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On Kazhdan’s property (T) and Kazhdan constants
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Abstract. The first purpose of this paper is to give a very elementary proof
of Property (T) for SL(3,k) over any local field k. Here we use a modification
of an argument due to Burger. The second approach to Property (T) is based
on spectral properties of a Laplacian in the enveloping algebra. It is shown that
for a connected Lie group G Property (T) can be characterized by a spectral
property of a Laplacian on the space of smooth K -finite vectors, where K 1is a
compact subgroup of G.

1. Introduction

A locally compact group has Kazhdan’s Property (T) if the following holds: when-
ever a (strongly continuous) unitary representation of (G has almost invariant
vectors, then actually it has a nonzero fixed vector. Recall that a representation
(m,H) has almost invariant vectors if, for any ¢ > 0 and for any compact set K
of GG, there exists a unit vector £ € H with ||7(g)é —€&|| < ¢ for all g € K.

Property (T), discovered in 1967 by D. Kazhdan [11], is a powerful tool,
with applications, for instance, in rigidity, geometry, graph theory and operator
algebras (see [14, 20, 12, 7]). Most semisimple Lie groups have Property (T).
More precisely, all simple Lie groups, except those which are locally isomorphic to
SO(n,1) and SU(n, 1), have Property (T). It is an important fact that Property
(T) is inherited by lattices. So, for instance, SL(n,Z) has Property (T) for n > 3.

The main step in establishing Property (T) for simple Lie groups of R-
rank > 2 is the proof for SL(3,R) and Sp(2,R) of this property. The usual proofs
for SL(3,R) (and for Sp(2,R) ) are based on the study - by means of Mackey’s
theory - of the irreducible unitary representations of a copy of the semi-direct
product SL(2,R) x R? inside SL(3,R) (or the semi-direct product of SL(2,R) by
the space of symmetric 2 x 2-matrices), see [14, 20, 12]. Another argument, due
to M. Burger, based on the so-called Furstenberg lemma, appears in [9]. In [10],
an alternative proof is given using estimates of independent interest for matrix
coefficients of unitary representations.
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The first purpose of this paper is to give a very elementary proof of Property
(T) for SL(3,k) over any local field k . It is a modification of Burger’s argument
mentioned above. Instead of Furstenberg lemma, it uses the fact that there is
no SL(2,k)-invariant mean on the Borel sets in k?\ {0} (see 2.2 below). In case
k = R, a new proof is given in terms of the Lie algebra for the following well-known
but crucial fact (Lemma 2.4): If a vector in a unitary representation of SL(2,R) is
invariant under the upper triangular unipotent matrices then it is invariant under
SL(2,R) . In fact, our proof shows that the same result is true for the universal
covering group SL(2,R).

Our second approach to Property (T) for SL(3,R) is of a quantitative
nature and is based on spectral properties of a Laplacian in the enveloping algebra
U(sl(3,R)) . In [3], Kazhdan’s Property (T) for a connected Lie group G is
characterized as follows: Let g be the Lie algebra of G, let X, X5,..., X, be
a basis of g, and let A := —(XIQ + X7+ ...+ Xg) be the associated Laplacian
in U(g) . Then G has Property (T) if and only if there exists ¢ > 0 such that
inf sp(dn(A)) > ¢ for any unitary representation (w,H) of G without nonzero
fixed vector, where dm denotes the derived representation of 7 in the space
H™ of C"*—vectors in ‘H and sp the spectrum. As this is more convenient for
computations, we first show that one may equally consider the smaller space of
K —finite vectors for a compact subgroup K of G . Recall that a vector £ € H is
K —finite if the linear span of 7(K )£ has finite dimension.

Theorem 1.1. The connected Lie group G has Property (T) if and only if there
exists a constant ¢ > 0 such thal

inf{(dr(A)¢,€), € € H™M gl =1} > e

for any unitary representation (w,H) of G without nonzero fized vector, where
HoK s the space of all K —finite O —vectors in H for a compact subgroup K of
G

Our main result gives a bound for the constant ¢ appearing above.

