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Abstract

The lattice of Dyck paths with the dominance partial order is studied. The notions

of filling and degree of a Dyck path are introduced, studied and used for the evaluation

of the Möbius function and its powers. The relation between the symmetric group

endowed with the weak Bruhat order and the set of Dyck paths is studied.

1 Introduction

A wide range of articles dealing with lattices of combinatorial objects appear frequently in
the literature, e.g., lattices of integer partitions, [4, 20], permutations [11, 21] and noncrossing
partitions [8, 17].

In this paper, the lattice of Dyck paths with the dominance partial order and some of its
relations to other combinatorial structures are studied.

In Section 2, some basic definitions and notations referring to the set Dn of Dyck paths
of semilength n, are given.

In Section 3, the rank of a Dyck path is studied and the rank-generating function is
exhibited.

In Section 4, the notions of filling and degree of a Dyck path are introduced and studied.
Various enumeration results are presented. These notions are used in Section 5 for the
evaluation of the Möbius function and its powers. In this context, a new appearance of the
Fibonacci numbers (A000045 of [18]) occurs.

Finally, in Section 6 the relation between the symmetric group Sn endowed with the
weak Bruhat order and Dn is studied. More precisely, a partition of Sn into Cn (Catalan,
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(A000108) of [18]) classes is constructed, satisfying an ordering condition, and the cardinal
numbers of its members are evaluated.

2 Preliminaries

A Dyck path of semilength n is a path in the first quadrant, which begins at the origin, ends
at (2n, 0), and consists of steps (1, 1) and (1,−1), called rise and fall respectively.

It is clear that each Dyck path is coded by a word u ∈ {a, ā}∗, called Dyck word, so that
every rise (resp. fall) corresponds to the letter a (resp. ā); see Fig. 1.
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Figure 1: A Dyck path and its corresponding word

Throughout this paper we will denote with D the set of all Dyck paths (or equivalently
Dyck words). Furthermore, the subset of D that contains the paths u of semilength l(u) = n
is denoted by Dn.

We denote with ε the empty path. Every u ∈ D \ {ε} can be uniquely decomposed in
the form u = awāv, w, v ∈ D, which is called the first return decomposition of u.

Every Dyck path u that meets the x-axis only at its endpoints (i.e., u = awā, with
w ∈ D) is called prime. Every Dyck path can be uniquely decomposed into prime paths [15].

It is well known that Dyck paths are enumerated by the Catalan numbers, with generating
function C(x), which satisfies the relation xC2(x) = C(x)− 1.

For a parameter q defined on D, we will denote with Fq the generating function of D
according to the parameters l, q, i.e.,

Fq(x, y) =
∑

u∈D

xl(u)yq(u).

A point of a Dyck path is called peak (resp. valley) if it is preceded by a rise (resp. fall)
and followed by a fall (resp. rise). A point of a Dyck path is called double rise (resp. double
fall) if it is preceded and followed by a rise (resp. fall).

A convenient way to represent a Dyck word is by using dominating sequences. A sequence
d = (di)i∈[n] of non-negative integers is called dominating if it satisfies the following two
conditions:

(i)
n∑
i=1

di = n,
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(ii)
ν∑
i=1

di ≥ ν, for every ν ∈ [n].

It is well known that every non-empty Dyck word u is uniquely represented by a domi-
nating sequence d(u) = (di)i∈l(u) where d1 is the number of a’s before the 1st occurrence of
ā in u, and di is the number of a’s between the (i − 1)th and the ith occurrence of ā in u,
where i ∈ [2, l(u)]. For example, the word u = aaāāaāaaāaāā is represented by the sequence
d(u) = 2, 0, 1, 2, 1, 0.

A sequence d = (di)i∈[n] dominates another sequence d′ = (d′i)i∈[n] iff
ν∑
i=1

di ≥
ν∑
i=1

d′i for

every ν ∈ [n]. In this case we say that d′ is dominated by d. Notice that every dominating
sequence dominates the constant sequence with elements equal to 1.

The dominance partial order “¹” on D is defined as follows:

u ¹ w iff l(u) = l(w) and the sequence d(u) is dominated by the sequence d(w),

i.e., the path w lies above (in the broad sense) the path u. If u ¹ w and u 6= w, we will
write u ≺ w.

In the sequel, we will denote (D,¹) (resp. (Dn,¹)) with D (resp. Dn).
Narayana and Fulton [12], using an equivalent language, proved that the set of Grand-

Dyck paths of fixed length n (i.e., paths defined similarly to Dyck paths but allowed to go
below the x-axis, e.g., see [16]) endowed with the dominance order is a distributive lattice.
Kreweras [13, 14] has done further work in this context. Ferrari and Pinzani [9] have recently
presented a more general approach to this subject.

