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Abstract

Given relatively prime and positive integers a1, a2, . . . , ak, let Γ denote the set of
nonnegative integers representable by the form a1x1 + a2x2 + · · · + akxk, and let Γ⋆

denote the positive integers in Γ. Let S⋆(a1, a2, . . . , ak) denote the set of all positive
integers n not in Γ for which n + Γ⋆ is contained in Γ⋆. The purpose of this article is
to determine an algorithm which can be used to obtain the set S⋆ in the three variable
case. In particular, we show that the set S⋆(a1, a2, a3) has at most two elements. We
also obtain a formula for g(a1, a2, a3), the largest integer not representable by the form
a1x1 + a2x2 + a3x3 with the xi’s nonnegative integers.

1This work was done while the second author was at the Department of Mathematics, Indian Institute
of Technology, Delhi.
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1 Introduction

Given relatively prime and positive integers a1, a2, . . . , ak and a positive integer N , consider
the equation

a1x1 + a2x2 + . . . + akxk = N (1)

If each xi is a nonnegative integer, it is well known and easy to show that (1) has a solution
for all sufficiently large N . Hence, if we denote by Γ the set {a1x1+a2x2+· · ·+akxk : xj ≥ 0},
then Γc := N \ Γ is a finite set. A natural problem that then arises is finding the largest
N such that (1) has no solution in nonnegative integers, or in other words, of the largest
element in Γc. This problem was first posed by Frobenius, who is believed to have been
the first person to show that a1a2 − a1 − a2 is the largest element in Γc in the two variable
case. Frobenius was also responsible in introducing the notation g(a1, a2, . . . , ak) to denote
the largest number in Γc. It is for this reason that the problem is also known as the linear
Diophantine problem of Frobenius. The coin exchange problem derives its name from the
obvious interpretation of this problem in terms of exchanging coins of arbitrary denomination
with an infinite supply of coins of certain fixed denominations. The number of elements in
Γc, denoted by n(a1, a2, . . . , ak), was later introduced by Sylvester [25], and it was shown
that n(a1, a2) = 1

2
(a1 −1)(a2 −1). Another related function is s(a1, a2, . . . , ak), which stands

for the sum of elements in Γc, introduced by Brown and Shiue [6], wherein it was shown that
s(a1, a2) = 1

12
(a1 − 1)(a2 − 1)(2a1a2 − a1 − a2 − 1).

An explicit solution for the functions g and n in more than two variables has met with
little success over the years except in special cases. There is a simple formula for each of
these functions when the aj’s are in arithmetic progression [2, 9, 19, 27], but results obtained
in other cases usually give upper bounds, deal with a special case or give an algorithmic
solution [3, 4, 5, 11, 12, 13, 15, 20, 21, 22, 23, 24]. We refer to the book [18] where a
complete account of the Frobenius problem can be found.

A variation of the coin exchange problem which also leads to its generalization was intro-
duced by Tripathi [28]. We employ the notation used in [28], and denote by S⋆(a1, a2, . . . , ak)
the set of all n ∈ Γc such that

n + Γ⋆ ⊆ Γ⋆,

where Γ⋆ = Γ\{0}. Let g⋆(a1, a2, . . . , ak) (respectively, n⋆(a1, a2, . . . , ak) and s⋆(a1, a2, . . . , ak))
denote the least (respectively, the number and sum of) elements in S⋆. It is apparent that
g(a1, a2, . . . , ak) is the largest element in S⋆, so that

g⋆(a1, a2, . . . , ak) ≤ g(a1, a2, . . . , ak),

and n⋆(a1, a2, . . . , ak) ≥ 1, with equality if and only if g⋆ = g. It is interesting to note
that this problem also arises from looking at the generators for the derivation modules of
certain monomial curves [16, 17] and also in comparing numerical semigroups [8], and has
been extensively studied in a more algebraic setting.

