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Abstract

We present a recursive formula for the nth term of the Kolakoski sequence. Using

this formula, it is easy to find recursions for the number of ones in the first n terms

and for the sum of the first n terms of the Kolakoski sequence.

1 Introduction

The Kolakoski sequence Kn [6, 7], which we study here, is the unique sequence starting
with 1 which is identical to its own runlength sequence. Kn is Sloane’s sequence A000002.
Kimberling asks 5 questions about this sequence on his homepage [5]. The first one is,
whether there exists a formula for the nth term of the Kolakoski sequence. For a survey
of known properties of the Kolakoski sequence we refer to Dekking [4]. Cloitre wrote the
formulas

KN =
3 + (−1)n

2
and KN+1 =

3 − (−1)n

2
, where N =

n
∑

i=1

Ki,

in the entry of Sloane’s sequence A000002, where we also find block-substitution rules, which
where posted by Lagarias. I.e., starting with 22 we have to apply 22 → 2211, 21 → 221,
12 → 211, and 11 → 21, as it was mentioned by Dekking [3, 4]. Culik et al. [2] proposed
the double substitution rules σ1(1 → 1, 2 → 11) and σ2(1 → 2, 2 → 22), which are applied
alternatingly to each letter of a word. These substitutions can also be found at Allouche et

al. [1, p. 336]. Cloitre added the relationship

f1(n) + f2(n) = 1 +
n−1
∑

i=0

f2(i)
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to Sloane’s sequence A054349, where f1(n) denotes the number of ones and f2(n) denotes
the number of twos in the nth string of Sloane’s sequence A054349.

2 A Recursive Formula for the Kolakoski Sequence

We will now derive a recursive formula for Kn. Let kn = min
{

j :
∑j

i=1
Ki ≥ n

}

.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Kn 1 2 2 1 1 2 1 2 2 1 2 2 1 1 2
kn 1 2 2 3 3 4 5 6 6 7 8 8 9 9 10

Table 1: Kn and kn

Lemma 2.1.

kn = kn−1 + n −

kn−1
∑

i=1

Ki, where n ≥ 2.

Proof. We first notice that

n − 1 ≤

kn−1
∑

i=1

Ki ≤ n.

The left inequality holds by definition and the right one is valid, since if

kn−1
∑

i=1

Ki ≥ n + 1

we would have
kn−1−1
∑

i=1

Ki ≥ n − 1

which is a contradiction to the minimality of kn−1. So, as the first case, we consider
∑kn−1

i=1
Ki = n − 1 which implies kn = kn−1 + 1 = kn−1 + n −

∑kn−1

i=1
Ki. In the second

case
∑kn−1

i=1
Ki = n leads to kn = kn−1 = kn−1 + n −

∑kn−1

i=1
Ki.

We notice that Lemma 2.1 holds in general for every sequence, whose only values are 1
and 2.

Lemma 2.2.

kn = kn−1 + |Kn − Kn−1| = 1 +
n

∑

i=2

|Ki − Ki−1|, where n ≥ 2.
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Proof. The following well known construction produces a sequence which is identical to
K. Start with K1 ones, continue with K2 twos, followed by K3 ones, and so on. In this
construction, after kn−1 steps two cases can appear, as described in the proof of Lemma 2.1.
The first possibility is that

∑kn−1

i=1
Ki = n − 1, which means that we have constructed n − 1

terms of the sequence. Therefore, by construction, Kn must be different from Kn−1 implying
kn − kn−1 = |Kn − Kn−1|. In the second case that

∑kn−1

i=1
Ki = n, it is necessary that

Kkn−1
= 2, for if otherwise

∑kn−1−1

i=1
Ki = n − 1, contradicting the minimality of kn−1. So

our construction has added 2 equal numbers at the kn−1th step, such that Kn = Kn−1 and
finally kn − kn−1 = |Kn − Kn−1|. The second equality follows by induction.

Corollary 2.1 is an implication of Lemma 2.2.

Corollary 2.1.

Kn ≡ kn (mod 2) or Kn =
(−1)kn + 1

2
+ 1 respectively.

Corollary 2.2 uses Lemma 2.1 and Corollary 2.1.

Corollary 2.2.

kn = n −
1

2

kn−1
∑

i=1

(

(−1)ki + 1
)

, where n ≥ 2.

Corollary 2.3 follows from Corollary 2.2.

Corollary 2.3.

kn = kn−1 + 1 −
1

2
(kn−1 − kn−2)

(

(−1)kkn−1 + 1
)

, where n ≥ 3.

Theorem 2.1. For n ≥ 3 we have

Kn = Kn−1 + (3 − 2Kn−1)
(

n −

1+
∑n−1

j=2
|Kj−Kj−1|

∑

i=1

Ki

)

(1)

= Kn−1 + (3 − 2Kn−1)
(

n −

1+
∑n−1

j=2

Kj−Kj−1

3−2Kj−1
∑

i=1

Ki

)

(2)

= Kn−1 + (3 − 2Kn−1)

(

1 −
1

2

Kn−1 − Kn−2

3 − 2Kn−2

(

1 + (−1)
K

1+
∑n−1

j=2

Kj−Kj−1

3−2Kj−1

))

. (3)

Proof. From Lemma 2.1 and Lemma 2.2 we obtain

|Kn − Kn−1| = n −

1+
∑n−1

j=2
|Kj−Kj−1|

∑

i=1

Ki

and use the fact that

|Kn − Kn−1| =
Kn − Kn−1

3 − 2Kn−1

to complete the proof of (1) and (2). The third equation (3) follows from Corollary 2.3 and
Lemma 2.2.
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3 Concluding Remarks

Let sn =
∑n

i=1
Ki, which is Sloane’s sequence A054353, on = |{1 ≤ j ≤ n : Kj = 1}|, and

tn = |{1 ≤ j ≤ n : Kj = 2}|, which is Sloane’s sequence A074286. With Theorem 2.1 and
the equations

Kn = sn − sn−1,

Kn = −on + on−1 + 2, and

Kn = tn − tn−1 + 1

it is easy to produce recursive formulas for sn, on, and tn.
By Lemma 2.1, we obtain kn = n − tkn−1

, from which it follows that tn/n converges
if and only if the limit of kn/n exists. The definition of kn gives the equations ksn

= n
and ksn+1 = n + 1, which yield that the limit of kn/n exists, if and only if sn/n converges.
Therefore, if we assume that one of the sequences tn/n, on/n, kn/n or sn/n converges then all
sequences have a limit. If a = limn→∞ tn/n then limn→∞ on/n = 1−a, limn→∞ sn/n = 1+a,
and limn→∞ kn/n = 1/(1 + a).

Using the recursion of Corollary 2.3, we computed kn/n up to n = 3 ·108. Figure 1 shows
kn/n for n from 108 to 3 · 108, where only each 1000th point is drawn, i.e., the subsequence
k1000n/(1000n), for n = 100000, . . . , 300000. The x-axis is positioned at 2/3.

Figure 1: kn

n
for n from 108 to 3 · 108.

If we assume that the limit of on/n exists and is equal to 1/2 then kn/n must tend to
2/3. Thus, the graph in Figure 1 does not support the conjecture that on/n converges to
1/2.
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