It is easy to see that Dn is a sublattice of the lattice of all Grand-Dyck paths of semilength
n, such that if d(w) = (d′i)i∈[n], d(v) = (d′′i )i∈[n] we have:
d(w ∨ v) = (di)i∈[n], where

d1 = max{d′1, d
′′
1} and di = max{

i∑
j=1

d′j,
i∑

j=1

d′′j} −max{
i−1∑
j=1

d′j,
i−1∑
j=1

d′′j} for every i ∈ [2, n]

and d(w ∧ v) = (di)i∈[n], where

d1 = min{d′1, d
′′
1} and di = min{

i∑
j=1

d′j,
i∑

j=1

d′′j} −min{
i−1∑
j=1

d′j,
i−1∑
j=1

d′′j} for every i ∈ [2, n].

We note that the least (resp. greatest) element of Dn is 0n = (aā)n (resp. 1n = anān).
Finally, for every n ≥ 2, 1n covers one and only one element of Dn, namely an−1āaān−1.

The Hasse diagram of D4 coded by dominating sequences is given in Fig. 2.
All unexplained notations and definitions for posets and Dyck paths can be found in [20]

and [5], respectively.

3 Chains and Ranks

In this section we first evaluate the length of maximal chains in intervals of Dn. For this,
notice first that for u,w ∈ Dn with d(u) = (di)i∈[n] and d(w) = (d′i)i∈[n], w covers u iff there
exists j ∈ [n− 1] such that d′i = di for every i 6= j, j + 1 and d′j = dj + 1, d′j+1 = dj+1 − 1.

From the above observation, we deduce that every path w which covers the path u is
obtained by turning a valley (x, y) of u into the peak (x, y + 2).
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Figure 2: The Hasse diagram of D4

Proposition 3.1. Let u,w ∈ Dn with u ¹ w and d(u) = (di)i∈[n], d(w) = (d′i)i∈[n]. Then,

the length of every maximal chain C of [u,w] is equal to

n∑

i=1

i(di − d′i).

Proof. We will use induction with respect to the length k of C. If k = 1 then w covers
u; so there exists j ∈ [n − 1] with di = d′i for every i ∈ [n] \ {j, j + 1} and d′j = dj + 1,
d′j+1 = dj+1 − 1.

Hence

n∑

i=1

i(di − d′i) = j(dj − d′j) + (j + 1)(dj+1 − d′j+1)

= j(−1) + (j + 1)1 = 1.

Since in this case the only maximal chain of [u,w] is {u,w} and has length 1, the result
holds when k = 1.

Suppose now that the result holds for every maximal chain of [u,w] of length k, for every
u,w ∈ Dn with u ≺ w. We will prove that the result also holds for any maximal chain C of
[u,w] of length k + 1.

If v is the predecessor of w, then C \ {w} is a maximal chain of [u, v] of length k; so by
the induction hypothesis we have

k =
n∑

i=1

i(di − d′′i )

where d(v) = (d′′i )i∈[n].
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Since
n∑
i=1

i(d′′i − d′i) = 1, we obtain that
n∑
i=1

i(di − d′i) = k + 1. 2

If we apply the previous proposition for u = 0n and w = 1n we obtain that every maximal
chain in Dn has length equal to n(n− 1)/2. Thus, the lattice Dn is graded of rank

(
n
2

)
.

In the sequel, we investigate the parameter “rank” of D defined as follows : ρ(ε) = 0 and
for u 6= ε, ρ(u) is the rank of u in Dl(u).

By Proposition 3.1, it follows easily that if u 6= ε with d(u) = (di)i∈l(u), then

ρ(u) = l(u)(l(u) + 1)/2−

l(u)∑

i=1

idi. (1)

Ferrari and Pinzani [9] give an equivalent expression of the above relation through the
notion of the area of a Dyck path. Using relation (1) (or alternatively its equivalent relation
in [9]), we can deduce that the parameter “rank” satisfies the following properties:

(i) ρ(wv) = ρ(w) + ρ(v),

(ii) ρ(awā) = ρ(w) + l(w), for every w, v ∈ D.

Taking into account the above properties and the fact that every Dyck path is either
empty or of the form awāv, where w, v ∈ D, we can easily deduce the following relation.

Fρ(x, y) = 1 + xFρ(xy, y)Fρ(x, y). (2)

Furthermore, if fn(y) =
(n2)∑
k=0

an,ky
k, where an,k denotes the number of elements of Dn of

rank k, then by relation (2) we have

∞∑

n=0

fn(y)x
n = 1 + x

(
∞∑

n=0

fn(y)y
nxn

)(
∞∑

n=0

fn(y)x
n

)

or, equivalently,

∞∑

n=0

fn+1(y)x
n =

∞∑

n=0

(
n∑

ν=0

fν(y)fn−ν(y)y
ν

)
xn.

Hence we obtain the following result.