For each j, 1 ≤ j ≤ a1 − 1, let mj denote the least number in Γ congruent to j mod a1.
Then mj − a1 is the largest number in Γc congruent to j mod a1, and no number less than
this in this residue class can be in S⋆, for they would differ by a multiple of a1, an element
in Γ⋆. Therefore

S⋆(a1, a2, . . . , ak) ⊆ {mj − a1 : 1 ≤ j ≤ a1 − 1}, (2)
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g⋆(a1, a2, . . . , ak) ≤

(

max
1≤j≤a1−1

mj

)

− a1 = g(a1, a2, . . . , ak), (3)

n⋆(a1, a2, . . . , ak) ≤ a1 − 1, (4)

and

s⋆(a1, a2, . . . , ak) ≤

a1−1
∑

j=1

mj − a1(a1 − 1). (5)

More precisely,

mj − a1 ∈ S⋆(a1, a2, . . . , ak) ⇐⇒ (mj − a1) + mi ≥ mj+i (6)

for 1 ≤ i ≤ a1 − 1. The expression for g(a1, a2, . . . , ak) in (3) is due to Brauer & Shockley
[5]. It is known [1] that if the semigroup Γ is symmetric then S⋆ =

{

g(a1, a2, . . . , ak)
}

.
The purpose of this article is to determine the set S⋆ together with the related functions

in the three variable case. We shall use the variables a, b, c, and assume that a, b, c are
coprime.

Given a, b, c, we define the matrix M by

M :=





xa ya za

xb yb zb

xc yc zc



 ,

where the entries are nonnegative integers. Let xa, yb, zc be the least positive integers such
that

axa = bya + cza for some integers ya ≥ 0, za ≥ 0; (7)

byb = axb + czb for some integers xb ≥ 1, zb ≥ 0; (8)

czc = axc + byc for some integers xc ≥ 1, yc ≥ 0. (9)

The matrix M, with the entries at xb and xc allowed to be 0, was used in [7, 10] in order to
give an expression for g(a, b, c); see also [Proposition 4.7.1, [18]]. For the sake of completeness,
we state the proposition below.

Proposition 1. Let xa, yb, zc be the least positive integers such that there exist integers

xb, xc, ya, yc, za, zb ≥ 0 with

axa = bya + cza, byb = axb + czb, czc = axc + byc.

(a) If xb, xc, ya, yc, za, zb are all greater than 0, then

xa = xb + xc, yb = ya + yc, zc = za + zb.
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(b) (i) If xb = 0 or xc = 0, then byb = czc and axa = bya + cza with ya, za > 0.

(ii) If ya = 0 or yc = 0, then axa = czc and byb = axb + czb with xb, zb > 0.

(iii) If za = 0 or zc = 0, then axa = byb and czc = axc + byc with xc, yc > 0.

We now state and prove our main result where we determine the set S⋆(a, b, c) in terms of
the entries of the matrix M.

Theorem 1. Let a < b < c with gcd(a, b, c) = 1. With the entries of the matrix M as

defined in (7), (8), (9),

S⋆(a, b, c) =































{

b(yb − 1) + c(za − 1) − a, b(ya − 1) + c(zc − 1) − a
}

,

if ya, za ≥ 1;
{

b(yb − 1) + c(za − 1) − a
}

, if ya = 0;
{

b(ya − 1) + c(zc − 1) − a
}

, if za = 0.

Proof. For any integer j, with 1 ≤ j ≤ a − 1, let mj = by + cz, where y, z are nonnegative
integers. Recall that mj is the smallest integer in Γ congruent to j mod a. Now y ≤ yb − 1,
since otherwise b(y − yb) + c(z + zb) ≡ j mod a and, by equation (8), it is less than mj.
Similarly, by using equation (9), we have z ≤ zc − 1.

If ya > yb, then a(xa − xb) = b(ya − yb) + c(za + zb) > 0, contradicting the minimality
of xa. Thus, ya ≤ yb, and similarly za ≤ zc. Note that these inequalities follow immediately
from the above Proposition, and that the former inequality is strict if za > 0 and the latter
if ya > 0.

