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On an analog of Hermite’s constant

Takao Watanabe*

Communicated by G. A. Margulis

Abstract. To any strongly k-rational representation 7 of a connected
reductive algebraic group (G defined over a number field &k, we attach a
constant 7n as an analog of Hermite’s constant, and we give a lower estimate
of ~x in the case that the stabilier of the highest weight space of ™ in G
is a maximal parabolic subgroup.

Introduction

In the theory of quadratic forms, the number

Yn = max min ‘zz, (L runs over unimodular lattices in R™)
L z€r\{o}

is called Hermite’s constant and its exact value is known only for n < 8 (cf.[10]).
An estimate of ~, is one of interesting problems in the geometry of numbers.
Minkowski’s first convex-bodies theorem and Minkowski-Hlawka theorem show
that

wo ) ()"

where V(n) denotes the volume of the unit ball in R™ and ((-) the Riemann
zeta function.

As a generalization of Hermite’s constant, Rankin [16] defined the con-
stant v,.4, (1 <d<n-—1), by

Yn,g=max min__ det(‘z;z;);;, (L runs over unimodular lattices in R™)
L Ty, rq €L
1A AT g#0

and proved the inequality

Yod < Yma(Yn,m )™
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for 1 < d < m < n—1. On the other hand, by extending a base field,
Icaza [9] defined Hermite-Humbert’s constant ~,(k) as an analog of =, for
any number field & and gave an upper bound analogous to (0.1). These two
directions of genralizations of Hermite’s constant are unified by Thunder [17].
Namely, Thunder defined the constant v, 4(k) for any number field k& by using
the notion of height on flag varieties. He also extend the inequality (0.1) and
Rankin’s inequality to the case of 7, 4(k) by the adelic variant of Minkowski’s
first convex-bodies theorem and Minkowski-Hlawka theorem. Thunder’s lower
bound 1s given as follows;

1T Cu(5)| De 2

sr1+re9jre S\ Nro
(0.2) (k)2 > Wk j=n— d+1J 22V (7)" V(27)
| - Il (0)| Dy |/

H zr1+r226r2v ()1 V (20)

where (i 1s the Dedekind zeta function, hy the class number, Ry the regulator,
Dy, the discriminant, ry and ry the number of real and imaginary places of k&,
respectively.

In this paper, we generalize the constnat v, ¢(k) and its estimate (0.2)
within the framework of Borel’s reduction theory of reductive algebraic groups
([1],[8]). Observe that Rankin’s constant -, 4 is written as

— i A A 2
1A Axg#0

where (mq,Vy) denotes the d-th exterior representation of GL, and || - ||s the
usual Euclidean metric on Vy(R). If we choose an appropriate height function
|- lag on GL(Vy4,Aq)Va(Q) and a highest weight vector vq € V3(Q), then vy 4

1s adelically written as

2
Vn,d = max min _ ||7a(g7)valls. -
In this form, we replace SL,, (74, Vy) and vg by an arbitrary connected reduc-
tive algebraic group G over k, its strongly k-rational representation (7, V) and
a highest weight vector zg in Vi(k), respectively. Then it is known by Borel’s
reduction theory that the constant

= max min ||7T(97)$0||A e

geG(A) /G(k) veG (k)

exists (Proposition 2). If G = GL,, and 7 = mq, then v, coincides with v, 4(k).
In order to estimate v, we can use Thunder’s technique based on the mean value
argument. Let () be the stabilizer of the highest weight space of 7 in G, which
is a k-parabolic subgroup of G. If @ is maximal, we shall prove the estimate of
the form

2e

CQdGeQT(G) [r:Tleq
o w2 (Gadar)
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Here 7(G) and 7(Q) denote the Tamagawa numbers of G and @, respectively,
and other constants Cg,dg,eq,es and similarly Cq,dg are defined in (1.1),
(1.2), (3.1) and (3.2) below. We note that this lower bound depends only on the
equivalence class £ of m. If G is split over k, then the constants Cq,Cq,---
are explicitly described in terms of the Dedekind zeta function and the Gamina
function (Theorem 2). As an example, we shall compute the lower bound in the
case that G is a classical split group and observe that (0.3) coincides with (0.2)
if G =GL, and 7 = 7mg. Although Thunder applied Weil’s method to compute
the lower bound of (0.2), we make use Langlands’ method to compute the lower
bound of (0.3). At present, we have no any result analogous to Minkowsi’s first
convex-bodies theorem except for the case of G = GL,,. This is a reason of the
lack of an upper bound of ~,. In a subsequent paper, we will study this problem
when G is an orthogonal group.

Notations. As usual, Z, Q, R and C denote the ring of integers, the
field of rational, real and complex numbers, respectively. The group of positive
real numbers 1s denoted by ]Ri.

Let k be an algebraic number field of finite degree over Q, O the ring of
integers in k and U the set of all places of k. We write U, and Uy for the sets
of all infinite places and all finite places of k, respectively. For v € U, k, denotes
the completion of k at v with the normalized multiplicative valuation |- |,. If
v is finite, £, denotes the ring of integers in k,. We set ko = Hveﬁm k.,
and denote by Ay the ring of finite adeles of k. Thus the adele ring of % is
A = ko x Ay . The idele norm on A* is denoted by |- |s. We fix an algebraic
closure k of k and write T}, for the absolute Galois group.