Proposition 3.2. The rank-generating function of Dn is given by the following recursive

formula

fn+1(y) =
n∑

ν=0

fν(y)fn−ν(y)y
ν ,

where f0(y) = 1.
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4 Fillings and Degrees

In this section we first introduce and study the notion of the filling of a Dyck path.
The filling ũ of u ∈ D \ {ε} is defined to be the Dyck path obtained by turning each

valley (x, y) of u into the peak (x, y+2). The filling of the empty path is assumed to be the
empty path.

For example, if u = aaāāaaāaāā then ũ = aaāaāaaāāā.
The main properties of the filling are given in the following proposition, which is easy to

prove.

Proposition 4.1. For a non-empty Dyck path u we have :

i) l(ũ) = l(u), u ¹ ũ and u = ũ if u = 1l(u).
ii) The length l(u, ũ) of the interval [u, ũ] is equal to the number val(u) of all valleys of u.
iii) The cardinal number of the interval [u, ũ] is equal to 2val(u).
iv) If u ¹ v, then ũ ¹ ṽ.

We note that since the parameter val defined by the number of valleys follows the
Narayana distribution [5], we deduce that the number an,k of all u ∈ Dn such that the
interval [u, ũ] contains exactly k elements is equal to

an,k =

{
1
n

(
n
λ

)(
n

λ−1

)
, if k = 2λ, λ ∈ N∗;

0, if k 6= 2λ, λ ∈ N∗.

Next, we consider the Dyck paths which are fillings of Dyck paths. For this, we need the
following characterization.

Proposition 4.2. A Dyck path u is a filling of a Dyck path iff u is prime and avoids āāaa.

Proof. If u = ṽ for some v ∈ D, then clearly u has no valleys on level zero and so u is prime.
Furthermore, if u contains a āāaa, then there exists a valley (x, y) of u such that the points
(x − 1, y + 1) and (x + 1, y + 1) are a double fall and a double rise of u, respectively. It
follows that the points (x, y), (x− 1, y + 1) and (x+ 1, y + 1) remain unchanged during the
generation of u from v, so that (x, y) is also a valley of v. This contradicts the definition of
the filling, since (x, y + 2) is not a peak of u.

Conversely, assume that u is prime and avoids āāaa. Let v be the path that we obtain
from u by turning each peak (x, y) of u into the valley (x, y − 2). Clearly, since u is prime
it has no low peaks, hence v never crosses the x-axis and so v ∈ D. In order to show that
ṽ = u, it is enough to show that every valley of v is generated by a peak of u according to the
above procedure. Indeed, if this is not true and (x, y) is a valley of v that is not generated
in such a way, then (x, y) must be a valley of u, too. Since u avoids āāaa, it follows that at
least one of the points (x− 1, y + 1) and (x + 1, y + 1) is a peak of u and hence a valley of
v, which contradicts the fact that (x, y) is a valley of v. 2

We remark that the Dyck path v constructed by turning each peak of a Dyck path u
into a valley as in the converse of the above proof, is the least Dyck path with the property
ṽ = u. In this case, we say that v is the antifilling of u.

In the following, we study the set D̃ of all Dyck paths that are fillings of Dyck paths.
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Proposition 4.3. The generating function F of D̃ according to semilength satisfies the

equation

F (x) = 1 + xF 2(x)− x2F (x). (3)

Furthermore, the number an of all Dyck paths of semilength n that are fillings of Dyck paths

is given by the formula

an =
n∑

k=[n/2]

(−1)n−k

k

(
k

n− k

)(
3k − n

k − 1

)
, for n ≥ 2 (4)

whereas a0 = a1 = 1.

Proof. Let A be the set of all Dyck paths that avoid āāaa and A(x) its generating function
according to semilength.

Clearly, by the previous proposition, every non-empty element of D̃ can be written
uniquely in the form awā where w ∈ A, so that F (x) = 1 + xA(x).

Furthermore, we can easily check that every non-empty element u ∈ A can be written
uniquely in one of the following forms: u = aāv, u = awā or u = awāaāv where w, v ∈ A
and w 6= ε.

Thus, we have:

A(x) = 1 + xA(x) + x(A(x)− 1) + x2(A(x)− 1)A(x).

So
x2A2(x)− (x− 1)2A(x) + 1− x = 0

and hence
xF 2(x)− (1 + x2)F (x) + 1 = 0

which gives formula (3).
For the proof of formula (4) we consider the generating function F (x, y) satisfying the

equation

F (x, y) = 1 + y(xF 2(x, y)− x2F (x, y)). (5)

If we set P (λ) = xλ2 − x2λ, then F (x, y) = 1 + yP (F (x, y)); so applying the Lagrange
inversion formula with respect to the variable y, in the form given by Deutsch [5], we obtain
that

[yk]F =
1

k
[λk−1](P (1 + λ))k (6)

for every k ∈ N∗.
Furthermore, we have

(P (1 + λ))k = xk
k∑

ν=0

k∑

ρ=0

(
k

ν

)(
k

ρ

)
λν(λ− x)ρ

=
k∑

ν=0

k∑

ρ=0

ρ∑

i=0

(−1)ρ−i
(
k

ν

)(
k

ρ

)(
ρ

i

)
λν+ixk+ρ−i.
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Then, for i = k − ν − 1, from relation (6) we obtain that

[yk]F =
1

k

k∑

ρ=0

k−1∑

ν=0

(−1)ρ−k+ν+1

(
k

ν

)(
k

ρ

)(
ρ

k − ν − 1

)
xρ+ν+1.