If y ≥ ya and z ≥ za, then mj − (bya + cza) would be a positive integer less than mj and
congruent to j mod a. Therefore, at least one of

0 ≤ y ≤ ya − 1 and 0 ≤ z ≤ zc − 1 (10)

or
0 ≤ y ≤ yb − 1 and 0 ≤ z ≤ za − 1 (11)

holds.
Case I: (ya, za ≥ 1) We claim that m⋆

i := b(ya − 1) + c(zc − 1) = mi and m⋆
j := b(yb −

1) + c(za − 1) = mj, with ya < yb and za < zc. If m⋆
i > mi = by + cz, then b(ya − y −

1) + c(zc − z − 1) =
(

b(ya − 1) + c(zc − 1)
)

− (by + cz) ∈ aN. Since 0 ≤ z ≤ zc − 1, we
have 0 ≤ zc − z − 1 < zc, so that from the definition of zc we conclude ya − y − 1 ≥ 1.
Hence, b(ya − y − 1) + c(zc − z − 1) = (bya + cza) + ma for some m ∈ N. But then
ma+ b(y +1) = c(zc−za−z−1), which contradicts the minimality of zc. This contradiction
proves that m⋆

i = mi, and we have ya < yb since za > 0 by an earlier argument in this proof.
A similar argument shows that m⋆

j = mj, with za < zc.
We now claim that if mk = by + cz 6= b(ya − 1) + c(zc − 1), b(yb − 1) + c(za − 1),

then mk − a /∈ S⋆. To prove this, we exhibit m′
k ∈ Γ⋆ such that (mk − a) + m′

k /∈ Γ⋆. If
0 ≤ y ≤ ya−1 and 0 ≤ z ≤ zc−1, set m′

k := b(ya−y−1)+c(zc−z−1); and if 0 ≤ y ≤ yb−1
and 0 ≤ z ≤ za − 1, set m′

k := b(yb − y − 1) + c(za − z − 1). In the first case, (mk − a) + m′
k
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equals m⋆
i −a, and in the second case, it equals m⋆

j −a. So, in both cases, (mk−a)+m′
k /∈ Γ⋆.

This proves that S⋆ ⊆
{

b(ya − 1) + c(zc − 1) − a, b(yb − 1) + c(za − 1) − a
}

.
To complete the first case of our proof, it remains to show that each of the two numbers

m⋆
i − a, m⋆

j − a belong to S⋆. We show this for m⋆
i − a; a similar argument shows that

m⋆
j − a ∈ S⋆. Consider N =

(

b(ya − 1) + c(zc − 1) − a
)

+ n, where n = ax0 + by0 + cz0

with x0, y0, z0 nonnegative, not all zero. Observe that ya − 1 ≥ 0 by assumption, and
that zc − 1 ≥ 0 by definition. If x0 ≥ 1, then it is clear that N ∈ Γ⋆. If y0 ≥ 1, then
N = a(xa − 1 + x0) + b(y0 − 1) + c(zc − za − 1 + z0) ∈ Γ⋆. If z0 ≥ 1, then N = a(xc − 1 +
x0) + b(ya + yc − 1 + y0) + c(z0 − 1) ∈ Γ⋆. This proves m⋆

i − a ∈ S⋆, and completes Case I.
Case II: (ya = 0 or za = 0) If za = 0, equation (10) must hold. We show that m⋆

i − a =
b(ya−1)+c(zc−1)−a is the only element in S⋆ in this case. Indeed, the argument in Case I
shows that m⋆

i = mi, that m⋆
i −a ∈ S⋆, and that S⋆ has at most two elements. Thus, it only

remains to show that m⋆
j−a = b(yb−1)−c−a /∈ S⋆. In fact, m⋆

j = b(yb−1)−c = by+cz = mj

implies b(yb − y − 1) = am + c(z + 1) for some m ∈ N. Since this contradicts the minimality
of yb, m⋆

j > mj and so m⋆
j − a = b(yb − 1) − c − a /∈ S⋆. In case ya = 0, equation (11) must

hold, and a similar argument will show that b(yb − 1) + c(za − 1) − a is the only element in
S⋆ in this case. This completes the proof of our theorem.

