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Abstract. Let G be a connected noncompact simple Hermitian symmetric
group with finite center. Let #H(A) denote the geometric realization of an ir-
reducible unitary highest weight representation with highest weight A. Then
H(A) consists of vector-valued holomorphic functions on G/K and the ac-
tion of G on H(A) is given in terms of a factor of automorphy. For highest
weights A corresponding to ladder representations, we obtain the G-invariant
inner product on (A). This inner product arises as the pullback of an isom-

etry @y : H(A)—= H(A) ® Ya, where Yy is finite dimensional and the weight
A corresponds to a scalar valued representation. In all but finitely many cases

the G-invariant inner product on H#(A) is known and is used to express the
G-invariant inner product on H(A). Explicit examples are given for families of
ladder representations of SU(p,q) and SO*(2n). Finally, inversion formulas for
unitary intertwining operators between H(A) and any equivalent realization are

exhibited.

1. Introduction

The ladder representations are among the most reductive of the unitary highest
weight representations. To be more specific, we refer to the Enright, Howe and
Wallach classification [5] where the unitary highest weight modules associated
to a K-type are parametrized by the union of a half-line and a set of isolated
points. The endpoint of the half line and the isolated points are called reduction
points because the corresponding Verma modules are reducible. The discrete
series representations and the generalized limits of discrete series [8] lie within
the half-line on the left and their unitary structures are well known. The ladder
representations, on the other hand, appear among the right most isolated points
and their unitary structures have been recently studied. [12], [13], [14].

In this article, we describe the invariant unitary norm of highest weight lad-
der representations, realized in the Harish-Chandra setting [6] where the relevant
Hermitian symmetric space is a bounded domain. The unitary norm is obtained
by constructing an equivariant isometry which maps from the ladder represen-
tation to a tensor product that has a uniquely determined scalar-valued unitary

Second author supported in part by a research grant from Baylor University.

ISSN 0949-5932 / $2.50 (©) Heldermann Verlag



158 DAVIDSON AND STANKE

representation as one of it factors. The form of the unitary norm, being the pull-
back of this isometry, fundamentally depends on the norm of the corresponding
scalar-valued representation. For all but finitely many ladder representations, the
scalar-valued representation lies in the discrete series or limits thereof. The upshot
of this construction is explicit formulas for norms of ladder representations. We
now give a more detailed description of the results.

Let GG be a connected noncompact simple Hermitian symmetric group with
finite center. Let K denote a maximal compact subgroup of G'. Highest weight
representations of (G are realized here as holomorphically induced multiplier rep-
resentations. In this setting, the representation space H(A) with highest weight A
consists of holomorphic, vector-valued functions on the Hermitian symmetric space
G/ K, viewed as a bounded domain. Ladder representations are characterized by
the property that the K-types occur as a multiplicity-free chain.

Let Aj(G) (resp. Ag(G)) denote the set of highest weights corresponding
to unitary highest weight ladder (resp. scalar-valued) representations of G. Let
H(ME denote the K-finite vecotrs in H(A). For A € Aj(G) and p € Ao(G), we
define in section five a K-map ¢ : H(A)® — H(p) ® Va_,, where Vi_, is K-
irreducible with highest weight A — u. For each A € A(G), we uniquely determine
a weight p = X such that if X € Ao(G), the above map extends to a (G-equivariant
isometry (cf Theorem 6.1). The invariant inner product on H(A) arises as the
pullback of the inner product on H(X) @V, _x.

As the explicit examples for GG = SO*(2n) in section seven show, it is not
always the case that = Ao(G). However, if one has )€ Ao(é), where G is a
finite covering group of &, then one can proceed as indicated above to obtain a
(G-invariant, and thus G-invariant, inner product on H(\).

For all but finitely many A € A(G), the associated weight X corresponds to
a scalar-valued discrete series or generalized limit of discrete series representation.
Inner products for such representations H(X) are explicitly known and are given
by integration over G/ K or one of its boundary components. For such A, the form
of the inner product for H(XA) in turn inherits this feature (cf. Theorem 7.1).

In order to provide some concrete examples, we consider families of ladder
representations of SU(p,q) and SO*(2n) whose highest weights are found in Table
11.1 of [2]. For example, if G = SU(p,q) then A = mw,—1 — (m + 1w, € A(G).
If m+ 12> p+ g, then the inner product on H(A) has the explicit form

(f,9)\ = dy /D(f(z),g(z))det([ — zz*)m+1_p_qdz,

where D C CP*? denotes the bounded realization of G/ K, dz is Lebesgue measure
and d, is a constant. The constraint m + 1 > p + ¢ is precisely the condition for
which H(A) is a discrete series representation.