Let G be a connected affine algebraic group defined over k. For any
k-algebra R, G(R) stands for the set of R-rational points of G. We denote by
X*(G) and by X;(G) the free Z-modules consisting of all rational characters
and all k-rational characters of G, respectively. The absolute Galois group
'y acts on X*(G). The representation of I'y in the space X*(G) @z Q is
denoted by o¢ and the corresponding Artin L-function is denoted by L(s,oq) =
Hve%f Ly(s,06). We set ox(G) = lims (s — 1)"L(s,0G), where n is the

@ on G defined over k, we

rank of X} (G). For a left invariant gauge form w
associate a left invariant Haar measure w& on G(k,). Then, the Tamagawa
measure on G(A) is well defined by w§ = |Dg|=dm G/ngw?, where w§ =

Hve‘ﬂm w?, w? = O'k(G>_1 Hve‘ﬂf L,(1, (J'G)(.UG and |Dy| is the absolute value of

the discriminant of k. For x € X3 (G), let |x|a be the continuous homomorphism
G(A) — R defined by |x|a(g) = [x(g)|s. We write G(A)' for the intersection of
kernels of all such |x|a’s. If x1, -+, xn s @ Z-basis of X}(G), then the mapping

g = (Ix1(9)las 5 [xnlg)la)

yields an isomorphism from the quotient group G(A)/G(A)' to (R_T_)" We
put the Lebesgue measure dz on R and the invariant measure dz/z on RZ.
Then there exists uniquely a Haar measure wg(ayr of G(A)" such that the Haar
measure on G(A)/G(A)' matching with w{ and waayr 18 equal to the pull-
back of the measure [];_, dz;/z; on (R)" by the above isomorphism. The
measure wg(a)r 1s independent of the choice of a Z-basis of X3(G). Since G(k)
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is a discrete subgroup of G(A)', we put the counting measure wary on G(k).
Then the Tamagawa number 7(G) is defined to be the volume of the quotient
space G(A)'/G(k) with respect to weay /we k) - Here, in general, if 114 and
1 denote Haar measures on a locally compact unimodular group A and its
closed unimodular subgroup B, respectively, then p4/pp denotes a unique left
A-invariant measure on the homogeneous space A/B matching with py4 and up
in the sense that pg = pa/pp - pp holds.

If X is a locally compact topological space, we denote by Cy(X) the
space of all compactly supported continuous functions on X .

1. Strongly k-rational representations

In this section, let G be a connected reductive group defined over k. We recall
the notion of strongly k-rational representatons of G (cf.[3],[18]).

We fix a maximally k-split torus S of G and a maximal k-torus T of G
containing . We also fix a minimal k-parabolic subgroup P of G containing
S and a Borel subgroup B of P containing T'. Then, we denote by @ (resp.
®;. ) the absolute (resp. relative) root system of G with respect to T' (resp. )
and by A (resp. Ay) the set of simple roots of ® (resp. @) corresponding
to B (resp. P). The restriction homomorphism pr : X*(T) — X*(S) maps
A into Ay U{0}. We fix an admissible and compatible inner product (,) on
X*(T) ®z R and X*(5) ®z R ([3, (6.10)]). We define the *-action of I'y on
X*(T). For given o € I'y, there is an element w in the absolute Weyl group
such that w(o(A)) = A. Then we set 6* = w o o, which acts on X*(T') by

ox(t) =o(x(e7 (W™ (1),  (xeX(T), teT)

This action is independent of the choice of w.
Let £ be the weight lattice of T and £4 the set of dominant weights in
£ with respect to B, i.e.,

L={NeX*T) : (\a") €Z for alla € A},
Lr={Nefl: (\Na")>0 foralla € A},

-1

where a¥ = 2(a,a)""a is the coroot of a. The set £4 is stable under the *-

action of Ty, so SE_’“ stands for the subset consisting of I'y-invariant elements
in £4. For a € A, the fundamental weight ¢, € X*(T) @7 Q is defined by
the conditions (£4,0%) = dap, (b € A). Any dominant weight A is written as
a non-negative integral linear combination of the ¢,’s. If G is semisimple and
simplyconnected, then the ¢, are Z-basis of X*(T). For k-root a € Ay, we
define the fundamental k-weight m, € X*(S) ®7 Q by

My = Z pr(la) .

a€p, ()

Let R(G) be the set of equivalent classes of all irreducible k-rational
representations of G. If \¢ denotes the highest weight of & € P(G), then
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the correspondence { — ¢ yields a bijection from R(G) to £4 (cf.[18]). For
£ € R(G), let © be a representation contained in §. We write Vi for the
representation space of m. The highest weight space in V; is denoted by D.
Let @, be the stabilizer of D, in G and let \; be the k-rational character of
Qr by which Q. acts on D,. Then @ is a standard k-parabolic subgroup of
G and the restriction of Az to T is equal to A\¢. An equivalent class { € R(G) is
said to be k-rational if ¢ contains a k-rational representation = : G — GL(V;),
where V. is defined over k. Then, such a k-rational representation 7 is unique
up to k-equivalence ([3, (12.3)]). Moreover, £ € R(G) is said to be strongly
k-rational if ¢ is k-rational and, for a k-rational representation n= € ¢, the
highest weight space Dy 1s defined over k. Then ), is defined over k and
Ar € X5 (Qr). We denote by R (G) the set of all strongly k-rational £ € R(G).
The next proposition is due to Borel and Tits ([3, §12], [18]).