Theorem 1.2. Let K : O(3,R), and let X1,X,,...

=95 , Xg be the following
basts of the Lie algebra sl(3,R) :

0 10 1 0 0 01 0
X, 100, Xo:=[0 —10 X; 100 ],
0 0 0 0 0 0 00 0
0 0 0 00 0 00 0
X, 00 1], Xs:=[01 0 X 001 |,
0 -1 0 00 —1 01 0
0 0 1 0 1
X;:=1 0 00 Xs 1= 00
~1 0 0 00

and let

A= —(X7+ X5+ ...+ X3).
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Then, for any unitary representation (m,H) of SL(3,R) withoul nonzero fived
veclor,

inf{{dm(A)E,€); € € HOF, ||l = 1} > o~ 0.4613 .

. . . T2
where a is the mazimal value of the function % on R.

The reason for the choice of the above basis is that A = —C + 2Cg, where C and
Ck are the Casimir operators of SL(3,R) and SO(3,R), respectively. The proof
of the above estimate is inspired by some ideas due to Howe and Tan [10], Chapter
V.3.3.

Kazhdan’s constants depending on a generating set may also be defined
at the group level (see [9]). Such constants have been studied, for instance, in
[1,4,5,6,8, 15, 17]. The paper is organized as follows. In Section 2, we give the
proof of Kazhdan’s Property (T) for SL(3,k) . Section 3 is devoted to the proof
of Theorem 1.1, and Theorem 1.2 is proved in Section 4.

2. Kazhdan Property (T) for SL(3.k)

The proof depends on the following three lemmas. The first lemma says that the
representation (m,H) is amenable in the sense of [2], where more general results
are proved. We thank S. Popa for the following direct and simple proof.

Lemma 2.1.  Let G be a locally compact group, and let (7, H) be a unilary
representation of G with almost invariant vectors. Then there is an Ad(G)-
invariant state @ on the C*—algebra L(H) of all bounded operators on H, that is,
a positive linear form ¢ : L(H) = C with o(I) =1 and o(n(z)Tw(z)™") = ¢(T)
Jorall z € G, T € L(H) .

Proof. Let {&.}n € H, &) = 1, with limy,e |[7(2)€, — & = 0 for all
z € (G . Define states ¢, on L(H) by
pn(T) = (T& &), T € L(H) .

Since the set of states on L(H) is a weak—*—compact subset of the unit ball of
L(H)* , we may assume (upon passing to a subnet) that there exists a state ¢ on

L(H) with
lim 0 (T) = o(T) VT € L(H) .

Then ¢ is Ad(G)-invariant as, for any =z € G, T € L(H) ,

len(m(2)T7(2)™") = @n(T)] = [(T7(2)én, 7(2)€n) — (Tén, &)l

< 2Tl (2)én — &all
and hence
[p(m(2)Tm(2)™) = p(T)| = lim |pn(m(2)T7(2)™") =pu(T) = 0. =

Recall that a local field is a locally compact, nondiscrete field (archimedean
or nonarchimedean), and that the topology of such a field is defined by an absolute
value. In fact, any such field is isomorphic either to R, to C, to a finite extension
of the p—adic numbers or to the Laurent series in one variable over a finite field

(see [19, Chap. 1,A73]).
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Lemma 2.2.  Let k be a local field . Let SL(2,k) act on k* in the natural way.
Then the Dirac measure at {0} is the only finitely additive SL(2,k)—invariant
probability measure on the Borel sels of k% Fquivalently, there is no finitely
additive, SL(2,k)-invariant probabilily measure on the Borel sets of k*\ {0}.