As an application of the explicit form of the invariant inner products given
in section seven, we compute in section eight the form of the inverse of intertwining
operators = : H, — H()), where H), is any equivalent realization of H(X). In the
special case where G = SU(p,q), SO*(2n) or Sp(n,R) and H, is the harmonic
realization of H()), we express the inverse for the unitary intertwining operator
found in section eight of [3] as an integral over /K. This expression lacks the
differentiation and limits found in [12], [13], and [14], where G = SU(p,q) is
considered.
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2. Preliminaries

Let G be a connected noncompact simple Lie group with finite center. Let K
denote a maximal compact subgroup of GG and assume that the space G/K is
Hermitian symmetric. Choose a Cartan subgroup T in K. Let go,€, and t,
denote the Lie algebras of G, K and T', respectively. Fix a Cartan decomposition
dgo = & P po. By notational convention, the removal of the subscript ¢ denotes
complexification. Then there exists a decomposition g =p, G €E p_, where py
and p_ are abelian subalgebras of p satisfying

[6,p4] C s, [ps,p-] C Eand by = pg, (2.1)

where the bar denotes conjugation on g with respect to g,.

The subalgebra t is a Cartan subalgebra of g and we let ® denote the roots
corresponding to the pair (g,t). Welet ®. and ®,, denote the set of compact and
noncompact roots, respectively. The root space corresponding to o € ® is denoted
by g.. We choose a positive system of roots ®* so that, if & = &+ N P, and
¢, =(—0*)N D, then

by = ®ae<1>iga and p_ = 69@@1);904- (22)

Let B denote the Killing form and 6 denote Cartan involution on g.
We choose root vectors F, € go,a € &, so that B(F., F_,) = 2/(a,a) and

0(E,) = —E_,, where (-, ) is the standard inner product on the real space of linear
functionals on t taking purely imaginary values on t,. If we set H, = [E,, E_,],
then

[H,,FE,| =2F, and [H,, F_,| = —2F_,. (2.3)

3. Holomorphically induced multiplier representations

In this article, we shall work exclusively with the geometric realization of unitary
highest weight representations of (. In this realization, the representation space
consists of vector-valued functions that are holomorphic on G/K. We adopt
the Harish-Chandra realization [6] of /K as a bounded domain of p;. The
representation of (G is a multiplier representation that is expressed in terms of a
factor of automorphy. We now discuss some basic facts of this realization. For
additional details, see [6], [10].

Let (7,V;) denote an irreducible unitary representation of K with repre-
sentation space V.. Then 7 extends to a holomorphic representation of K¢ on V..
Let j:G x D — K¢ be the continuous map in Proposition (4.7) of [4]. Define
the factor of automorphy J, by J.(g,2) = 7(j(g,2)) for (9,2) € G x D. Let
O(D,V;) denote the space of V;-valued holomorphic functions on D. We define
the associated multiplier representation T'= T, of G on O(D,V;) by

(T(9)F)(z) = J-(g7",2) ' F(g~" - 2), (3.1)

for F € O(D,V;), g€ G and z € D. Here g - z denotes the action of G on D.
It is well-known that the K'-finite vectors in O(D,V;) are the polynomial
functions (cf. Lemma 1.6 of [2]). Such functions have unique extensions to p;
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since D is open in py. Let V. denote the V,—valued polynomial functions on
P+

Let 1, denote the constant function on p, whose value is v € V; and let V°
denote the linear span of these constant functions. Let L(7) denote the g-module
generated by V2. It is known that L(7) lies in each g-invariant submodule of V.
Consequently, L(7) is irreducible. Moreover, if v, € V; is a highest weight vector
for €, then 1, is a highest weight vector for g.

We conclude this section with an elementary fact regarding particular
weight spaces of V.. Write ®F as the set {ag,ar,...,a;}, where ag is the
simple noncompact root, and let £, € g, be chosen as in section two. Let
Y= (Y0,---7s) € Ng*', where Ny = {0,1,2,---}, denote a multindex and (-, ")
denote the standard Hermitian inner product on g. By (6.3) of [4], for each weight
vector v, of V; with weight u, one observes that

f’Vyll«(Z) = (Z’Efm)% e (ZaEas>%Um zE€Ppy,

is a nonzero weight vector with weight —»°?_, v;a; 4+ u. Denote by W, the weight
space in V. with weight w. Since V. is spanned by the monomials f, ,, we have

V., = &,W, where W, = spanc{f,,:w=—>1_,7vic; + p}.