Proposition 1. (1) If £ € R(G) is k-rational, then \¢ € 2:’“. (Note that
the converse statement is not true in general.)

(2) € € R(G) is strongly k-rational if and only if ¢ € 25_"“ and
(Ae,aY) = 0 for all a € p;'(0) N A. Then \¢ is completely determined by
pr(Ae) and pr(Xe) is a non-negative integral linear combination of the funda-
mental k-weights.

(3) For each a € Ay, there exists a positive integer d, such that
ndoma € {pr(Xe) + £ €R;(G)} for all positive integers n. ]

By the statment (2), £ — pr(A¢) yields a bijection from R} (G) to
pk(/ﬁi’“ ). If G is semisimple and simplyconnected, then one has

pk(ﬂ_rf) = Z Cama : 0< ¢y €Z forall a € Ar}.
aEAy
We say that £ € R} (G) is maximal if pi(A¢) is a positive integer multiple of some
one fundamental k-weight m,. Then, for a k-rational representation = € £, Qx
is the standard maximal k-parabolic subgroup associated to Ag\{a}, i.e., the
centralizer of the torus (Ngea,\{a}Ker B)? in G is a Levi subgroup of Q.

In the rest of this section, we define some notations. Let M be the
centralizer of S in G. Then P has a Levi decomposition P = MU, where U is
the unipotent radical of P. For every stanadard k-parabolic subgroup @ of G, @
has a unique Levi subgroup Mg containing M. We denote by Ug the unipotent
radical of . Throughout this paper, we fix a maximal compact subgroup
K¢ = I, e K& of G(A) satisfying the following property; For every standard
k-parabolic subgroup Q of G, K¢ N Q(A) = (K% N Mg(A)(K% nUg(A)),
KN Mg(A) is a maximal compact subgroup of Mg(A) and Mg(A) posseses
an Iwasawa decomposition (K9NMg(A))M(A)(Mg(A)NU(A)). It is known that
such maximal compact subgroup of G(A) exists. We set KMe = KN Mg(A),
P? =MgNP and U® = MgnNU.

Let @ be a standard k-parabolic subgroup of G. We include the case
Q) = G. Let Zg be the greatest central k-split torus in Mg. The restriction
map Xj;(Mg) — X*(Zg) is injective. Since X}(Mg) has the same rank as
X*(Zg), the index

(1.1) dg = [X"(Zq) : X} (Mg)]
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is finite. If x1, -+, xr is a Z-basis of X*(Zg), the map z — (x1(z), -, xr(2))
defines an isomorphism from Zg(A) to (A*)". We regard R} as a subgroup
of A* by identifying x € R} with the idele zy = (z,) such that z, = = if
v € Voo and 2, =1 if v € Yy. Let ZZQ' denote the inverse image of (R)”
by the isomorpism Zg(A) — (A*)". Then Mg(A) has the direct product
decomposition Mg(A) = Z&;J\JQ (A)'. We define the Haar measure Hzy on Zg

by the pull-back of the invariant measure [[;_, dz;/z; on (RX)" with respect to

X

the isomorphsim z — (|x1(2)]a, -+, |xr(z)]a) from Zg onto (RY)". It follows
from definition of wpyr(pyr that the Tamagawa measure wg/IQ i1s decomposed to
dQ,ng “Warg(A)t - We note that Zé,)_ and K7y are independent of the choice of a
basis of X*(Zg). In particular, Zg; 1s a subgroup of Z&S for the surjectivity of
the restriction map X*(Zg) — X*(Zq).

We define another Haar measure vy, (s of Mg (A) as follows. Let wg/l

and ng be the Tamagawa measures of M(A) and U?(A), respectively. There
is the function dpe on J\/[(A) such that the integration formula

/ Flmum™)dwl® (u) = po (m) ! / F)dwl® (u)
UR(A) U®(4)

holds for any function f € Co(UP(A)). In other words, (5;}9 is the modular

character of PQ(A). Let VMg be the Haar measure on KM@ normalized so

that the total volume equals one. Then the mapping

hmu)8 pe (m)dy g (h)dwM (m)dw?® (u
5 e Lo oy T8 mdiorg () (m) s o

for f € C.(Mg(A)) defines a Haar measure on Mg(A) and is denoted by
VMo () - We also define the Haar measure vy, 4 on Mg (A)' by VMo(h)! =
VMg (4) /dgpt 5+ . There exists a positive constant Cg such that

Q

M,
(12) wA Q= CQVMQ(A\) .

We define left G(A)'-invariant measures on the homogeneous space
Yo = G(A)'/Q(A)'. Since Q(A)' = M(A)'Ug(A), varay ng defines a Haar
measure, say vg(ay , of Q(A)'. We note that both G(A)' and Q(A)' are uni-
modular. Therefore, both wy, = wgay /wguyr and vy, = vgay [vom yield
G(A)! -invariant measures on Y. We identify Yy with G(A) /ZEI;' Q(A)! and set
K9 =K%NQ(A). Then the mapping

g+ KOJKQ x 25/72% — Yo « (WK, 22%) — h2Z£Q(A)!

is an isomorphism. Set Hziizt =Hzd /“Zj: .