Thus,

F (x, y) = 1 +
∞∑

k=1

k∑

ρ=0

k−1∑

ν=0

(−1)ρ−k+ν+1 1

k

(
k

ν

)(
k

ρ

)(
ρ

k − ν − 1

)
xρ+ν+1yk

= 1 + xy +
∞∑

n=2

n∑

k=[n/2]

k−1∑

ν=0

(−1)n−k
1

k

(
k

ν

)(
k

n− ν − 1

)(
n− ν − 1

k − ν − 1

)
xnyk

= 1 + xy +
∞∑

n=2

n∑

k=[n/2]

(−1)n−k
1

k

(
k

n− k

)(
3k − n

k − 1

)
xnyk.

Thus, since by relations (3) and (5) we have F (x) = F (x, 1), it follows that

a0 = a1 = 1 and an =
n∑

k=[n/2]

(−1)n−k
1

k

(
k

n− k

)(
3k − n

k − 1

)
, for n ≥ 2.

2

By formula (4) by obtain the sequence 1,1,1,2,5,13,35,97,275,. . . , which also counts the
number of Dyck paths that avoid aaāā (A086581 of [18]). This can also be seen by proving
that the set of all antifillings coincides with the set of all Dyck paths that avoid aaāā.

The rest of this section deals with the notion of the degree of a Dyck path. For this, we
define the ith filling u(i) of a non-empty Dyck path u recursively, as follows:

u(0) = u and u(i) = ũ(i−1), for i ≥ 1.
We define the degree δ(u) of u ∈ D \ {ε} to be the least non-negative integer such that

u(δ(u)) = 1l(u). The degree of the empty path is assumed to be equal to zero. For example,
if u = aaāāaaāaāā then δ(u) = 4.

The main properties of the degree are given in the following result.

Proposition 4.4. For every non-empty Dyck path u we have:

i) δ(ũ) = δ(u)− 1, for every u 6= 1l(u).
ii) δ(auā) = δ(u).
iii) 0 ≤ δ(u) ≤ l(u)− 1, and δ(u) = l(u)− 1 iff u is non-prime.
iv) If u ≺ v, then δ(v) ≤ δ(u).

Proof. i) is obvious, whereas ii) is based on the equality (awā)(i) = aw(i)ā, for every i ∈ N.
For the proof of iii) we first show by induction with respect to the semilength of u that

if u is non-prime then δ(u) = l(u)− 1.
Indeed, if l(u) = 2, then u = aāaā and δ(u) = 1 = l(u)− 1. Assume that the result holds

for every non-prime Dyck path with semilength equal to n− 1, where n ≥ 3, and let u be a
non-prime path of semilength n. Then, using the prime decomposition of u, there exists a
finite sequence (wi)i∈[k], k ≥ 2, of Dyck words such that
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u = aw1āaw2āa · · · āawk−1āawkā.
It follows easily that

ũ = aw̃iaāw̃2aā · · · aāw̃k−1aāw̃kā.
If we set

z = w̃iaāw̃2aā · · · aāw̃k−1aāw̃k,
then z ∈ D, l(z) = n − 1, ũ = azā and z is non-prime. Thus, by the induction hypothesis
we have δ(z) = l(z)− 1 and so

δ(u) = δ(ũ) + 1 = δ(z) + 1 = l(z) = l(u)− 1.
Next, we note that 0 ≤ δ(u) and δ(u) = 0 iff u = 1l(u). Furthermore, if u 6= 1l(u), there

exists ν ∈ N such that u = aνwāν , where w is a non-prime Dyck path.
Then, by ii) we deduce that

δ(u) = δ(w) = l(w)− 1 ≤ l(u)− 1.
It remains to check that δ(u) < l(u)− 1 for every prime Dyck path u. Indeed, u = awā

with w ∈ D, so that δ(u) = δ(w) ≤ l(w)− 1 = l(u)− 2.
Finally, we show iv) using induction with respect to the semilength of u. It is clear that

the result is true when l(u) = 1. Assuming that the result holds for Dyck paths of semilength
n− 1, where n ≥ 2, we will show that if u, v ∈ Dn with u ≺ v then δ(v) ≤ δ(u). Clearly, by
iii), it is enough to restrict ourselves to the case where u is a prime word. Thus, if u = au′ā
where u′ ∈ Dn−1, it follows easily that v = av′ā, where v′ ∈ Dn−1 and u′ ≺ v′. From the
induction hypothesis it follows that δ(v) = δ(v ′) ≤ δ(u′) = δ(u). 2

We conclude this section with the following result.