Proposition 3.1.  Let (7,V;) be an irreducible unitary representation of K
with highest weitght . If ag denotes the simple noncompact root, then, for each
integer m > 0, the weight space Wi_ya, is spanned by the vector (-, Fo,)" vy,
where vy is a unit highest weight vector for V.

Proof. By the above discussion, it suffices to show that if —> 7_ via; + p =
A —mag, then gy = XAjyg = m and v4 = ... = 75 = 0. Recall that p = X — @
where @) is a sum of elements from ®F. If —377 ~ie; + ¢ = A — mayg, then
Yoi_gvici + Q = mag. By writing each a;,1 <i <, and @ as the sum of simple
roots, we conclude v; = ... =7, = 0 and @ = 0. Consequently, we have p = A
and 9 = m. [ |

4. Unitary highest weight representations

The purpose of this section is to give some general results on unitary highest weight
representations of (G. In particular, we point out that the results of [3] extend
from the setting of a linear group G to the setting of a Hermitian, connected
noncompact simple Lie group G with finite center. As a consequence of this
extension, we employ a theorem of Kunze [11] which characterizes the unitary
space of functions on G/K on which G acts irreducibly. The representation in
this case is the representation T' given in section three. However, the unitary norm
in Kunze’s result is given in an abstract way. The goal of the remaining sections
is to make explicit this norm in specific cases.

Let A denote the highest weight for the irreducible unitary representation
(7, V:). We change notation slightly and let L(\) denote the irreducible g-module
defined in section three. Similarly, vy will replace v, and 1, will replace 1,_. Let
A(g) denote the set of highest weights such that the g-module L(}) is unitarizable.
The set A(g) has been completely classified [5], [9]. We are interested in the
subset A(G) C A(g) of highest weights that correspond to unitary highest weight
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representations of G and, in particular, their realizations as spaces of vector valued
functions on G/K .

We begin with a main result in [3] on positive definite operator-valued kernel
functions. If GG is linear, A € A(G), and J, is the factor of automorphy in section
three, define @ : D x D — Aut(Vy) by

Q(w,z) = J(g2,0)J (g5 ", 2) 7T, (4.1)

where ¢1,92 € G, g1 -0 = z and g, - 0 = w. By Theorem 7.1 and Proposition
7.3 of [3], @ defines a positive definite operator-valued kernel function that is
holomorphic in w and antiholomorphic in z.

There are only some minor details to check to see that the proofs in [3]
extend to the setting of finite covering groups. For example, the calculations
needed to establish the results through Proposition 6.2 are done at the level
of the Lie algebra and so trivially extend. Theorem 6.1 extends by utilizing
arguments similar to those found in the proof of Lemma (4.15) of [4]. One uses
the connectedness of the subgroup A along with the finiteness of the center of GG
to establish the calculation on p. 26 of [3]. From this, both results from [3] follow
by the arguments provided there.

Equipped with the positive definite operator () in (4.1), one can construct
a Hilbert space H(A) of V)-valued functions on D for which the representation of
(i is given by the formula for T in (3.1). The details of the construction of H(\)
are found in [11]. We summarize the essential properties.

Proposition 4.1.  If A € A(G), there exists a Hilbert space H(X) of continuous
Junctions f: D — Vi with inner product (-,-)» such that

(1) for each z € D, the map e, : H(A) — V) defined by e,(f) = f(z) is

continuous,

2

Q(w,z) = e, el for all w,z € D,

4

(2)

(3) the linear space spanc{w — Q(w,z)v:z € D,v € V) } is dense in H(A),
(4) (Q(, 2)v, Q(-,w)u)r = (Q(w, z)v,u) for all z,w € D and v,u € Vi,

(5)

5) the formula (3.1) defines a strongly continuous unitary representation of &

on H(A).

Remark 4.2.  Since Q is holomorphic in the first variable, it follows that H(X)
consists of holomorphic functions on D. By (4.1), Q(z,0) is the identity on V).
Then by proposition 4.1 (3) it follows that H(X) contains the constant functions
1,, v € Vi. If H(N)® denotes the K-finile vectors in H(N), one concludes
HNE = L(N).