Proof. Let
p: Bk*) — RT

be a finitely additive, SL(2,k)-invariant probability measure on the Borel sets
B(k?) of k*. Let |- | be an absolute value on k . Let

0= {(1) ek 2 lel}
Take a sequence {A,}, C k with |A\41] > [Au| +2 for all n € N, and let

1 A
Gn = (0 1 ) € SL(2,k) .

Then

a, =g0=4{")ecrr o o< }
0 {(y) V) i < ol <

Indeed, for ( Z ) e,

and

|2+ Anyl (IAnl =Dyl

> [yl = la] =
o+ Ayl < [+ ayl < (Aal + 1)yl -

Clearly the sets €, are pairwise disjoint, as

< >
[Ol n m .
|A‘TL| |A7”f|

Hence Yo, u(Q;) < pu(k*\{0}) <1 forall n € N. Since u(Q;) = u(g:Q) = n(Q)
this shows that u(2) = 0. Now, let

o (O g ) e ={() etz

Then p(Q) = p(Q) =0. Since QU =k?\ {0}, u(k*\ {0}) =0. So, u is the

Dirac measure at 0. ]
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Remark 2.3.  As the proof shows, the above lemma applies to other groups
than SL(2,k) , for instance to SL(2,Z) when chark = 0. The conclusion of the
lemma is certainly known to several people. A. Valette showed us a proof of the
lemma, in the case k = R, using only two matrices from SL(2,7Z).

The last ingredient is the following well-known lemma (see [9, 14, 20, 12]) for which
we give a new proof based on consideration of the Lie algebra, in the case where

k =R.

Lemma 2.4.  Let (m,H) be a unitary representation of SL(2,k). Assume thal

v {(4 1)

has a nonzero fived vector € € H . Then ¢ is fized by SL(2,k) .

Proof. (k =R) Let

w0 h) x=(0) = (00)

be the standard basis of s[(2,R) with usual commutator relations
(X,Y]=H, [H,X]=2X, [HY]=-=-2Y.

The space HN of the N-invariant vectors is invariant under the subgroup A
generated by H . Hence, H" contains a dense subspace D of C*°—vectors under
the action of AN . Clearly, X =0 on D and D is H-invariant. We first show
that H = 0 on D . We write W¢ instead of dn(W)¢ for W € sl(2,R), ¢ € H
whenever this makes sense. Recall that each W is skew-symmetricon ‘H* . In fact,
it is well-known that W is essentially selfadjoint on H™ for any W € sl(2,R) .
Consider

C:= H*+2(XY +YX) = H* +4XY - 2H |
the Casimir operator of s[(2,R). We have, for any ¢ € D, n € H*>

<§7C77> = <§7 H277> + 4<§7X)/77> - 2<§7 H77>
= (& (H* —2H)y) = ((H* +2H) &,n) .

Thus, D is contained in the domain of C* and C* = H?> +2H on D .

As is well-known (see [18, p.269, Ex.(3)], for instance), C is essentially selfadjoint
on H*® . Whence C‘D =C* p OT (H2—|—2H)* = H? —2H on D. Thus H =0 on
D . Now, fix £ € D . Then , for any n € H* |

(Y Hn) = 2(Yn),

as [H,Y] = =2Y and H{ =0

On the other hand, the range of H — 21 as an operator on H* is dense in H .
Indeed, this follows from the fact that ¢H is essentially selfadjoint on H .

Thus,

(£,Yn) =0 forallneD,
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where D' = (H — 21)H** . This shows that ¢ is in the domain of Y* = —Y and
that Y¢ = 0. Hence, by Stone’s theorem,

exp(tY)¢ = GXP(tV>§ = ¢

for all t € R. Thus ¢ is fixed by the subgroup N , generated by Y . Hence, any
€ € D is fixed by SL(2,R) . By density, this is true for any N—-fixed vector in H .
|

Remark 2.5.  The above proof is somewhat involved because it is not a priori
clear whether the space of N—fixed vectors contains any nonzero C'*—vector. The
arguments above become much shorter in the case of an N-invariant C'*—vector
¢ as the reader may wish to verify.

On the other hand, because it relies on Lie algebra considerations, the proof works
for any covering group of SL(2,R) (where N has to be taken as the one-parameter
subgroup generated by X).