Proposition 4.5. The number of all u ∈ Dn, n ≥ 2, with degree equal to k, where

k ∈ [n− 1], is equal to Ck+1 − Ck.

Proof. Clearly, since every non-empty Dyck path u can be written uniquely in either of the
forms u = awā or u = awāv, where w, v ∈ D and v 6= ε, applying Proposition 4.4 we obtain
that

Fδ(x, y) = 1 + xFδ(x, y) + xC(xy)(C(xy)− 1).

It follows that

Fδ(x, y) =

1 + y−1
∞∑
n=1

Cn(xy)
n − x

∞∑
n=0

Cn(xy)
n

1− x

=

1 +
∞∑
n=1

(Cn − Cn−1) y
n−1xn

1− x

=

(
∞∑

n=0

gn(y)x
n

)(
∞∑

n=0

xn

)
,

where

gn(y) =

{
(Cn − Cn−1) y

n−1, if n ≥ 1;

1, if n = 0.
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Therefore, we have

Fδ(x, y) =
∞∑

n=0

n∑

k=0

gk(y)x
n

=
∞∑

n=0

xn +
∞∑

n=2

n−1∑

k=1

(Ck+1 − Ck)y
kxn,

which gives the required result. 2

5 The Möbius function

In this section we study the Möbius function of D and its powers. We recall [20] that the
Möbius function µ of a poset (P,¹) is defined by

µ(x, y) = −
∑

x¹z≺y

µ(x, z) for x ≺ y and µ(x, x) = 1.

Furthermore, the k-th power of µ, for k ≥ 2, is defined by

µk(x, y) =
∑

x=x0¹x1¹···¹xk=y

µ(x0, x1)µ(x1, x2) · · ·µ(xk−1, xk).

It is known [3] that if (P,¹) is a locally finite distributive lattice, then its Möbius function
is given by the formula

µ(x, y) =

{
(−1)ν , if y is a join of ν elements covering x;

0, if y is not a join of elements covering x.

For the lattice of Dyck paths, we have that v ∈ (u, ũ] with l(u, v) = ν iff v is obtained
by turning ν of the valleys of u into peaks or, equivalently, iff v is a join of ν elements of D
covering u. Thus, from the above formula we obtain the following result.

Proposition 5.1. The Möbius function of D is given by the formula

µ(u, v) =

{
(−1)l(u,v), if u ¹ v ¹ ũ;

0, otherwise

for every u, v ∈ D, where l(u, v) denotes the length of the interval [u, v].

In the sequel we study the powers of the Möbius function of Dn. For this, we need the
following result, which is an easy consequence of Proposition 5.1.

Corollary 5.2. For every multichain u0 ¹ u1 ¹ · · · ¹ uk in Dn with

µ(u0, u1)µ(u1, u2) · · ·µ(uk−1, uk) 6= 0
we have ui ¹ ũi−1 and ui ¹ ui0 for every i ∈ [k].
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Clearly, if u ∈ Dn and k < δ(u), for every multichain u = u0 ¹ u1 ¹ · · · ¹ uk = 1n we
have that u(k) ≺ uk so that, by the above Corollary, we deduce that

µ(u0, u1)µ(u1, u2) · · ·µ(uk−1, uk) = 0.
This shows that µk(u, 1n) = 0 for every k < δ(u).

In the following result we consider the case where k = δ(u).

Proposition 5.3. Let u ∈ Dn and j, ν ∈ N∗ such that u(j) = 0νl(u). Then, we have that

µδ(u)(u, 1n) = (−1)l(u
(j),1n)µj(u, u(j)).

Proof. Let u = u0 ¹ u1 ¹ · · · ¹ uδ(u) = 1n be a multichain of Dn with
µ(u0, u1)µ(u1, u2) · · ·µ(uδ(u)−1, uδ(u)) 6= 0;

then, by Corollary 5.2 it follows that ui ¹ ũi−1 and ui ¹ u(i) for every i ∈ [δ(u)]. We show
that ui = u(i) for every i ≥ j.

Indeed, if this is not true, let ξ be the greatest element of [j, δ(u)] such that uξ ≺ u(ξ).
Clearly, since uδ(u) = 1l(u) = u(δ(u)), we have that ξ < δ(u).
Since u(ξ+1) = uξ+1 ¹ ũξ ¹ u(ξ+1), we obtain that u(ξ+1) = ũξ.

Furthermore, since u(ξ) = 0
(ν+ξ−j)
n , u(ξ+1) = 0

(ν+ξ−j+1)
n and the antifilling of 0

(k+1)
n is 0

(k)
n

for every k ∈ [n − 2], we obtain that u(ξ) is the antifilling of u(ξ+1), though ũξ = u(ξ+1) and
uξ ≺ u(ξ), which is a contradiction.

