(z)%W(z) (33)

for all f,g € P(PT). When D is of tube type, if n/r < s, then (23) becomes

1 Carys O N s—n/r
O D LA NEG 9@k av () 31

for all f,g € P(PT).
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Proof. Immediate. ]

Remark 1.  Thanks to the remarks by A.Koranyi, the constants before the
integrals in Theorems 3.5,3.8 and 3.9 are much simpler than in the original version.

§3.3. Characterization of Mék)

. . . .. . . 1 .
In this section, we consider the remaining unitarizable case A = S-a,1 < 5 <

(A

r, and we are only content with giving a characterization of M;™ in terms of
differential operators. Integral formulas for the corresponding invariant inner
product will be given in a forthcoming paper.

If A= %a,l < j < r, then for m = (my,...,m;_1,0,...,0),(A)m > 0,

and for all other m, (A)y, = 0. Hence we have
M = P Pu(P).
mZO,m]:...:mTZO
It is shown in [17] that when D is of tube type, Mé%a)
polynomials, in the sense of

is the space of harmonic

A () =0 (35)

We note that for p € P(P*), (25) is equivalent to K,p = 0. Now we
generalize this result as follows

Theorem 3.11.  For X\ = j%la,,j =1,..

.1, we have

My =" = {pe P(P*) | Kip=0) (36)
Proof. By Theorem 2.5 (ii), for p € Py(PT)

Kip= > Hmu J—l) (37)

1< <<y <r =1

On the one hand, if p € Py(PT) with m; = ... = m, =0, then the factor
(mq, + (7 —1)3) in each term of (27) becomes 0, since 1; > j. Hence for any
pc MSJTG),/C]"D =0.

On the other hand, we note that each term in (27) is nonnegative and is
positive if m; > 0. Therefore, if p € Pyu(P*) with m; > 0, then K;p # 0.

Now the theorem follows. ]

For further relevant results in this area, see [3].

63.4. Hilbert Spaces of Holomorphic Function
We have seen that for A > p — 1, there is a natural Hilbert space of

holomorphic functions on which Uy(g) acts unitarily. Now we study the completion
of M /M M= with respect to (4) when it is unitarizable.

= Ja 0<j3<r—1,let Hy, denote the completion of
Mék) with respect to the inner product

ummzz@g@ifwem&
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Lemma 3.12.  Fvery f € H(D) can be expanded as

f(2) =2 fm

m>0
where fm € Pm, the series converges uniformly and absolutely on compact subsets
of D.

For f,g € H(D), let f = Y50 m9 = Zm>09m be the expansion as in
the lemma, it can be readily seen that

(i) for A > rgla

H= 1 e H) 5 e oy

with the inner product

(g = 3 sl

(i) for /\=%a,0§j§r—1,

H/\ — {f c HJ(D>|Z (fmafm)F

with the inner product (f,g), = >, (frz'/{“()’m)F, where H(D) consists of holomor-
phic functions f = > 550 fm which have terms fy, # 0 only for those m with

miyr =...=m, =0.

Remark 1.  One can easily see that when A > p — 1, the new definition of H)
coincides with the previous one.

It is immediate that K,(z,w) is the reproducing kernel on H,, and the
closure of the linear span {K,(-,w),w € D} is H,. Now by the identities
(Ki(-,w), K\(-,2))a=K,\(z,w) and Jg(z)[((g.z,g.w)W:K(z, w),z,w € D, or
by Theorem 5.3 in [4], we conclude that ( , ), is invariant under the action U, .

As a consequence of Theorem 3.5 and Lemma 3.12, we have

Theorem 3.13.  For A > T;]a,k €Z with A\ +k>p—1,

Hy = {f € HD)| [ (DLN()TEh(z,2) 7V () <00} (39)

with the inner product

(5.9 = Gt [ (DA, 2) *4av (z), (39)

Remark 2. When f,g are not in H(D), the integrals in (28) and (29) are

understood as lim, 1 [p(D5f)(rz)g(rz)h(z, z)*TFPdV (z).
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For A > %a or )\:%a,OSjgr—l,kEZ with A+ 2k > p—1, we
define a norm || |[y% on H) by

1118 = exvan [ (DL, D) (VDE, D (h(z, 2) 7V (2).