Lemma 1. For any left K9 -invariant function f € Co(Yg), one has

Fl(K?,228))00(2)dp 75 72 (2 2)
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where 5(3] is the modular character of Q(A).

Proof.  Let (;vy, be the measure on K%/K? x Zg/Z(-';' obtained by the
pull-back of vy, . We define the measure ﬁzg Jz% on Zg /Z("; by the mapping

P p(2Z8)digrye (WK, 225), (¢ € Co(Z4/25))
KG|KQxZY |7

Then we have

Fdrg ) = [ Fa(RZE)df g (2

Yo 75173

for any left K% -invariant function f € Co(Yg). We determine ﬁzg/zg. Let
¥ € Co(G(A)!) be a left K -invariant function on G(A)'. On the one hand, we

have

/ Y(g)dvaay (9)
GA)

:/ / 1/}(hmu)5p(m)dl/;(c;(h)d(wg/l/dG,uZ+)(m)dwg(u)

K& JM(d) ) ZE JUA) @

[ U(emaw)dp(2)d(dpp s fdopi e ) (2)deonsap (mr)dof ()
ztjzt JMar JU(a) F G

’;/)(21 nglu)épQ (21)5Q(22)

21z 25128 Immyr Ju

x d(dpp gz [dop z2)(21)dp 74 ) 75 (22) deongayr (ma ) deof (w).
On the other hand,

/ Y(g)dvaay (9)
G(A)

- / { / ¢<gq>dug<m1<q>}dva<gcz<A>1>
Q(A)!
/ / / / / ]’L1]X Z )hgmu1u2)
KG/Kexz}/zk JEMe JM(a)/zE JURL) JUq(A)

X pa (m)dvyeng (ha)d(w} [dap 72 )m)diof ® (ur)dwfl® (u2)}

x digry, (h1Kq, ZZ(—;)

= V(zez1mau)dpe(z1)d(dpp ,+ /dopt ,+)(z
/25/23{/Z$/Z$/M(A)1 U(4) (2avmu)ipe (1) dldpii 7t [ dati 7))

X dwpr(ay (ml)dwg(u)}dﬁzg/zg(%)

— W(z1z9mqu)dpa (z1)d(dpp ,+ /d +)(z
/z}S/ZZg /Zég/ZZ; /M(A)l U(4) (zzmu)pa (z1)dl MZP/ QMZQ)( g

X ClﬁZ-Q}-/Zg(22>de(A)1 (ml)dwg(u) .

Therefore, we obtain ﬁzg/zg = deél 5@(22)/125/23 . [ ]
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Corollary .  For any left K -invariant function f € Co(Yg), one has

Cado
d =
YQ f(y> wYQ <y> CQdG

Qg+ +
/ sy T0OUKE 2NNtz 7 (28).

2. An analog of Hermite’s constant

We fix a strongly k-rational & € R} (G) and a k-rational representation = € £.
We also fix a free O-lattice L in the k-vector space Vi(k) and a ©-basis
€1, +,en of L, where n =dimn. For every v € U, we define the norm || - ||7,
of the k,-vector space Vr(k,) as follows;

sup(|$1|v,---,|;€n|v) (Uemf)
(2.1) [lerer +- -+ anenllne = (lea[5+- 4+ fzal3)'? (v s real)
lz1]o + -+ |Tnlo (v is imaginary).

We define height functions on GL,(A)Vx(k). Let || - ||», v € L be a norm on
Vz(ky) compatible with |- |,. Assume that || ||, = || - ||1,» holds for almost all
v €30. Then we set

lella = [1 lleollo,  (z € GLa(A)Va(k)).
veY

Such || - ||a is called a height function on GL,(A)V;(k) (cf.[8]). The following
property is obvious by its definition.

(2.2) llaz||a = |a|a||z]|a for any a € A* and = € GL,(A)V: (k).
A height function || -||s is said to be K% -invariant if ||7(h)z||s = ||z||a holds
for all h € K9 and = € GL,(A)Vy(k). Furthermore, || - || is said to be

normalized if ||zg||a = 1 for a highest weight vector o € Dr(k)\{0}. Then
one has ||z||4 = 1 for any highest weight vector = € Dr(k)\{0} because of the
one-dimensionality of Dy(k) and (2.2). It is obvious that K%-invariant and
normalized height functions on GL,(A)V;(k) exist.

In the following, we fix a K¢ -invariant normalized height function ||-||4
on GL,(A)Vz(k). Let xg € Dx(k)\{0} be a highest weight vector of 7. For each
g € G(A)', we define the function &, : G(k) = R3 by ®4(v) = [|7(g7)zo||a.
From 7(y)zo = Az(y)z0, (v € Qx(k)) and (2.2), it follows that &, is right
@ r(k)-invariant and is independent of the choice of z5. By the reduction
theory (cf.[1, §16],[8]), it is known that &, attains its minimum value at a
point in the intersection of G(k) and a Siegel set of G(A). We set ¥(g) =
MiNyeG(k)/Qn (k) ®,(v). Then it is easy to see that ¥ is a continuous function
on K9\G(A)! /G(k) and is bounded from above (c¢f.[1, 16.10]).

Proposition 2. U has the mazimum value.

