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Abstract

Let h, k be fixed positive integers, and let A be any set of positive integers. Let
hA := {a1 + a2 + · · · + ar : ai ∈ A, r ≤ h} denote the set of all integers representable
as a sum of no more than h elements of A, and let n(h, A) denote the largest integer
n such that {1, 2, . . . , n} ⊆ hA. Let n(h, k) = maxA n(h, A), where the maximum is
taken over all sets A with k elements. The purpose of this note is to determine n(h, A)
when the elements of A are in arithmetic progression. In particular, we determine the
value of n(h, 2).

1 Introduction

A set A = {a1 < a2 < · · · < ak} is called an h-basis for a positive integer n if each of
1, 2, . . . , n is expressible as a sum of at most h (not necessarily distinct) elements of A. In
order that A be an h-basis for n, it is necessary that a1 = 1. For fixed positive integers h
and k, let n(h, k) denote the largest integer for which an h-basis of k elements exists. The
problem of determining n(h, k) is apparently due to Rohrbach [1], and has been studied
often. A large and extensive bibliography can be found in a paper of Alter and Barnett
[2]. The Postage Stamp Problem derives its name from the situation where we require the
largest integer n = n(h, k) such that all stamp values from 1 to n may be made up from a
collection of k integer-valued stamp denominations with the restriction that an envelope that
can have no more than h stamps, repetitions being allowed. An additional related problem
is to determine all sets with k elements that form an h-basis for n(h, k). We call such a set
an extremal h-basis .

It is easy to see that n(1, k) = k with unique extremal basis {1, 2, . . . , k} and that
n(h, 1) = h with unique extremal basis {1}. The result n(h, 2) = b(h2 + 6h + 1)/4c with
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unique extremal basis {1, (h+3)/2} for odd h and {1, (h+2)/2} and {1, (h+4)/2} for even
h has been rediscovered several times, for instance by Stöhr [3, 4] and by Stanton, Bate and
Mullin [5]. No other closed-form formula is known for any other pair (h, k) where one of h, k
is fixed. In addition, n(h, k) is known for several pairs (h, k); see [2]. Asymptotic bounds for
n(h, k) are due to Rohrbach [1], while bounds for n(h, 3) and n(2, k) are due to Hofmeister
[6], and due to Rohrbach [1], Klotz [7], Moser [8] and others, respectively.

Let h, k be fixed positive integers, and let A be any set of positive integers. Let

hA := {a1 + a2 + · · ·+ ar : ai ∈ A, r ≤ h}

denote the set of all integers representable as a sum of no more than h elements of A,
and let n(h,A) denote the largest integer n such that {1, 2, . . . , n} ⊆ hA. Thus n(h, k) =
maxA n(h,A), where the maximum is taken over all sets A with k elements. The purpose of
this note is to determine n(h,A) when the elements of A are in arithmetic progression. In
particular, this easily gives the value of n(h, 2).

2 Main Result

Throughout this section, h, k, d are fixed positive integers. Let

A = {1, 1 + d, 1 + 2d, . . . , 1 + (k − 1)d}

be a k-term arithmetic progression. In order that n ∈ hA, it is necessary and sufficient that
the equation

x0 + (1 + d)x1 + (1 + 2d)x2 + · · ·+ (1 + (k − 1)d)xk−1 =
k−1
∑

i=0

xi +

(

k−1
∑

i=0

ixi

)

d = n (1)

has a solution, with xi ∈ N ∪ 0 for all i and
∑k−1

i=0 xi ≤ h.

Suppose x0, x1, . . . , xk−1 are nonnegative integers whose sum is at most a. Then x1 +
2x2 + · · · + (k − 1)xk−1 assumes all values 0, 1, . . . , (k − 1)a as the xi’s range over nonneg-
ative integers whose sum does not exceed a. Indeed, to achieve the sum q(k − 1) + r for
0 ≤ q < a and 0 ≤ r < k − 1 or for q = a, we may choose xk−1 = q, xr = 0 or 1 accord-
ing as r = 0 or r > 0, and all other xi zero. We are now in a position to state our main result.

Theorem 1 Let h, k, d be positive integers. Then

n(h, {1, 1 + d, 1 + 2d, . . . , 1 + (k − 1)d}) =

{

h, if h ≤ d− 1;
h+ (k − 1)(h+ 1− d)d, if h ≥ d.

Proof. We write A = {1, 1 + d, 1 + 2d, . . . , 1 + (k − 1)d}. The case h ≤ d − 1 is easy to
see. Henceforth, we assume h ≥ d. Suppose x0, x1, . . . , xk−1 are chosen such that the sum in
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(1) equals n = n(h,A). If
∑k−1

i=0 xi < h, x0 may be incremented by 1 without violating the

restriction on the sum of the xi’s, thereby achieving the sum n(h,A)+1. Thus
∑k−1

i=0 xi = h,

so that n(h,A) ≡ h (mod d) by (1) and m :=
∑k−1

i=0 ixi ≤ (k − 1)h.

Now h + 1 + md ∈ hA if and only if (1) has a solution with
∑k−1

i=0 xi = h + 1 − λd

and
∑k−1

i=0 ixi = m + λ for some λ ∈ N. Such a simultaneous solution exists precisely when
m+λ ≤ (h+1−λd)(k−1), that is, when m ≤ (h+1−λd)(k−1)−λ ≤ (h+1−d)(k−1)−1.
Thus h+ 1 +md 6∈ hA for m ≥ (h+ 1− d)(k − 1), and n(h,A) ≤ h+ (k − 1)(h+ 1− d)d.

It remains to show that every positive integer less than or equal to h+(k−1)(h+1−d)d
is an element of hA. Any such integer N can be expressed as r + qd, where r, q satisfy the
inequalities 1 ≤ r ≤ h and q ≤ (k − 1)r, as follows. We choose the largest r ≡ N (mod d)
which is also less than or equal to h. Such an r is greater than or equal to h+1− d, so that
qd = N − r ≤ N − (h+1−d) ≤ h+(h+1−d)((k−1)d−1) < ((k−1)(h+1−d)+1)d, and
q ≤ (k − 1)(h + 1 − d) ≤ (k − 1)r. Thus

∑k−1

i=0 xi = r and
∑k−1

i=0 ixi = q is simultaneously
solvable by the argument immediately preceding the Theorem. This completes the proof. 2

Corollary 2 For h ≥ 1,

n(h, 2) =

⌊

h2 + 6h+ 1

4

⌋

.

Moreover, the only extremal basis is {1, (h + 3)/2} if h is odd, and {1, (h + 2)/2} and

{1, (h+ 4)/2} if h is even.

Proof. From Theorem 1,

n(h, 2) = h+max
d≥1

(h+ 1− d)d = h+

⌊

(h+ 1)2

4

⌋

=

⌊

h2 + 6h+ 1

4

⌋

.

It is easy to see that the maximum is achieved at d = (h + 1)/2, so that there is only one
extremal basis if h is odd and two such bases if h is even. 2

Remark. The function n(h, 2) is sequence A014616 in Sloane’s table [9].
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