For weights p and «a, we let the number 2(u, a)/(a, @) be denoted by p, .

Proposition 4.3.  Let A € A(G). Then for each integer m > 0, the weight
vector T(Ea,)™ (1)) is a nonzero highest weight vector for K satisfying:

(1) 1 T(Eao)™(10) 3= (=1)"m! Aay(Aap = 1)+ (Aag —=m + 1),
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(2) T(Fay)™ (1) = ex(m)(-, o) vr,
where ¢\(m) = %)\ao()\ao — 1) (Ao —m+1).

Proof.  We suppress the use of the symbol T' and denote the g-action by
juxtaposition. To show (1), recall from Proposition 4.1 that (-,-), is the unitary
inner product for H(X), so we have || EZLO(IA) 3= (—1)””’(E2;EZLO(1A), 1,),. But
by Lemma 4.2 (b) of [3], one knows

ENE, (1,) = mMag(Aag — 1)+ (Aag — m + 1)1, (4.2)
Since (1y,13)x = (va,vy) = 1, we have
7 (1) 1= (= 1)y g — 1)+ (g = 10+ 1),

which establishes (1).

To prove (2), we observe that the weight vector ﬁ;no(IA) has weight A —
maoy. But EZLO(IA) € H(M)® = L(\) C V., the space of K-finite vectors in
O(D,V\). By Proposition 3.1, the weight space for the weight A — mag in Vy
is spanned by the vector (-, Fs,)™vy. Thus there exists a constant ¢ such that
E;no(h) = ¢(+, Foo)™vn. From (6.3) of [4], we see that E7. is the differential
operator (—1)"d(FE,,)™, where ¢ is the directional derivative. A straightforward
computation shows that 6(Eu,)™((+, Fag)™vr) = m! (Fag, Eay)™vr. Thus, by
applying B[ to the equation E:O(IA) = ¢(+, Fo, )" vy, one concludes by (4.2) that
m! Aoy (Aag = 1)+ (Ao =—m + 1) = e(=1)"m! (F,,, E,,)™. This establishes (2).

Since ap is the simple noncompact root, it follows that for each o € ®F,
one has [g.,g_a,] =0. Consequently, for o € ®F, F, -F:O(IA) = F:OEQ(IA) =0
since 1, is a highest weight vector. This shows that E::O(IA) is a highest weight
vector for K.

To show that F:O(l)\) # 0, it suffices by (1) to show that A, < 0. For
this, we refer to the proof of Theorem 5.1 of [3]. There it is shown that if p is
any weight of Vi,~; is the maximal root of p; and A € A(G), then p.,, < 0.
We observe that —ag is the highest weight of p_ and that p_ and py are
dual via the Killing form. Thus, if o denotes the longest element of Wx (the
Weyl group for K'), then —o(y1) = —ap. But then A,, = 2(X, a0)/(0, 0) =

2(07H(A), 07 (@) /(07 (aw0), 07 (ao)) = 2(07'(A), 1)/ (91, m) = 071(A)y,. But
Wy permutes the weights of Vi. Putting p = o7'()), we have A,y =y, <0. =

5. Scalar-valued representations and isometries

Recall that A(G) denotes the set of highest weights that correspond to irreducible,
unitary highest weight representations of GG. Let Ao(G) C A(G) denote the subset
of nonzero highest weights p for which the corresponding representation (7,,V,)
of K satisfies dim(V},) = 1. We refer to the corresponding representation 7, on
H(p) as a scalar-valued representation of . The purpose of this section is to
associate to A € A(() a unique PN= Ao(G) for which an isometry exists between

a certain K -invariant subspace of H(A) and a tensor product H(A) ® Y, where
Y\ is a finite dimensional Hilbert space.
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For p € Ay(G), we let C, denote the corresponding one dimensional K
space and let 1, € C, denote a unit vector. The dual C;, of C, is a K space with
highest weight —o(u), where o is the longest element of the Weyl group Wy .
Since dim(C,) = 1, it follows that o(g) = p. The dual of C, is thus identified
with C_, and K acts on C_, by multiplication by 7,(k)™*, k € K. For u € Ao(G)
and )\ € A(G), we form the K-space C, @ V), ® C_, and observe that the natural
representation of K on this space reduces to 1 ®@ 7, ®1, where 1 denotes the trivial
representation. It is routine to check that for each p € Ag(G) and A € A(G), the
mapping ¢, : C, @ Vy @ C_, — V) defined by