Now let f = 3", fm, by Lemma 3.4, we have

11 = 3 L (o

Applying the Stirling’s formula, we get, as m varies,

Mm  To(A+m)
A+ 2k)m  To(A+2k+m

2 TTm 17 = (/7 + i)

=1
(when A = %a, we only consider those m with (mq,...,m;,0...,0)). That is
(m2 /7 + m)a)? 1
(A + 2k)m (M)m

Therefore, there exist two positive constants € and 'y such that

CUlAR e < (F ) < Call 13- (40)
Now Theorem 3.11 and Lemma 3.12 imply the following result

Theorem 3.14.  For k € Z with A+ 2k > p— 1, we have
(i) iof A= j%la,l <7 <r, then
Hy={f € HID)K;f =0, [If]lxp < oo}

(i) if A > Sta, then

Hy ={f € HD)[[/lxk < o0}

For a nonnegative integer s, let H(s) be the space of holomorphic functions
f such that fi,, = 0 for those m with m, < s if f is expanded as in Lemma 3.12.

For A = ny/r —s,s > 1, we denote by H, the completion of Mq((/\/\))/Mq((/\/\))—l
with respect to (, )aq0)-

As a consequence of Lemma 3.7 and Theorem 3.8, we have

Theorem 3.15. H, is identified with the space of holomorphic functions f in
H(s) for which
| (DD TRz, 2) 7V (z) < o0

with the inner product

(5.0 = (3 [, PANETEI(z, ) PV (z),

where k € Z with X\+k >p—1. When f,g are nol in H(D), the integral has the

same meaning as in Remark 2.

By Corollary 3.10, we get



YAN 29

Theorem 3.16. If A =ny/r —s <0 and s > n/r — 1, then H, is identified
with the space of holomorphic functions f in H(s) for which

7}1(2’ Z)s—n/r

L PR DNV (2) < oo,

and the inner product is given by

h(Z, Z)s—n/r

|Z|2s

19ty = Gy [ (D3 D) V() (@)

In particular, when D is of tube type, then (31) becomes

_ 1 Cn/r+s / ) 19, s ) 0 s s—n/r
(f7g)/\,q(/\) — ()\);1 ()\ + 5)51 D(A(az) f)(z)(A(aZ) g)(Z)h(Z,Z) dV(Z)
(42)
When f,g are not in H(D), the integral has the same meaning as in Remark 2.
When r = 1,5 = 1, then D is the unit disc and A = 0, we see that the
integral in (32) is

|, IV (),

hence H, is just the classical Dirichlet space.

Thus we call H, the generalized Dirichlet space.

Remark 3. When D is of tube type and n/r — s is an integer, (32) is due to
J. Arazy.

§3.5. The Dual and Predual of the Bergman Space

For ¢ > 1, let LY(D) = LYD) N H(D) be the Bergman space on the bounded
symmetric domain D. In this section, we describe, as in the case of one variable,
the dual and the predual of the Bergman space L)(D) in terms of those differential
operators given in §2.

First, as a consequence of (6) and the expansion

h(z,w)™ = > (ANm K™ (z,w),

m

in [4], we have the following result which is interesting in its own right.

Theorem 3.17.  For any complex number X and any positive integer k,
DX h(z,w0) ™ = exph(z, w) "0

where ¢y = H§=1 M (A +7—1— %)
Next, we introduce Bloch-type spaces of holomorphic functions on D. Writ-

ing D* for D;, define

B(D) = {f € L2(D)| suph(z,2)'|(D" f)(2)| < o},

ze€D
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and

By(D) = {f € L*(D)| lim h(z,2)*|(D*f)(z)| = 0},
where 9D is the topological boundary of D. Then BS(D) and BS(D) become
Banach spaces with the norm || ||« = sup,¢p h(z, 2)*|(D° f)(2)].
Let P be the Bergman projection, C'(D) the space of continuous functions

on D and Cy(D) the subspace of C(D) consisting of functions which vanish on

0D . As in the classical case, we have

Theorem 3.18.

NS(D) are the same and

are bounded and onto. Therefore
the Bi(D) are the same.

For a Banach space X, we write X™ for its dual.
Next result gives the dual and predual of the Bergman space L.(D).

Theorem 3.19.  For s > ">'a, L!(D)* = B*(D) and By(D)* = L}(D).
The proofs of Theorems 3.18 and 3.19 are the same as those of corresponding
results in [19].

Remark. Since the differential operators Df have the same actions on holo-
morphic functions as the integral operators studied in [20], one can also use D% to
characterize the holomorphic Besov spaces introduced in [20].
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