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Abstract
We present a recursive formula for the nth term of the Kolakoski sequence. Using
this formula, it is easy to find recursions for the number of ones in the first n terms
and for the sum of the first n terms of the Kolakoski sequence.

1 Introduction

The Kolakoski sequence K, [}, [], which we study here, is the unique sequence starting
with 1 which is identical to its own runlength sequence. K, is Sloane’s sequence [A000002.
Kimberling asks 5 questions about this sequence on his homepage [[{]. The first one is,
whether there exists a formula for the nth term of the Kolakoski sequence. For a survey
of known properties of the Kolakoski sequence we refer to Dekking [[]. Cloitre wrote the
formulas

= w and Ky = w, where N = ;Ki,

in the entry of Sloane’s sequence [A00000, where we also find block-substitution rules, which
where posted by Lagarias. l.e., starting with 22 we have to apply 22 — 2211, 21 — 221,
12 — 211, and 11 — 21, as it was mentioned by Dekking [, f]. Culik et al. [[] proposed
the double substitution rules oy(1 — 1,2 — 11) and o9(1 — 2,2 — 22), which are applied
alternatingly to each letter of a word. These substitutions can also be found at Allouche et
al. 0, p. 336]. Cloitre added the relationship
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to Sloane’s sequence [A054317, where fi(n) denotes the number of ones and f(n) denotes
the number of twos in the nth string of Sloane’s sequence A054319.

2 A Recursive Formula for the Kolakoski Sequence
We will now derive a recursive formula for K,,. Let k, = min { J: ZZ:1 K; > n}
n|1[2(314|5|6|7[89|10]11 12|13 |14 |15

K,[1]2]2]1 20122 1] 2] 2] 1| 1| 2
ko 11212[3[3[4[5(6[|6| 7| 8] 8] 9] 9|10
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Table 1: K,, and k,

Lemma 2.1.
knfl

k, = kn,_1+n— Z K;, where n > 2.
i=1

Proof. We first notice that

kn—l

n—lSZKiSn.
i=1

The left inequality holds by definition and the right one is valid, since if

we would have

which is a contradiction to the minimality of k,_;. So, as the first case, we consider
Zfﬁf K; = n — 1 which implies k, = k,_1 +1 = ko1 +n — Zfﬁf K;. In the second
case ngl Ki=nleadsto k, = k,_1 = kp,_1 +n — Zf;;l K;. O

We notice that Lemma P.I] holds in general for every sequence, whose only values are 1
and 2.

Lemma 2.2.

b = koot + [ Ky = Koot = 14> |K; — K|, where n > 2.
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Proof. The following well known construction produces a sequence which is identical to
K. Start with K; ones, continue with K5y twos, followed by K3 ones, and so on. In this
construction, after k,_; steps two cases can appear, as described in the proof of Lemma P-]].
The first possibility is that Zfﬁ;l K; =n — 1, which means that we have constructed n — 1
terms of the sequence. Therefore, by construction, K, must be different from K,_; implying
kn — kno1 = |K, — K,_1]. In the second case that Zfﬁf K; = n, it is necessary that
Ky, , = 2, for if otherwise ngl_l K; = n — 1, contradicting the minimality of k, ;. So
our construction has added 2 equal numbers at the k,_;th step, such that K,, = K,,_; and
finally k,, — k,_1 = |K,, — K,,_1|. The second equality follows by induction. O

Corollary R.1] is an implication of Lemma P.2.
Corollary 2.1.
(=1)k +1
2
Corollary .9 uses Lemma P.1] and Corollary P.1].

Corollary 2.2.

K, =k, (mod 2) or K,, = + 1 respectively.

kn—1
kn=mn— % ; ((=1)% +1), wheren > 2.

Corollary B.J follows from Corollary R.9.
Corollary 2.3.

1
kyp =kp1 +1— 3 (kn—1 — kn—2) ((—l)k’“n—l +1), where n > 3.

Theorem 2.1. For n > 3 we have
40 K=K

Ky, = Knp1+(3—2K,1) (n - Z Ki) (1)

1 Kj-Kj g

n J
+2005 32K,

= K1+ (3-2K,1) (n - X Ki) (2)

=1
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Proof. From Lemma P.]] and Lemma P.9 we obtain

4+ K=K

1Ky — Kno1| =n — > K;
i=1
and use the fact that KK
K, — K, | =>r_—n1
| =50k,
to complete the proof of () and (f). The third equation (fJ) follows from Corollary -] and
Lemma P.3. O



3 Concluding Remarks

Let s, = > ., K;, which is Sloane’s sequence [A05435], o, = [{1 < j <n:K; =1}|, and
tn = {1 <j <n:K,; =2}, which is Sloane’s sequence [R07428(. With Theorem P-]] and
the equations

Kn Sn — Sn—1,
K, = —o,+0,1+2, and
K, = t,—t,_1+1

it is easy to produce recursive formulas for s,, o,, and t,.

By Lemma P}, we obtain k, = n — t;,_,, from which it follows that ¢,/n converges
if and only if the limit of k,/n exists. The definition of k, gives the equations ks, = n
and kg, 11 = n + 1, which yield that the limit of k,/n exists, if and only if s,,/n converges.
Therefore, if we assume that one of the sequences t,,/n, o,/n, k,/n or s, /n converges then all
sequences have a limit. If @ = lim,, .o, t,/n then lim,, ., 0,/n =1—a, lim, . s,/n =1+a,
and lim,, .o k,/n=1/(1+ a).

Using the recursion of Corollary P, we computed &, /n up to n = 3-10%. Figure [] shows
kn/n for n from 10® to 3 - 10%, where only each 1000th point is drawn, i.e., the subsequence
K1000n/(1000n), for n = 100000, .. .,300000. The z-axis is positioned at 2/3.
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Figure 1: %" for n from 10® to 3 - 108.

If we assume that the limit of o, /n exists and is equal to 1/2 then k,/n must tend to
2/3. Thus, the graph in Figure [] does not support the conjecture that o,/n converges to
1/2.
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