Theorem 2.6. [11] SL(3,k) has Kazhdan’s Property (T).

Proof. Let (7, H) be a unitary representation of SL(3,k) with almost invariant
vectors. Let

a b =z b
H = c d vy ,<a )ESL(Z,k),(JC>Ek2 QSL(Q,k)MkQ,
c d y
0 0 1
d let
1 0 =z N
V= 01 y ,<L>€k2 ~k?.
00 1 y
Let

A

P:B(V) = L(H), Ew P(E)

be the projection valued measure associated with the unitary representation |y
of the abelian group V , see e. g., [13]. Clearly

m(g)P(E)w(g)”" = P(g- E) VgeSL(2,k),EeB(V). (1)

g.,,(;”) ;:7<g_l<§>>, gEeSL(2,k),yeV

is the dual action.

By Lemma 2.1, there exists an Ad(SL(3,k))-invariant state ¢ on L(H) . Define

m(E) == ¢(P(E)) VE € B(k?).
Then, m is a finitely additive probability measure on B(V) . Moreover, m 1is
SL(2,k)-invariant, by (1). Now k identifies with k in such a way that the action
of SL(2,k) corresponds to the transpose of the action of SL(2,k) on k* (see [19]).

In this way, m becomes an invariant finitely additive probability measure on the
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Borel sets of k*. So, by Lemma 2.2, m is the Dirac measure at 0. In particular,
P({0}) # 0 . This shows that 7|y has a nonzero invariant vector {. By Lemma
2.4, ¢ is invariant under the following two copies of SL(2, k)

* 0 = 1 0 0
010 and 0 *x * |;
* 0 % 0 * =
which generate together SL(3,k) . This concludes the proof. |

3. Kazhdan Constants and K-Finite Vectors

In this section, we prove Theorem 1.1. Let (m,H) be a (strongly continuous)
unitary representation of a connected Lie group GG and denote by dm the derived
representation of the Lie algebra g . Let (X7, X3,...,X,) be a basis of g and
A= — 2;21 X? € U(g) be the associated Laplacian. Then dn(A) is defined on

H> | positive and essentially selfadjoint. Let dr(A) be its closure.
In [3] the operators dm(A) and dm(A) are used in order to decide whether
or not (m,H) contains weakly the trivial representation. The main result of that

paper is

Theorem 3.1.  Letl (m,H) be a unitary representation of a connected Lie group
G . Then the following are equivalent:

(i) (m,H) contains weakly the trivial representation.
(i1) 0 is an approximative eigenvalue of dm(A) .
(iii) 0 is a spectral value of dm(A) .

We are going to see that one may also consider the restriction of the Laplacian to
smaller subspaces where the computations become easier. Recall that ¢ € H is
called analytic for = if the mapping

g (m(g)&,n)

is analytic on G for all n € H . The space of analytic vectors is denoted by H* .
Finally, let T be an operator in ‘H . A vector £ € H is called analytic for T if the

series . ‘
Z HTif | 4
=

has positive convergence radius. By the spectral theorem, the analytic vectors of
a selfadjoint operator are dense in H . The following result of R. Goodman relates
these notions of analyticity.

Define X
B, = (I + M) : )

B, is a selfadjoint, positive operator, B, > 1. Then ¢ is an analytic vector for
B, if and only if ¢ is an analytic vector for # and this is the case if and only if
|dm (A)™E]| < (2m)IM™ |||, for all m € Ny and a suitable M > 0. For all these
results, see [18, Chapter 4.4].
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Proposition 3.2. With the above notations, lel D be a subspace of H . Assume
that DNH* is dense in H . Then the following are equivalent:

(i) (m,H) contains weakly the trivial representation.
(i) inf{{dm(A)E,&); €D ¢l =1} =0.

Proof. By 3.1 it is enough to prove that (i) implies (ii).

