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Abstract

Construct a recursive sequence of polynomials, staring with 1, in the following way.

Each new term in the sequence is determined by adding the smallest power of x larger

than the degree of the previous term, such that the new polynomial is reducible over

the rationals. Filaseta, Finch and Nicol have shown that this sequence is finite. In

this paper we investigate variations of this problem over a finite field. In particular, we

allow the starting polynomial to be any {0, 1}–polynomial with nonzero constant term,
and we allow the exponent on the power of x added at each step to be chosen from the

set of multiples of a fixed positive integer k. Among our results, we show that these

sequences are always infinite. We develop necessary and sufficient conditions on k and

the characteristic p of the field, so that the sequence starting with 1 uses every multiple

of k as an exponent in its construction. In addition, we prove for k = 1 and p ≥ 5 that
there exists a {0, 1}–polynomial f such that the sequence starting with f uses every

positive integer larger than the degree of f as an exponent in its construction.
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1 Introduction

The following problem [1] provided the motivation for this paper.

Define a sequence of {0, 1}–polynomials (polynomials all of whose coefficients are
either 0 or 1) in Q[x] by

f1 := 1 and fi := fi−1 + xn, for i ≥ 2,

where n is the smallest integer larger than the degree of fi−1 such that fi−1 + xn

is reducible over Q. Is this sequence infinite?

The first eight terms of this sequence are given below:

f1 = 1
f2 = 1 + x3

f3 = 1 + x3 + x15

f4 = 1 + x3 + x15 + x16

f5 = 1 + x3 + x15 + x16 + x32

f6 = 1 + x3 + x15 + x16 + x32 + x33

f7 = 1 + x3 + x15 + x16 + x32 + x33 + x34

f8 = 1 + x3 + x15 + x16 + x32 + x33 + x34 + x35.

Filaseta, Finch and Nicol [1] have proven the somewhat surprising fact that f8 + xn is
irreducible over Q for all n ≥ 36, so that this sequence is actually finite and terminates at
f8.
In this paper we consider variations of this problem modulo a prime. Specifically, let p

be a prime, let k ≥ 1 be an integer and let f(x) be a polynomial, with f(0) 6≡ 0 (mod p).
Define a sequence of polynomials in Fp[x], denoted (f, k, p), as follows:

f1 := f and fi := fi−1 + xkn, for i ≥ 2,

where kn is the smallest integer multiple of k larger than the degree of fi−1, such that
fi−1 + xkn is reducible over Fp.
We impose the restriction that f(0) 6≡ 0 (mod p) to avoid the trivial situation, and we

do not require that f be reducible or irreducible over Fp.
Although we show that all sequences (f, k, p) are infinite (see Theorem 4.1), this particular

attribute is but one item of interest to us here (see Section 2). Also, while our definition of
the sequence (f, k, p) does not require that f be a {0, 1}–polynomial, the predominate focus
of this paper is on sequences where f is a {0, 1}–polynomial. The main reason for this is that
in many situations of interest, even if f is not a {0, 1}–polynomial, there is a corresponding
{0, 1}–polynomial g, such that the sequence (g, k, p) has many of the same properties as the
sequence (f, k, p) (see Lemma 4.1).

2



2 Preliminaries

As one might expect, many patterns emerge modulo a prime that are not present in the
characteristic zero situation. Because of the existence of these patterns, we are motivated to
define the following:

Definition 2.1. Let p be a prime and let Fpm denote the finite field with pm elements. Let
(f, k, p) be a sequence as defined in Section 1, allowing the possibility that f is not necessarily
a {0, 1}–polynomial, but as always, f(0) 6≡ 0 (mod p).

• We say (f, k, p) has the root pattern [r1, r2, . . . , rt] in Fpm if ri ∈ Fpm and fN+b(ri) ≡ 0
(mod p) for some positive integer N and all positive integers b ≡ i (mod t).

• We defineM to be the set of all positive integer multiples of k greater than the degree
of f which are not the degree of any term of (f, k, p).

• We say (f, k, p) has the factor pattern [g1, g2, . . . , gt] in Fp[x] if the polynomial gi is a
proper divisor of fN+b in Fp[x] for some positive integer N and all positive integers
b ≡ i (mod t).