Thus, ui = u(i) for every i ≥ j.
It follows that

µδ(u)(u, 1n) =
∑

µ(u0, u1)µ(u1, u2) · · ·µ(uj−1,u
(j))µ(u(j),u(j+1))µ(u(j+1),u(j+2)) · · ·µ(u(δ(u)−1),u(δ(u)))

where the sum is taken over all multichains u = u0 ¹ u1 ¹ · · · uj = u(j) of Dn.
Since, by Proposition 5.1, we have

µ(u(j), u(j+1))µ(u(j+1), u(j+2)) · · ·µ(u(δ(u)−1), u(δ(u)))

= (−1)l(u
(j),u(j+1))(−1)l(u

(j+1),u(j+2)) · · · (−1)l(u
(δ(u)−1),u(δ(u)))

= (−1)l(u
(j),1n),

we deduce that

µδ(u)(u, 1n) = (−1)l(u
(j),1n)µj(u, u(j)). 2

Remark Let N be the set of all non-empty Dyck paths u such that ũ = 0νl(u) for some
ν ∈ N∗. Then, taking j = 1 in the previous proposition, we obtain that

µδ(u)(u, 1l(u)) = (−1)l(ũ,1l(u))µ(u, ũ)

= (−1)l(ũ,1l(u))(−1)l(u,ũ)

= (−1)l(u,1l(u))

for every u ∈ N .
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In particular if u = 0n for some n ∈ N∗, we have that δ(u) = n− 1 and

µn−1(0n, 1n) = (−1)(
n
2).

Thus, by Lemma 4.1 in [6] we deduce that the zeta polynomial of Dn satisfies the following
formula

Z(Dn,−k) =

{
(−1)(

n
2), if k = n− 1;

0, if 1 ≤ k < n− 1.

We close this section by enumerating the sets N ∩Dn.
For this, we consider the set

Nν,n = {u ∈ Dn : ũ = 0νn}

where ν ∈ N∗ and ν ≤ n− 1.
Clearly, for every p ∈ N∗, by considering the bijection u→ apuāp we can deduce that

|Nν,n| = |Nν+p,n+p| (7)

for every p ∈ N∗.
Furthermore, we have the following result.

Proposition 5.4. For every ν ∈ N∗, the sequence (Nν,n), n ≥ ν + 1 satisfies the following

relation

|Nν,n| = Fn−ν+2,

where (Fn) denotes the Fibonacci sequence.

Proof. In view of relation (7) it is enough to show that

|N1,n| = Fn+1

for every n ≥ 2.
Clearly, since |N1,2| = 2 and |N1,3| = 3, it is enough to show that

|N1,n| = |N1,n−1|+ |N1,n−2|

for every n ≥ 4.
Every element of N1,n is obtained by turning some peaks of 0̃n into valleys. However, in

this procedure for the generation of the elements of N1,n we must turn at least one of each
pair of consecutive peaks into valleys.

Thus, if A1 (resp. A2) is the set that consists of all elements of N1,n that pass from the
point (2, 0) (resp. (2, 2)), then {A1, A2} is a partition of N1,n.

Clearly, A1 = N1,n−1 and since the elements of A2 must pass from the point (4, 0), we
have A2 = N1,n−2, which gives the required result. 2

We note that using the previous proposition, we obtain by a simple summation that
|N ∩ Dn| = Fn+3 − 3, (A006327 of [18]).

12

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A006327


6 Dyck paths and permutations

We recall that a simple reduction of a permutation π = π(1)π(2) · · ·π(n) is a permutation
obtained from π by interchanging some π(i) with π(i+ 1), provided that π(i) > π(i+ 1).

The weak Bruhat order n is defined on the symmetric group Sn as follows:
σ n π iff σ can be obtained from π by a sequence of simple reductions.

The poset (Sn,n) is a well known distributive lattice, graded of rank
(
n
2

)
and has many

interesting properties [7, 19]. In the following, we examine the connection between the lattices
(Sn,n) and (Dn,¹). For this, we first define the set Ln of all finite sequences (Ai)i∈[n] of

pairwise disjoint subsets of [n] such that [ν] ⊆
ν⋃
i=1

Ai for every ν ∈ [n] and
n⋃
i=1

Ai = [n].

For example, L3 = {({1}, {2}, {3}) , ({1}, {2, 3}, ∅) , ({1, 2}, ∅, {3}),
({1, 2}, {3}, ∅) , ({1, 3}, {2}, ∅), ({1, 2, 3}, ∅, ∅)}.

We will show that the sets Sn and Ln can be identified.
Indeed, for σ ∈ Sn and i ∈ [n] we define Aσ

i to be the set of all elements j ∈ [n] for which
there exist exactly i− 1 elements of σ, which are less than j and lie on the left of j in σ.