Since D N H¥ is dense in ‘H , Goodman’s result implies that D contains a dense
set of vectors analytic for B|p , where B, is defined as above. Since B,|p is
symmetric, Nelson’s theorem (see e.g., [16, X.39]) shows that B,|p is essentially
selfadjoint, whence B;|p = B, . By functional calculus, there is a sequence {£,},
of unit vectors in the domain of B, , satisfying ||B.({,) — &, < % . Let {n,}, be
sequence in D with || Br&, — Ban|| 4+ [€n — | < i . Then ||Bz(ns) — na|| < ]5 )
Let ¢, = 2= € D. Then lim, o ((Br — Dtn,¥,) = 0, by Cauchy-Schwarz

) , ([l
inequality and, hence,

lim (dn(A)n, ¥,) = 0= lim (B, — )%, ¥,) + 2nli_>r£10<(B7r —Dtpp, ) =0

n—oo n—oo

as desired. ]

An often useful choice of D is the following: Let K be a compact subgroup
of G. By the Peter-Weyl theorem, we may decompose (7|, H) in K-isotypic

components H(o)
H=> Ho).
ceK

Then the subspaces (algebraic sum)

HOR =Y (Ho)nH®) and HF =) (H(e) NHY)

o€ K o€ K

are dense in H [18, 4.4.3.1,4.4.5.16].

Corollary 3.3. With the above notations, the following are equivalent:
(i) (m,H) contains weakly the trivial representation.
(il) kr(dn(A),G) = inf{(dr(A), &), € € HE,||¢]| =1} =0.

We define the infinitesimal Kazhdan constant kx(A, ) to be the least up-
per bound of all{kx (dm(A), ¢) where 7 ranges through all unitary representations
which do not contain the trivial representation }.

Corollary 3.4.  Let G be a connected Lie group. Then G has property (T) if
and only if there exists ¢ > 0 such that

KJ]’{(A,G) > €.

Proof.  Using 3.2, this is similar to the proof of [3, 3.10]. |
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4. Kazhdan Constants for SL(3,R)

We now give a bound for the above Kazhdan’s constant in the case of SL(3,R).
Consider the subgroup

a b =z b
0 = ¢ d oy |, (“ >eSL(2,R),x,y€R ~ SL(2,R) x R .
00 1 ¢ d

Observe that if (7,H) is a unitary representation of SL(3,R) and if ¢ is fixed
under the action of the subgroup

R? ~ V := ,r,y e R B,

o O =
o = O
— R

then ¢ is a fixed vector under SL(3,R) (see Lemma 2.5 above, and the proof of
2.6).

So, we may assume that (7,H) is a unitary representation of SL(3,R) without
V —fixed vectors. As in the proof of 2.6, there exists a projection valued measure

P on the Borel sets of V ~ V such that
flv = [ 4aP() and Py =0,
v

and we have for all Borel sets F2 C Vo

(compare with (1)) for all g € SL(2,R). Next, choose as a basis of s[(2,R):

. (01 /10 (01
[x._<_1 0), A._<0 _1>, B._(l 0),

If we embed SL(2,R) in SL(3,R) as above, K, A, B correspond to Xy, X3, and
X5 in Theorem 1.2.
We have the commutator relations

[K, A = —2B, [K, B] = 24, [A, B] = 2K .

For an angle 0 < 6 <=, let S(8) be the sector

S(0) = {UE V, argv € {—g,g[}



102 BEKKA AND MAYER

I,

\V4

The first crucial fact is that, for any unit K -eigenvector v, we have

0
P(SO)W|* = —. 2
ISl = 2)
This is an easy computation (see [10, p.223]). Indeed, since V' has no nonzero fixed
vector, P(R?\ {0}) = 1. For an arc F on the unit circle, set u(E) = ||P(S(E))v||?,
where S(F) is the sector defined by K. The usual properties of a spectral measure
show that p is a measure on the circle. Further, p is rotation invariant by the

above relation (1). Hence, p is the normalized arc lengh on the unit circle proving
(2).