Proof. Set H = (Kern)?, Py = PNH and Sy = SNH . Let AkH be the set of
simple k-roots of H with respect to Sy and Pr. We also set AkG/H = AG\A
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and Sg/p = (ﬂaeAEKera)O. Then Z3 = S-le_/HSI-S- For k > 0 and every
standard k-parabolic subgroup @), define a subset Zg(%:) of Zg by

Zg(ﬁ) ={z € Z&S D a(z)|a < k forall o € Ag}.

By the reduction theory, we can choose k > 1 and a compact subset Q in P(A)
so that G(A) = KGQZ;(K;)G(k). Since 7 is trivial on H(A), it is enough to
prove that ¥ attains its maximum value at a point in QZ;(@S;/Z&ES}S =
ng/H(fi)/Zg. By compactness of 2, there is a constant C' such that

(2:3) U(wz) < [[r(wz)zolla < Cllr(2)wolla = C[Ax(2)[a

holds for all w € Q and z € Z;. Since pi(Ar) € X*(S/SH) C X*(Sg/H) Rz

Q, pr(Az) is represented by a Q-linear combination of a € AkG/Hmodulo
X*(Za) @z Q, i.e., we have

(2.4) pk(Ax) = Y caa mod X*(Zg) @2 Q.

G/H

ozEA

For the moment, we assume that the following condition is satisfied;

(2.5) co >0 forall o€ AG/H

Let Qg be the standard maximal k-parabolic subgroup of G correspoinding to
Ap\{B} for g € AkG/H. By (2.3) and (2.4), one has for w € Q, z € Zgﬁ(fil)
and k1 >0

T(wz) < ClAr(2)]a < CrY”.

Under the condition (2.5), this concludes that if k; is sufficiently small, then
U(wz) is also small for all w € Q and z € Sgﬁ (k1). In other words, if we define

a subset Sg/H(KZ,ﬁl) of Sg/H(KJ> by

+ _
Sa/}[(’%’“) = G/H U ZQ;S k1)
ﬂEAG/H
then we have
sup ¥(g) = sup ¥(g).
gEKG\G(A)L /G(k) 9EQSE  (k81) /7

Therefore, ¥(g) has the maximum value since QSE;/H(/Q,/Q)/Z&E is relatively

compact in G(A)'. To complete the proof, we have to show (2.5). Since it is an
assetion concerning root systems, we may assume that H = 1. Furthermore, it
is reduced to the cases that G is almost k-simple. Thus pg(A;) is non-zero and
is represented as a non-negative integral linear combination of the fundamental
k-weights my, o € Ag. Let

Mo = Z da,,@ﬂy (da,ﬂ € Q) .

BEAL
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It 1s sufficient to show
dog >0 forall o,8 € Ay.

For an absolute fundamental weight ¢, , let

=S dyb,  (dy €.

beA

Then we have

dog = Z Z dy-

a€py () bep, ()

Therefore, we need to show that d’a’b > 0 for all a,b and there are a € p,?l(oz)

and b € p,?l(ﬁ) such that d) , > 0. Since G is almost k-simple, there are a
finite field extention L/k and an absolutely almost simple group 7 defined over
L so that G is k-isomorphic to the scalar restriction Ry, x(G1) of Gi. Let oG
be the absolute root system of Gy and A% a set of simple roots in ®“ . Then
® is an orthogonal direct sum of [L : k] copies of @91, and hence A is of the
form

[L:k]
A=|]Aa,  AT=A%,
1=1

We have d;, , = 0 if a € A", be AV and i # j. Since pr(AY) = ArU{0} for each

7, it is enough to prove d’ , > 0 for a,b € A*. This follows from a classification

table of the simple root systems ([4]). n

Let ~L = MAaX e K6 \G(A)' /G(k) U(g). Then we call v, = (’7;)2/[1“@] the
Hermite constant attached to = and ||-||s. We write v(||-]|a) for vx if we need
to emphasize the dependence of || - ||4. In an example below, we shall clarify a

relation of v, and the original Hermite’s constant.

Example 1. Let V be an n-dimensional vector space defined over k. We fix
a free O-lattice L in V and its O-basis ey, --,e,. We identify G = GL(V)
with GL, with respect to the basis e1,---,en. Let [|-[|na = [[yen |l - Iz,
be the height function on GL,(A)V (k), where || - |1, is defined similary as
(2.1). Let S be the subgroup of diagonal matirces in G and P the subgroup
of upper triangular matrices in G. For g € S, €;(g) denotes the i-th diagonal
element of g for 1 <1 < n. Thus ¢; is a rational character of S. As usual, the
root system ® = & is given by {e; —¢; : 1 <4, 7 <n, 1 # j}. We have
A=Ar=Ha;=¢ —€41 : 1 <i<n-—1}. The fundamental weights ¢; are
given by
li=¢€ +--+eq.

Then
Ly :)3:"“ = {chﬁd : 0<c¢qg €Zforall d}.
d=1
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We take the maximal compact subgroup K¢ as follows;

KG=T[ kS, KS&={geGlk) : llgellrp = llellr.o forall =€ V(k)}
veEY

We consider the classes £5 € R(G) corresponding to the fundamental weights
lq. Let mq € &5 be the d-th exterior representation of G, i.e. V., = /\dV.
Then vy = ey A --- A eq 1s a highest weight vector of ;. We denote by Qg4
the stabilizer of the highest weight space D,, of 74 in G. The Levi-subgroup
Mg, is isomorphic to GLg X GLy_q. Let Ly = /\dL be a lattice in Vi ,. We
define the height function || - ||7,,,a on GL(Vz,,A)Vy, (k) similary as above. By

definition,

. — i 2/[k:Q)
- Lah) = max min 7a(g7)val|rg,a .
il o) = (s i lratan ol
This vr, is equal to the constant v, 4(k) defined by Thunder, and further, if

k = @, this is equal to the constnat defined by Rankin.