V(X @ v @ d;) = Z(Ci, L) (diy 12, )v;
is a K -equivariant isometry.
For pu € Ao(G), let P(p;,C, ® Vi ® C_,) denote the K-space of
C, ® Vi ® C_,-valued polynomials on p;. The K-action here is (k- f)(z) =
(1@ 7\(k)@1)(f(k7".2)) for k € K and z € p;. For f € P(p;,C,aV,aC_,),
define R, \(f) by

(Rup(N))(2) = ¥un([(2)): 7 € by (5.1)

Then R, defines a K-isomorphism of P(p;,C,@Vi®C_,) onto V,, the K-space
of Vi-valued polynomials on p, .

For A € A(G), we let {v;} denote an orthonormal basis of V. For p €
Ao(G), we define a map ¢, : H(A)® — P(py,C,a@VAQC_,) by the expression

Sun(f)(2) =Y _(F(2), )1, @ v; @ 1, (5.2)

7

By a standard calculation, ¢, \ 1s independent of the choice of orthonormal
basis {v;}. But then, for k € K, one has

LuATk)NE) = D (THRN()v)1u @ v @1y
= i(ﬁ(k)f(k_l c2),v)l, Qv @1,
B i(f(k_l 2), (ki) @ v @ 1o,
(16728 D (F(E-2))
= (k- dunf)(2).

Thus ¢, is a K-map. In addition, it is clear by the definition of R, that

R,M,A o qb,u,/\ = ]dH()\)K. (53)

In particular, ¢, is injective.
For A € A(G), let Viope, C H(A)K_denote the K-irreducible space

generated by the K-highest weight vector T(F,,)™(1,) in Proposition 4.3. If
1 € Ao(G), note that H(u)® is a K-invariant space of C,-valued polynomials
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on py. Consequently, H(u)® @ VA @ C_, can be identified with a subspace of
P(p_|_,(C#®VA®(C_#).

Finally, note that p € Ao(G) is uniquely determined by the value of (u, ag).
Indeed, p € Aog(G) is of the form y = rwy where r € R and wy denotes the
fundamental weight corresponding to ag.

Proposition 5.1.  Let A € A(G), p € Ao(G) and let B(X) denote the K -space
@mzo‘/:\—mao-

(1) For all integers m >0, one has ¢, \(Vioma,) C H(,LL)K @WheC_,.

(2) The restricted map ¢, : B()) — H(u)® @ Vi @ C_,, is norm-preserving if
and only if p salisfies po, = Aoy -

Proof. To prove (1), we choose an orthonormal basis of V) by adjoining
vy to an orthonormal basis of ((C’U/\)J‘. Recall from Proposition 4.3 (2) that
T/\(ﬁao)m(lA) = cx(m)(-, Fy, )™ vy Using the above basis in the definition of ¢, ),

one has
Gun(TA(Eop)™ (1)) = ex(m)(+, o) "1, @ 0a @ 1.

(1
Again from Proposition 4.3 (2), one knows thdt Tu(Eo)™(1,) = cu(m) (-, Eay)™1 ..
Consequently, since T,(F,,)™(1,) € H(u)*, one concludes that

Gun(T(Eoy)™(12)) € H(p)™ @ VA @ C_,.

But since ¢, is K-equivariant and H(u)* @ V), ® C_, is K-invariant, one has
Dur(Vicma,) C H(,U)K ® Vi ® C_,, as well. This establishes (1).

To prove (2), first observe the center of K acts on py by scalars. By
(6.3) of [4] it follows that the K -finite vectors in H(A) of different homogeneous
degree must be orthogonal. It follows that @©,>0VA\-ma, 18 an orthogonal direct
sum in H(A) and, likewise, @mzo%,/\(v/\—m%) is an orthogonal direct sum in
H(M)K @ VA® C_,. Let (-, -)® denote the canonical inner product on the Hilbert
space H(p) @ Vi @ C_,. Since Vi_ja, is an irreducible K-space, there exists a
constant b,, > 0 such that

(¢‘u,/\(f)7 95#,/\(9))@ = bm(f7g)/\7 for all f7g S V:\—mao- (54)
The above calculation shows that
B ((Fo)" (1) = 27 (L) @ oy @ 1,

Letting f =g = T\(F.,)™(1,) in (5.4), we obtain

(T (1), TP (L),
= by (TA(Fay)™ (13), Tr(Fay )™ (11))- (5.5)
By Proposition 4.3 (1), we know that

I T3 (Fao)™ (13) (3= m!(Fag: Eap)™ ex(m)

and

I Tu(E o)™ (1) la= m}(Eag, Eao)™ cu(m).