Set a; := exp(tA), and let 6; be the angle corresponding to the sector
ar - S(0) . One easily computes that

2t 4
6; = 2arctan(e* tan 5) ) (3)
For a C'°°— vector v, we have
IP(S(0))oll* = |l (ar) P(S(0))m(a—e)o]l” = || P(S(0))7(a)v]|*,

by (1), and hence, differentiating at ¢ =0,

d ) d )
T _NPS@)0l” = —| [IP(S(0))m(as)o]
= SO, o)

= —(dr(A)v, P(S5(8))v) — (P(S(0))v,dn(A)v) .

Let v be a '™~ vector which is a unit K -eigenvector. Then, (2) and (3) show
that

d 1d 0 1 2tan?
il P(S(0 2 _ -9 " Uian 0) = = 2
dt t:OH (5(0))oll m dt t:oarc an(e™ tan 2> 71+ (tan 2)2
1
= —sinf.

™
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Hence,

—(dmw(A)v, P(S(0))v) — (P(S(0))v,dr(A)v) = ]—sine .

m
Using Cauchy-Schwarz inequality, we find

2|dm (A H\/> = 2||dn(A)[[|P(S(0))v]| > lsm@

sin 0

[dm(A)v]| > \/—f

for all smooth unit K —eigenvectors v .

and

Observe that the same inequality holds for B, since B is conjugate to A under
SO(2,R).
Now, we consider a second copy of SL(2,R) x R? in SL(3,R), namely

1 00 b
H = xr a b |, (id>€ST(2R) r,y € R
y ¢ d ’

The same computation as above shows that, for 7 € {2,3} (respectively j €

{5,6}) :

sin 6
vl = \/—f (4)

if v is a smooth unit Xj-eigenvector (respectively, if v is a smooth unit X,-

ldm (X

eigenvector).

Consider the Cartan decomposition sl(3,R) = 50( R)® p , where p are
the symmetric matrices in s[(3,R) . Then X;, X4, X7 is an orthonormal basis of
50(3,R) and X;, X3, X5, Xg, Xg is one of p , with respect to $K(X,Y), where
K(X,Y) is the Killing form on SL(3,R). Hence, the Casimir operator C on
SL(3,R) is

C= (X7 + X3+ X3+ X0+ X)) — (X + X{+ X7),
the Casimir operator on SO(3,R) is — (X7 + X7 + X2), and
A= 2XI+ X7+ X7) - C, (5)
Now, let w be a smooth SO(3,R)-finite unit vector. Then w = Zle v;, where
the v; belong to the isotypic components of pairwise inequivalent representations

(in particular, they are pairwise orthogonal). By (5), dm(A) preserves the isotypic
components. Hence,

(Aw,w) = Z<dW(A)%W> = Z<dW(A)%W>
> Z dm UJ7UJ'>+<d7r(A2)U17UJ>) >
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where Ay = =37 X2 and A, = —>° X2 . Moreover, observe that
Ay = -0y —2X? and A, = -0, — 2X7 | where [J;, ¢« = 1,2 , are the
respective Casimir operators in the copies of sl(2,R) . Hence, if v; = Y2, u}

is the orthogonal decomposition of the X;—finite vector v; in X;—eigenvectors,
equation (4) yields

i 1 sinf\?* . sin? 4
(dr(Ar)vj,vj) = ) 2 (ﬁw) i ll* = —5=llosl*
=1

Decomposing v; into Xy—eigenvectors yields the same inequality, with A; replaced

by Ay. Thus,

2sin% 6

Z 70 (6)

for any smooth SO(3, R)—finite unit vector w .

(Aw, w)

2sin% 6

assumes its
o

Numerical computations show that the function f(8) :=
maximal value of ~ 0.4613 at 6 ~ 1.1656 .

0.5+
0.4
0.3
0.2

0.1+

Thus
(Aw,w) > 0.4613 ,

for all unit SO(3,R)-finite vectors w .
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