3. A lower bound of ~,

We fix £ € R;(G), a Ek-rational representation # € ¢ and a K9 -invariant
normalized height function || - || on GL,(A)V;(k), where n = dimmw. Let
zg € Dr(k). We define the function f, : G(A) — Ri by fz(g9) = ||7(g)zo]|a-
We have

fr(gh) = | Az(R)|afx(g) for all h € Qr(A) and g € G(A).
Therefore, f, is regarded as a function on Yy, = G(A)'/Qr(A)'. In the

following, we assume that ¢ is maximal, i.e., pr(A¢) is a positive integer multiple
of one fundamental k-weight m,. Then @Qr is the standard maximal k-parabolic
subgroup associated to Ar\{a}. For simplicity, we omit the subscript 7 and
write ) for Q. Let ng be the positive integer such that né1a|zQ is a Z-

base of X*(Zg/Zq). We set ag = n§104|ZQ . Then the Haar measuer s

equals the pull-back of the measure dz/z by the isomorphism |ag|s : ZZQ_ /28 —
RZ. Note that dimUga|z, is the restriction of the k-rational character m
det(Ad(m)|Lie(UQ)) of Mg to Zg, where by Ad(m)|Lie(UQ) we mean the adjoing
action of m on the Lie algebra of Ug. Since dg(m) = |det(Ad(m)|Lie(vg))la

we have

(3.1) So(z) =lag(2)[i? . (2 € Zo(A))

where e¢g = ngdimUg. The quotient morphism Zg — Zg/Za induces an
isomorphism X*(Zg/Za) @7 Q — X*(Zg N G*°) @7 Q, where G*° denotes
the derived group of G. Under the identification X*(Zg N G*°) @7 Q =
X*(Zg/Za) @7 Q, there exists the positive rational number eg such that

(3.2) Pr(Ae)lzgnGe: = ecaq .
Then f,r(l,Q(I&’Q,ZZ(—;)) = |O‘Q(Z>|Z\E holds for any ZZ(—; € Zg/Z(";.
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Lemma 2. For any measurable function ¢ on R, one has

w _ _Cada T T;;‘ —
/YQ ©(fr(g))dwy, (9) = Codoee /Rjj o()x < —~.

Proof. By Corollary to Lemma 1,

/Y o (Fx(9)) oy (9)

_ Cadg Qg+ .

CGdQ/ e¢ €qQ +
Cod /17t p(lag(2)]y )aq(2)ly Mzg/zg(z G)

— ngQ / (,Q(CCe&)erd—:E.
QUG JrRY L

By change of variables, we obtain the assertion. ]

Theorem 1. One has

2e

14
. CQd(ﬁQT(G)) [k:Qleq

As is known from the proof, this estimate is independent of the choice of a K¢ -
invariant normalized height function || - ||a.

Proof. Fix a positive real number ¢ such that

CGdQ EQ/CE T<G> .
Codgeq 7(Q)

Let ¢ be a sufficiently small positive real number satisfying

d T
szia(jcg (teQ/EE tel< TEg; '
We define the function ¢(z) by
1 . (0<z<t)
p(z) = §> 9 (—i—etre)) ¢t <2)

Then, by Lemma 2,
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Thus we obtain

/Y o (F2(9))dovy ()

1
- ™ d(w 1 /W 7
7(Q) /G(A)l/G(k) VEG(%:/Q(M“P(JC (g7 d(waay [wam)g) < Q)

Therefore there exists g € G(A)' such that E'yEG(k)/Q(k) ©(fx(g7)) < 1. This
implies ¢(fx(g7)) < 1 for all v € G(k)/Q(k). By definition of ¢, we have
fr(gy) >t for all v € G(k)/Q(k). Namely

min  fz(g7) >t.

YEG(k)/Q(k)
Hence
) Cadg 7(G)
_— max min - > supit >0 : 7#62/56 < 7
9E€G(A) /G(k) vec‘(k)/@(k)f (97) 2 supd Codaeq T(Q)}
e
B (CQdGeQT(G))¥
N CadoT(Q) '
4. Examples

First, we compute Cg. We use the same notations as in Sections 1 and 3. We
state an integration formula. Let wg be an element in the normalizer of S in
G which represents the longest element in the relative Weyl group of G with
respect to S. We set U~ = w;'Uwg. Then the homogeneous space U~\G

has the right G-invariant gauge form w? \w® defined over k matching with
wY and w®. By the Bruhat decomposition, P is regarded as a Zariski open
subset of U7\G. Then (w” \w%)|p yields a right invariant gauge form on
P defined over k. Since a right invariant gauge form on P defined over k is

unique up to scalar multiplications, we can choose the gauge form w™ so that
(wU_ \wG)|p = wYwM . Then, for each v €0 and ¢ € Co(G(ky)), we have

/ p(g)dwd
Gk,

@y = [ el @)l ()l m)
U= (k) JU(k,) M (ky)

:/ / / Lp(u_mu)5p’v(m)dwg_(u_)dwiw(m)dwg(u)
U= (k) I M (k) JUK)

where 51311) denotes the modular character of P(k,). We define some notations.