But then (5.5) reduces to ¢x(m) = by,c,(m). Consequently b,, =1 for all m >0
if and only if A,, = pla,. This completes the proof of (2). ]
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For A € A(G), we define the weight by by

X = Aoy ), (5.6)

where wy is the fundamental dominant weight corresponding to «y.

Corollary 5.2. If M\ € A(G), then the restriction of ¢5, to B(X) uniquely
extends to an isometry @y : B(A) — H(X) @ Vi ® C_5 such that ®\(f)(z) =
Yoi(f(2),vi)l5 @ v; @ 1_5, where {v;} is an orthonormal basis of V).

Proof.  The unique extension to an isometry ®, on the closure of B(X) follows
from Proposition 5.1 (2). To establish the formula for ®,, recall from Proposition
4.1(1) that convergence in H(/\) implies pointwise convergence. Consequently, if
{fn} C B(X) converges to f in B( ), then (f.(z),v) converges to ( f(z),v) for
each z € D and v € V). Since both ®, and point evaluation e, are continuous,
one has

Dy f(z) = e®u(f)
= n o)

= nh_}r{.lo Z(fn(z), UZ'>1X & v; Q 1_}
= Z(f(Z)avz')lx@vi@]_x- .

Remark 5.3.  In [13], certa,inlorthogona,l families of scalar-valued polynomials
on D, G = U(p,q), are studied. These polynomials are used to invert an in-
tertwining operator which is subsequently used to define a G-invariant norm for
ladder representations of G. However, these polynomials are easily seen to be an
orthogonal basis of B(X). The proof of Proposition 5.1 (1) shows that the image of
&, is contained in B(X) @ VA @ C_5. We can therefore see the relevance of these

orthogonal families in describing the image of @, .

6. Ladder Representations

In this section we restrict our attention to highest weights A € A(G) that cor-
respond to a ladder representation of G. We define ladder representations and
show how the unitary inner product (-,-), of H(A), discussed in section four, is
completely determined by the unitary inner product of ?—[(/\) (with X defined as
n (5.6)) and the isometry in Corollary 5.2.

Recall by Proposition 4.3 that for any A € A(G), each of the K-types
Viemags m > 0, appears in H(A). We define (T, H(A)) to be a ladder representa-
tion of G if these are the only K-types that appear. Let A;(G) denote the subset
of A(G) such that (T, H(A)) is a ladder representation. Then A € Ay(G) if and
only if

(EBmZOVA—ma()) = 'H()‘> (61>
We define a representation Sy of G on O(D,C; @ VA®@C_5) by the formula
(M@ )(z) =1 @ g™ )7 @) f(g™" - 2), (6.2)

for z € D. Here, 1 denotes the identity map on C; as well as C_5x.
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Theorem 6.1.  Let A € A(G). If = Ao(G) then @y intertwines T\ and
Sy. Moreover, the invariant unitary inner product (-,-)\ on H(X) is given by the
formula

(fi f2)r = Y (A0, vi)15, (o), vi) 15)5,s

k3

where fi, fy € H(X),{vi} is an orthonormal basis of Vi and (-,-)sx denotes the
invariant unitary inner product on H(X).

Proof.  The intertwining property is a consequence of the form of ®, in Corol-
lary 5.2. Now let fi, fo € H(A) and let (-,-)g denote the inner product on the
Hilbert space H(A) @ VA @ C_5. Since @) is an isometry, we have

(flafz)A = (‘I)A(ﬁ),q)x(fz))@
= D (h(e)lz@ue 15, (fl)v)lz@v 81 5)e

= D (A0 015 () o) 15)s (v v5)

= Y (AE )5, () w195 .

Remark 6.2.  As seen in the next section, it can happen that X ¢ Ao(G) but
= /\O(é) for some covering group G of G. The representation T = Ty of G lifts
to a unitary representation of G on the same Hilbert space H(X). Theorem 6.1
then applies and gives the unitary inner product on H(X), which is G -invariant.
However, this inner product is also G-invariant via the covering map G — G.