Corollary 1. Let a < b < c with gcd(a, b, c) = 1. With the notation of Theorem 1,

g(a, b, c) =



















max
{

b(yb − 1) + c(za − 1) − a, b(ya − 1) + c(zc − 1) − a
}

,
if ya, za ≥ 1;

b(yb − 1) + c(za − 1) − a, if ya = 0;

b(ya − 1) + c(zc − 1) − a, if za = 0.

Remark 1. A variation of Corollary 1 is due to Johnson [12]. In [12], the variables a, b, c
are assumed to be pairwise coprime, so that xb, yb, zb and xc, yc, zc are defined analogously to
xa, ya, za, and therefore taken as nonnegative. In the case of Theorem 1 we only assume that
a, b, c are coprime, and need the positivity of xb, yb, zb and xc, yc, zc. If we assume that a, b, c
are pairwise coprime, ya > 0 and za > 0, so that only the first case in Theorem 1 holds; see
also [Theorem 2.2.3, [18]]:

Let a < b < c with a, b, c pairwise coprime. With the notation of Theorem 1,

g(a, b, c) = max
{

b(yb − 1) + c(za − 1) − a, b(ya − 1) + c(zc − 1) − a
}

Corollary 2. Let a < b < c be such that gcd(a, b, c) = 1 and a|(b + c). Then

S⋆(a, b, c) =

{

b

⌊

ac

b + c

⌋

− a, c

⌊

ab

b + c

⌋

− a

}

.

Proof. Observe that a|(bx−cy) if and only if a|(x+y) since a|(b+c) and gcd(a, b, c) = 1 forces
gcd(a, b) = 1 = gcd(a, c). If we write y = ma−x, then bx > cy reduces to x > mac

b+c
. The least

such x is clearly yb = ⌈ ac
b+c

⌉. Similarly, zc = ⌈ ab
b+c

⌉, and it is easy to see that (ya, za) = (1, 1).
Observe that b+c cannot divide either ab or ac since gcd(b, c) = 1. Therefore, yb−1 = ⌊ ac

b+c
⌋

and zc − 1 = ⌊ ab
b+c

⌋, and the result now follows from Theorem 1.
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Remark 2. Corollary 2 implies that

g(a, b, c) = max

{

b

⌊

ac

b + c

⌋

− a, c

⌊

ab

b + c

⌋

− a

}

when a|(b + c). This result is well-known and due to Brauer & Shockley; see [5, 26].

Corollary 3. If gcd(a, d) = 1, then

S⋆(a, a + d, a + 2d) =











{

1

2
a(a − 2) + d(a − 1)

}

, if a is even;
{

1

2
a(a − 3) + d(a − 1), 1

2
a(a − 3) + d(a − 2)

}

,
if a is odd.

Proof. Observe that a|{(a+d)x+(a+2d)y} if and only if a|(x+2y). Therefore, (ya, za) equals
(0, 1

2
a) if a is even and (1, 1

2
(a− 1)) if a is odd . If a is even, it is easy to see that yb = 2, and

the only element in the set is (a+d)+ 1

2
(a+2d)(a−2)−a = d(a−1)+ 1

2
a(a−2). If a is odd ,

the required conditions to determine zc reduce to minimizing y such that (a+2d)y > (a+d)x
and 2y ≡ x mod a. This gives zc = 1

2
(a + 1) and the set thus consists of the two elements

(a+d)+ 1

2
(a+2d)(a−3)−a = d(a−2)+ 1

2
a(a−3) and 1

2
(a+2d)(a−1)−a = d(a−1)+ 1

2
a(a−3).

This completes the proof.

Remark 3. Corollary 3 is the three variable version of the main result of [28]. Determination
of g(a, a + d, a + 2d) is an immediate consequence of Corollary 3 and is also a special case of
a more general result when there is no restriction on the number of variables in arithmetic
progression, and is due to Roberts; see [2, 19, 27]. Corollary 3 implies

g(a, a + d, a + 2d) = a

⌊

a − 2

2

⌋

+ d(a − 1).

A description of the set S⋆(a, b, c), and hence of the several related functions, includ-
ing g(a, b, c) and g⋆(a, b, c), involves at least a partial knowledge of the matrix M. The
description of M is a known result due to Morales [14], and is described in [Claim 8.4.3,
[18]].
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