We fix v € U for the moment. By the Iwasawa decompositon, g € U~ (k,) is
decomposed to hy(g)my(g)us(g) with ho(g) € K&, my(g) € M(ky), us(g) €



46 WATANABE

U(ky). Then the function n, of U~ (k,) defined by n.(g) = 5p’v(mv(g))_1 18
well-defined. It is known that the integral

ner - [ o, ) )

converges. We set Ino(G, P) = [[,eq [o(G, P). Let K& and I&"fG denote the
infinite and the finite part of K¢, respectively. Similarly, KZ and K)]c) are
defined.

Lemma 3. One has

dim P—dim G) /2 G<I fG>
Ce |Dk|( im im G)/ ﬁ I.(G,P).
7 (K7
Proof.  The proof is essentially same as [12]. See also [11, Proposition 5.2].
For a given ¢ € Co(KE\P(ks)), let @ be aleft K-invariant function on G(A)

such that the support of @ is contained in G(keo )K" and @(hocpochy) = ¢(pes)
for heo € K& | poo € P(kso), hy € Kf. On the one hand, we have

/ ®(g)dwf (9)
G(4)
= CG/ ®(g)dvaa (g)
G(4)
= CG/ / ®(mu)dp(m)dwt (m)dwf (u)
M) JU)
= Ca|Di|~ 4™ PPwl(KT)
o et pn (o) e (1) ).
M(ke) YU (k)

where 0p o = Hvemco dpy. On the other hand, by (4.1), we have

/ ®(g)dwf (g)
G(4)

— Dy~ im 626K /G R0

|D | d1mG/2 G I / / / (I)(U_mu)gp,oo(m)
U= (kso) VM (ko) JU (ko)

x dwl” (u )de m dw

o0

|D |—d1mG/2 G / / NLLL r]oo( )5Poo<fn)
U= (ko) J M (ko) U(km)

x dw" (u™)dw (m)dw" (u)
= |Dy|" MmO F(K) oG, P)

X mu5oomdwo]\gmdwgou.
/M(km)/mm)w )6 oo (1) oo™ ()i (u)

These 1mply the assertion. [ ]
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Corollary . If Q s a standard k-parabolic subgroup of G, then

Q7@
CQ _ | py[dimUa/2*s (({‘f’)({oo(MQvPQ)
Co TR (G, P)

Proof. It follows from the following two equations;

. Mo , +-M . Mg , 7-M
w?([xf). wfq(f&fq) :w?(ffoﬂU(Af))wa(Ifo)
wi(K§) WP (KGN PRAAp))  wl(KF)WY (KGN UQ(Af))

°(K¢n UQ(Af))wf (k')
wi (Kf) |

|Dk|(dim P2 —dim Mg)/2 |Dk|—dim U? /2

_ dim Ug /2
| Dy |[(dim P=dim G)/2 — | D[~ dimU/2 = [Dg|™ alz. "

From now on, we assume that G is split over k. Then G has a model
over 9, i.e., there is a smooth affine group scheme & of finite type over £ such
that the generic fiber & x o k is isomorphic to G and the special fiber & x5Oy /P
is a split reductive algebraic group over Oy /p for all finite primes p € V. In
this case, we choose I&"g as B(Oy) for p € V. Let ri(G) be the k-rank of the
derived group G** of G and let af, - - ,aTGk(G) be positive integers such that the
polynomial in X

i (G)

H (XQaf—l + 1)
=1
is the Poincaré polynomial of the compact form of G**(C). Then we have
rk(G)

w?(f(? —O'k H (:

where (;(-) denotes the Dedekind zeta functlon of k (cf.[15]). In a similar fashion,

one has
Tk(MQ)

WHES) = wi(K}'?) = or(Mg)~ H Ce(al'®)™

Since the representations oG and oy, are trivial, O'k( )/ok(Mg) is equal to
(Resszlck(s))dim Zg—dim Zg )

Furthermore, it is known that I.(G, P) is described as

_ C(caf2 _Tlea)
42 1@ =0 T Var Sy 4 I e g

where 1 and ry denote the numbers of real and imaginary places of k, respec-
tively, I'(-) is the Gamma function and the constant ¢, is defined by

=(5 3 B.aY)

BED,
B3>0

for each positive root a € @ (cf.[6],[12]). Summing up, we obtain the following
estimate of ~r;
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Theorem 2. Let G and KfG be as above, £ € R (G) = R(G) be a mazimal
class, m € £ be a k-rational representation of G and ) = Qr be the stabilizer
of the highest weight space Dy in G. Then, for any K -invariant normalized
height || - ||a on GL(Vz,A)Vi(k), one has

266

(- 11a) = D [dimUe/2 1D ¢ (af)  To(Mg, PR) daeqr(G) | "0
T Ressmt Gl [ u(a)) T(GP) dor(Q)

J

The factors I(G, P) and I(Mq,P?) are calculated by the formula (4.2). m

We shall apply this theorem to classical split groups.