7. The role of scalar-valued representations

In all but finitely many cases, the associated scalar-valued representation H(A),
where A is defined in (5.6), is a discrete series or a generalized limit of discrete
series representation [8]. Since the unitary inner product for such scalar-valued
representations is well-known, we can describe the unitary inner product on H(X)
using the formula for (-, ), found in Theorem 6.1. Explicit examples of the unitary
inner product (-,-), for families of ladder representations of the groups SU(p, q)
and SO*(2n) appear at the end of this section.

We begin with some basic facts about the unitary inner product for H(p)
where p corresponds to a scalar-valued discrete series representation. We de-
fine the subset AZ(G) of Ag(G) to be the set of highest weights u satisfying
(u+p,3) <0, where 8 € &/ is the maximal noncompact root and p denotes half
the sum of the roots in ®*. Then each u € AZ(G) corresponds to a discrete series
representation of G.

Let dm(z) denote the G-invariant measure on D and let M, , u € AYG),
denote the function on D determined by the function g — [J,(g,0)~"'|*. Denote
by du(z) the measure M,(z)dm(z), normalized so that [ du(z) = 1. Then the
inner product on H(p) is given by

(f,h)u :/D(f(z)’h(z))c“d’u(z)' (7.1)
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Put r = rank( D) and let y; € Ao(G) satisfy (p;+p)g=c(i—1), 1 < <r,
where ¢ is given on page 115 of [5]. These weights, Ai™(G), have corresponding
unitary structures explicitly given in [8]. We summarize the results found there.
Let dm;(z) denote the quasi-invariant measure on the " boundary component
B; of D. The R-valued function on K x G; given by (k,g) — |J,,(kgc:;, 0)71?
(cf. (6.14) [8]) determines a function M; on B;. Let du;(z) denote the normalized
measure on B; corresponding to M;(z)dm;(z). Then the (densely defined) inner
product on H(u;), 1 <1 <r,is given by

= [ (Do), for LheHE) . (72

Theorem 7.1.  Let A € Ai(G).

(1) I X € AYG) then

(= [ (FBEDE),  for fig € HO).
(2) If X € Ai™(@) then

= [ GE M), for ke HOE

Proof.  To show (1), assume Ne AYG) . TLet {v;} be an orthonormal basis of
V. Then by Theorem 6.1, we obtain

(fih)n = D () o, (A(), 0i)15)x

7

= 3 [ UG ) by (1)

= [ ) uto),

This proves (1). The proof of (2) follows in the same way by (7.2) and the fact
that ®, maps K -finite vectors to K -finite vectors. ]

Explicit examples for SU(p, q)

We now let G = SU(p,q) and utilize Theorem 7.1 to explicitly describe
the unitary norm for a family of ladder representations of GG. This family includes
all but finitely many of the ladder representations of SU(p,q) discussed in section
eleven of [2].

Let m > 1 be an integer. Let {w;} denote the set of standard fundamental
dominant weights found in [2]. Let A" = —(m + 1w, + mwy4; and A, =
muw,_1 —(m+1)w,. Since a, is the simple noncompact root, we see from (5.6) that
= Xm = —(m+1)w,. Note that the weight —(m+1)w, always lies in Ag(G) and
corresponds to a highest weight of a discrete series representation of SU(p, q) if and
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only if m+1 > p+¢. From [7], p. 84, the invariant measure dm(z) on D is given
(up to a positive multiple) by det (1 — zz*)_(p"'q)dz where dz = 11, (dz,,dy,s with
Zrs = s + 1yrs. Moreover, by [1], one has M5 _(z) = M5,.(2) = det(I — zz*)™t".

If m+1>p+gq and f,h € H(M,), then we have by Theorem 7.1 the formula

(fyh)y, =dy, / (f(2),h(2)) det(I — zz*)™+1=P=1q, (7.3)

D

where d;yL = [, det(] — zz*)"*'=P=%dz. By replacing the inner product on Vi,
in (7.3) with the inner product on Vim, one obtains the formula for (-,-)ym on

H(A™).