We can easily check that the sequence (Aσ
i )i∈[n] belongs to Ln.

Conversely, if (Ai)i∈[n] ∈ Ln then there exists unique σ ∈ Sn such that Aσ
i = Ai for every

i ∈ [n].
For the construction of σ we define recursively a finite sequence (σj)j∈[n], such that σj ∈ Sj

and for j > 1 with j ∈ Ai where i ∈ [n], σj is generated from σj−1 by inserting j before the
ith element of σj−1 if i < j, or by placing j at the end of σj−1 if i = j. Then, for σ = σn we
have Aσ

i = Ai for each i ∈ [n].

From the above discussion we have the following result.

Proposition 6.1. The mapping σ → (Aσ
i )i∈[n] is a bijection between the sets Sn and Ln.

Remark. Using the above bijection we can characterize the set of all permutations of Sn(312)
(i.e. the ones avoiding the pattern 312) as follows: σ ∈ Sn(132) iff for every j, k ∈ [n] with
j ∈ Aσ

i , k ∈ Aσ
l and i < l we have that j < k.

Indeed, assume that σ ∈ Sn(312) and j, k ∈ [n] with j ∈ Aσ
i , k ∈ Aσ

l , i < l and j > k.
Since i < l, we have that j lies on the left of k and there exists some element m which is less
that k and lies between them in σ. Then, the triplet jmk is an appearance of the pattern
312 in σ, which is a contradiction.

Conversely, assume that the sequence (Aσ
i )i∈[n] satisfies the above condition though σ

contains the pattern 312. Let jmk be the first appearance of the pattern 312 in σ, with
j ∈ Aσ

i and k ∈ Aσ
l . It follows that each element lying on the left of j in σ that is less than

j is also less than k. Thus, i < l although j > k, which is a contradiction.

From the above remark it follows that if σ ∈ Sn(312), then every non-empty Aσ
i consists

of consecutive integers.

Next, we consider the family of sets (Γu)u∈Dn
, where

Γu = {σ ∈ Sn : d(u) = (|Aσ
i |)i∈[n]}.
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Proposition 6.2. The family (Γu)u∈Dn
is a partition of Sn such that if σ ∈ Γu, π ∈ Γw and

π covers σ, then w covers u.

Proof. We first show that Γu 6= ∅, for every u ∈ Dn. Indeed, if d(u) = (di)i∈[n], set A1 = [d1]

and for i > 1, Ai = ∅ iff di = 0 and Ai = [
i−1∑
j=1

dj + 1,
i∑

j=1

dj] iff di 6= 0. It follows that the

sequence (Ai)i∈[n] belongs to Ln and |Ai| = di for every i ∈ [n], so that by Proposition 6.1
there exists σ ∈ Sn such that d(u) = (|Aσ

i |)i∈[n] and σ ∈ Γu.
Next, if σ ∈ Sn, since the sequence (Aσ

i )i∈[n] belongs to Ln, it follows that (|Aσ
i |)i∈[n] is

a dominating sequence, so that there exists unique u ∈ Dn such that d(u) = (|Aσ
i |)i∈[n] and

hence σ ∈ Γu.
This shows that

⋃
u∈Dn

Γu = Sn, and since the sets Γu are pairwise disjoint, the family

(Γu)u∈Dn
is a partition of Sn.

Finally, since π covers σ, there exists unique k ∈ [n− 1] such that
σ(j) = π(j) for every j ∈ [n] \ {k, k + 1} and σ(k) = π(k + 1) < π(k) = σ(k + 1).

Then, if π(k) ∈ Aπ
ν we have that

π(k) ∈ Aσ
ν+1, A

π
i = Aσ

i for every i ∈ [n] \ {ν, ν + 1}, Aπ
ν = Aσ

ν ∪ {π(k)}, A
π
ν+1 = Aσ

ν+1 \ {π(k)}.
Thus, since d(u) = (|Aσ

i |)i∈[n], d(w) = (|Aπ
i |)i∈[n], |A

π
i | = |A

σ
i | for every i ∈ [n]\{ν, ν +1},

|Aπ
ν | = |A

σ
ν |+ 1, and |Aπ

ν+1| = |A
σ
ν+1| − 1, we deduce that w covers u. 2

Remarks

1. By Proposition 6.2 it follows easily that if σ ∈ Γu and π ∈ Γw with σ n π, then u ¹ w.
2. Since Γ0n = {0̂n} and Γ1n = {1̂n} where 0̂n and 1̂n are the least and greatest element of
Sn respectively, by Proposition 6.2 it follows that for u ∈ Dn we have

ρ(σ) = ρ(u) for every σ ∈ Γu,
where ρ denotes the rank function.
3. Following the first part of proof of Proposition 6.2 we realize that the sequence (Aσ

i )i∈[n]

constructed for every u ∈ Dn satisfies the conditions of the previous remark and hence
σ ∈ Sn(312). Since the number of permutations of Sn(312) is equal to Cn, we deduce that
each Γu contains exactly one element of Sn(312). Thus, we can define a bijection f from
Sn(312) to Dn, such that f(σ) = u iff σ ∈ Γu. This bijection has been also presented in
different ways in [1], [2] and [10].