Example 2. The case of G = GL(n). We use the same notations as in Example
1. Wefix 1 <d<n-—1 andset Q = Qq. For a positive integer ¢, let £] € R(G)
be the class whose highest weight is equal to ¢lq and let 7§ € £J be a k-rational
representation. It follows from easy calculations that

w?(KfG) B 1 i=n—d+1
Mo, - Mo~ ‘ . d
wy Q(Ixf ?) Ress=1(k(s)

- w720 (i)2 1 o0\ =iD(; "
Lo(Mg, P?) i:gﬂ (i/2) i:gﬂ( ) T'T(1)
I, G,P - d . po ‘ .
R I | SR [[en'—r0)

We note that

(G) = 7(Q) = 1 and Res,—1(i(s) = [De| /22 (2) iR

Wi

where hj is the class number of k£, Ry the regulator of k& and wy the number
of roots of 1 in k. If we put Zi(s) = (7 ~*/2T(s/2))" ((27)' —°T(5))"2(r(s), we

obtain
n 2q/([k:Q]n)

IT 2z

| Dy | 4= D/ 2 i g

q >
RE Ress=1(k(s) ﬁz 0
k\J
1=2

When ¢ = 1, this estimate is the same as Thunder’s one (0.2).
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Example 3. The case of G = SO(n,n+1),Sp(2n) or SO(n,n). Let V be an

m-dimensional vector space over k equipped with a non-degenerate ¢-symmetric
bilinear form ¥ with Witt index n. We consider the following three cases;

(Bp) m=2n+1lande = 1.
(Cr) m=2nand e = —1.
(D) m =2nande = 1.

We choose a k-basis e1,---,em of V(k) by which ¥ is represented as follows;

0o 0 J,
0 2 0 (B,,) 0 0 0 1
J, 0 0 0 0 1
U = 0 J where J, = | - -
mn Cn k13 . . .
0o .J, 1 0 0 0
(7% (D)

Let L be the free ©-lattice generated by ey, -+, e, . We set

G={geSL(V) : 'g¥g=T},
KO = {g€ Glky) + llgallow = lellie for all o € V(k)}, (v € )

Let S be the group of diagonal matrices in G and P the group of upper triangular
matrices in G. For g € S, €(g) denotes the i-th diagonal element of g. Then
€1, +,€, 1s a Z-basis of X*(S). The simple roots «; and the fundamental
weights ¢; are given as follows;

€n (By)
a; =€ —€i41, (1 <i<n—1), ap = 2¢, (Cr)
€n—1 1 €n (Dn>

1
5(61—{—"'—}—6”_2—}—6”_1—6“) (Dy and i =n —1)
={ 1
L 5(61+"'+6n) (B, and i =n or D,, and i = n)
€1 4 e (otherwise)

We fix 1 <d <n and a positive integer ¢ so that glq € X*(5). Let £] € R(G)
be the class whose highest weight is equal to ¢lg and let 71 € ¢4 be a k-
rational representation of G. Then Qg = Q,,g be the standard maximal parabolic
subgroup of G associated with A\{ag}. We denote by Uy the unipotent radical

of Qg and by My the Levi subgroup of ()4 containing S. For convenience, we
define the constant 6(Dy) by

6(Dn):{1 (D, and d = n —1)

0 (otherwise)
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It 1s easy to check the following

La(d+ 1)+ 2d(n — d) (B, or Cy)
dim Uy = %
§(d+5(Dn))(d—|—5(Dn)— 1)+ 2d(n —d—d(Dy)) (D)
and
do =1, dg,=d+§D,),
| 2dim Uy (Cr andd=nor D, andd >n—1)
Q4 =\ dim Uy (otherwise)
(4.3) 7(G) ]2 (Bp, andd=nor D, andd > n —1)
7(Qa) )1 (otherwise)

_ fqn/2 (Bp andd=nor D, andd > n —1)
e qd (otherwise)

Furthermore, we have

rr (G) ri (Mg)
H Ck(a H Cr(af')
IT e (Bn or C)
(44) i:n—d-l—l
:mx H Cr(20) (D), and d <n —2)
H Ck(]) . i=n—d
j=2 Cr(n) H Cr(20) (D, and d > n —1)

We define the function Ag(s) by

Ax(s) = {20 (s/2)} " {(20) T ()}

For z € R, we write [z] for the largest integer not exceeding z, and define ¢, 4

by

T A(2h)
(Bn) . 1Hd-|—1 Ak(Qh— 1) ey Ak(2n—2d—22+1) ]:1_[1 Ak(2])

[(n=d)/2] [’il[z] Aw(2n — 2j +2)

Ap(n +1) H Ap(20 4+ 1)
Ak(n—d—l—].) Ak(2n—2d—2i—}—2) =1 Ak(Qj—{—l) ’

(=i o)
D,
(D) 11;[1 Ar(2n — 2d — 21)

(Cn)

2n—2j)
k(25 —1)

:]\
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Then we have
Too(M;, PQu) T Ag(n — d +1i)
LeMa, P2) | Aeln=dd),

(4.5) T(G. D) A 0)

i=1

(4.3)—(4.5) yield an explicit description of a lower bound of V- For instance,
when d = ¢=1, then m1 : G — GL(V) is the natural representation and

{ | Dy |"=1/2(2n — 1)Zk(2n)}2/<<2n—1>[k:@> .
Yy > Reso=1(k(s) |
o {|Dk|n_1(2n —2) Zy(2(n — 1)) Zg(n) }1/<<n—1)[k:@]) -
Ress=1(k(s) Zr(n—1) n
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