Explicit examples for SO*(2n)

We now let G = SO*(2n) where n > 4. For each integer m > 1, the
weight A = mw,_; —(m+2)w, corresponds to a ladder representation of SO*(2n).
Following the notation in [2], since o, = €,_1 + €, is the simple noncompact root,
we have A = —(m + 2)w,. Now by Section 7.22 of [2] the highest weights of the
unitary scalar-valued representations of SO*(2n) are all of the form —2kw, where
k > 0 is an integer. In particular, if m is odd, then by ¢ Ao(SO*(2n)). We shall
return to the case where m is odd. For the moment, assume m is even. From [7],
p. 85, the invariant measure on D is given (up to a multiple) by det(I+2z)""*'dz,
where dz = I, c,dz,dy,, with 2., = 2., + 1y,,. The function M5 in this case is
Ms(z) = det(I + zZ)2*+'. The weight X corresponds to a highest weight for a
discrete series representation when % —n+22>0.

Then for f,h € H()), we have by Theorem 7.1 that

(f,h)y = dy /D(f(z),h(z)) det(T + 22)2 7"+ 2dz, (7.4)

where d}' = .fD det(I + 22)57"*2dz.  We observed above that for odd m, the

weight X = —(m 4+ 2)w, is not the highest weight for a unitary highest weight
presentation of SO*(2n). However, for odd m such that the square integrable
condition Z—n+2 > 0 holds, X does correspond to a discrete series representation
of the two-fold covering group SO*(2n)~ of SO*(2n). Remark 6.2 applies in this
case and we conclude that the formula for (-, )\ appearing in (7.4) remains valid

for the m odd case.

8. Applications to Intertwining Operators

In Theorem 7.1 we observed that for A € Aj(G), the unitary inner product
(+,-)x for H(A) can inherit the intrinsic simplicity of the unitary norm of an
associated discrete representation of G on H(X) We now show that this simplicity
is also manifested in the form of the inverse of a unitary intertwining operator

= : H\, — H(A), where H, denotes any equivalent realization of H(X).

If A € A(G), we let (wy,H,) denote an irreducible unitary highest weight
representation of G with highest weight A. Let vy denote a unit highest weight

vector and V) its K -invariant span. For z € p,, define the operator ¢, : V\, — H,
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by the formula

o0

(o) = S B2 ) (8.1)

n!
n=0

where v € Vi and dw) denotes the derived action of wy. By Theorem 5.1 of [3]

the series (8.1) converges in H, if and only if z € D. Moreover, by Theorem 7.2
of [3], the expression

EN) =¢(f), [feHyzeD, (8.2)
defines a unitary intertwining operator = : Hy, — H(X). Here, ¢f : Hy — V)
denotes the adjoint of the operator ¢,,z € D.
Proposition 8.1.  Let A € A((G). If A € AL(G), then the inverse =" of = is
given by

= F = /DqZ(F(z))d,u(z), Jor F € H(N).

Proof. lLet < - - > denote the unitary inner product on H, . Using the form
of (-,-)x in Theorem 7.1 (1), we have for f € H, and F € H(})

ErPh= [ @ PENE) = [ < 10(FE) > dat2),
Since = is unitary, the proposition now follows. ]

In order to give a concrete example of the inversion formula in Proposition
8.1, we turn to the harmonic realization of unitary highest weight representations
of the linear groups SU(p,q), SO*(2n) and Sp(n,R). We follow the notation
found in section seven of [2]. Let M be the complex space of matrices in Table 7.2
of [2]. The relevant Hilbert space is the Fock space F consisting of C-valued
holomorphic functions on M which are square integrable with respect to the
Gaussian measure on M. We let 6 : M — p, denote the map on page 55 of [2]
and let T denote the ideal generated by the matrix entries of § and the constants.
Let Vi denote an irreducible K space of harmonic polynomials (cf. (7.8), [2]).
Then the closure of TV,, denoted by H,, is an irreducible subspace for w,, the
harmonic representation of G'. By (7.3) of [2], the action of p_ on H, is given by
dwy(z)f(y) = (0(y),Z)f(y), for z € p_, y € M and f € H,. Consequently, one
finds by (8.1) that for z € D

qzh<y> - e(a(y),z)h(y)’ h € ‘/)\’y c M (83)
For A € A(G) (G = SU(p,q),SO*(2n) or Sp(n,R)), we have by (8.3) of [3] that

the intertwining operator = has the form

(E/)(=y) = /M F ()l K (. w)dp(w),

where K\ denotes the repioducing kernel of V.
If A € A(G) and X € Ad(G), then we have by Proposition 8.1 and (8.3)
that ==' has the explicit form

=PI = [ IR g)duta) (3.4

where F' € H(A) and y € M.
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