In the following, we will evaluate the cardinal number of Γu for a Dyck path u ∈ Dn

with n ≥ 2. For this we need to consider the Dyck path u′ ∈ Dn−1 obtained from the path
u = aν āτ ∈ Dn if we delete its first peak, i.e., the path u′ = aν−1τ .

Lemma 6.3. For every u ∈ Dn with d(u) = (di)i∈[n] and d(u′) = (d′i)i∈[n−1], we have

d′1 = d1 + d2 − 1, d′i = di+1 for every i ∈ [2, n− 1]

and

|Γu| =

(
d1 + d2 − 1

d2

)
|Γu′ |. (8)
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Proof. Clearly, the proof of the first part of this lemma is evident. So we restrict ourselves
to the proof of relation (8).

For σ′ ∈ Γu′ and a subset B ⊆ Aσ′

1 with |B| = d2, we consider the finite sequence (Ai)i∈[n]

defined as follows :
A1 = {1} ∪ {x : x− 1 ∈ Aσ′

1 \B}, A2 = {x : x− 1 ∈ B} and Ai = {x : x− 1 ∈ Aσ′

i−1} for
i ≥ 3.

Then, since (Aσ
i )i∈[n−1] ∈ Ln−1, by the previous construction it follows that (Ai)i∈[n] ∈ Ln,

so that by Proposition 6.1 there exists unique σ ∈ Sn such that
Aσ

1 = {1} ∪ {x : x− 1 ∈ Aσ′

1 \B}, A
σ
2 = {x : x− 1 ∈ B} and Aσ

i = {x : x− 1 ∈ Aσ′

i−1}.
So |Aσ

1 | = 1 + (|Aσ′

1 | \ |B|) = d1, |A
σ
2 | = |B| = d2 and |Aσ

i | = |A
σ′

i−1| = d′i−1 = di for every
i ≥ 3. Thus, d(u) = (|Aσ

i |)i∈[n] and σ ∈ Γu.
Moreover, we will show that every σ ∈ Γu is generated by a unique pair (σ′, B) as above.

Indeed, given σ ∈ Γu we consider the sequence (A′i)i∈[n−1] of sets in [n− 1] defined by

A′1 = {x : x+ 1 ∈ Aσ
1 ∪ Aσ

2}, A′i = {x : x+ 1 ∈ Aσ
i+1},

as well as the set
B = {x : x+ 1 ∈ Aσ

2} ⊆ A′1.

Then, (A′i) ∈ Ln−1 and so by Proposition 6.1 there exists a unique σ′ ∈ Sn−1 such that
A′i = Aσ′

i for every i ∈ [n− 1]. It follows that σ′ ∈ Γu′ and hence (σ′, B) is the required pair.
Thus, since |Aσ′

1 | = d1 + d2 − 1 and |B| = d2, we deduce that each permutation σ′ ∈ Γu′
generates exactly

(
d1+d2−1

d2

)
permutations σ ∈ Γu according to the above procedure.

This shows that

|Γu| =

(
d1 + d2 − 1

d2

)
|Γu′ |. 2

Proposition 6.4. If u ∈ Dn with d(u) = (di)i∈[n], we have that

|Γu| =
n−1∏

j=1

j∑
i=1

di − j + 1

dj!
.

Proof. We consider the finite sequence (uj)j∈[n] of Dyck paths, where u1 = u and for j > 1
the Dyck path uj is obtained from uj−1 by deleting its first peak.

Clearly, uj ∈ Dn−j+1 for every j ∈ [n]; if d(uj) = (dji )i∈[n−j+1], by Lemma 6.3 we have
that

dj1 = dj−1
1 + dj−1

2 − 1, dji = dj−1
i+1

and

|Γuj−1
| =

(
dj−1

1 + dj−1
2 − 1

dj−1
2

)
|Γuj | (9)

for every j ∈ [2, n].

It is easy to check that dj−1
2 = dj and dj−1

1 + dj−1
2 − 1 =

j∑
i=1

di− j +1, for every j ∈ [2, n].
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Furthermore, using the previous equalities and applying formula (9) for every j ∈ [2, n],
we obtain that

|Γu| =
n∏

j=2

( j∑
i=1

di − j + 1

dj

)
|Γun|

=
n−1∏

j=1

j∑
i=1

di − j + 1

dj!
.

2

We note that since the family (Γu)u∈Dn
is a partition of Sn, by the previous proposition

we obtain an identity for the factorial number, i.e.,

∑

d

n−1∏

j=1

j∑
i=1

di − j + 1

dj!
= n!

where the sum is taken over all dominating sequences d = (di)i∈[n].
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