• If the sequence (f, k, p) has the root pattern [r1, r2, . . . , rj] (respectively, factor pattern
[g1, g2, . . . , gj]), then we say the root pattern (respectively, factor pattern) has period
t, if t is the smallest integer such that ri = rt+i (respectively, gi = gt+i) for all i =
1, 2, . . . , t. Throughout the remainder of this paper, we indicate all root and factor
patterns as [r1, r2, . . . , rt] or [g1, g2, . . . , gt], where t is the period of the pattern.

We consider the root patterns [ri, ri+1, . . . , rt, r1, . . . , ri−1], for any 2 ≤ i ≤ t, to be
equivalent to the root pattern [r1, r2, . . . , rt]. In the event of the occurrence of multiple
roots, a sequence (f, k, p) can sometimes have more than one root pattern (see Example
3.4).
Factor patterns and root patterns are related in the following way. Suppose that (f, k, p)

has a factor pattern [g1, g2, . . . , gt] in Fp[x], with δi the degree of gi, andm=lcm(δ1, δ2, . . . , δt).
Let g be a polynomial of degree m which is irreducible over Fp. Then (f, k, p) has a root
pattern in Fp(α) ∼= Fpm , where g(α) ≡ 0 (mod p). (see Example 3.6). Conversely, if (f, k, p)
has a root pattern in Fpm , then (f, k, p) has a factor pattern in Fph [x] for all h with 1 ≤ h ≤ m.
Although the proofs of some of our results use arguments which involve both root patterns

and factor patterns, we choose to state our results only in terms of root patterns. Because
of the connection between root patterns and factor patterns, analogous statements can be
made in terms of factor patterns. While it seems plausible that when the sequence (f, k, p)
has a root pattern in Fp, or a factor pattern in Fp[x], thenM is not infinite (Question 5.1),
the converse is false (see Example 3.1 and Theorem 4.3).
When M is finite for a sequence (f, k, p), we can use M to construct a polynomial f̂

such thatM is empty for the sequence (f̂ , k, p). Explicitly, ifM = {km1, km2, . . . , kms} for
the sequence (f, k, p), where the degree of f is kd, then let f̂(x) = f(x) +

∑ms+1
j=d+1 ajx

kj be
the polynomial of degree k(ms + 1) such that aj = 0 when kj ∈ M, and aj = 1 otherwise.

ThenM is empty for the sequence (f̂ , k, p), since this sequence starts by adding powers of
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x whose exponents are larger than the elements of M. A similar technique is used in the
proofs of Lemma 4.1 and Theorem 4.5. See also Example 4.6.
The first main result of this article is Theorem 4.1, where we see that the situation over Fp

is quite different than it is over Q, in that no sequence (f, k, p) is ever finite. Next, Theorem
4.2 shows that no root patterns exist in Fp for the sequences (f, k, 2) and (f, k, 3). Then, for
the sequences (1, k, p), we establish in Theorem 4.3, necessary and sufficient conditions on k
and p so thatM is empty, and in these situations we show that no root patterns exist in Fpm

for any m. Finally, for p ≥ 5, we prove in Theorem 4.5 that there exists a {0, 1}–polynomial
f such that the sequence (f, 1, p) has a root pattern in Fp withM empty.
Throughout this paper we let |a|pm denote the order of a in (Fpm)∗, the multiplicative

group of Fpm , and we let Φn := Φn(x) denote the n-th cyclotomic polynomial.
Lemma 2.1, Lemma 2.2 and Lemma 2.3 are stated without proof since they contain in-

formation which is well-known.

Lemma 2.1.

• There exists a primitive root modulo m if and only if m = 2, 4, qa, or 2qa, where q is
an odd prime and a ≥ 1 is an integer.

• Let q be an odd prime. If α is a primitive root modulo qa for some a ≥ 2, then α is a
primitive root modulo qa for all a ≥ 1.

Lemma 2.2.

• If p is a prime that divides n, then Φn(x
p) = Φpn(x).

• Φn(x
k) is irreducible over Q if and only if every prime divisor of k divides n.

• Let n and k be relatively prime. Then Φn(x
k) =

∏

d|k Φdn(x).

Lemma 2.3. Let p be a prime, and let g(x) be a polynomial over Fp. If g(x) is irreducible
modulo p, then g(x) divides xpm

− x, where m is any multiple of the degree of g(x).

In the investigation of the reducibility over Q of certain polynomials, it is sometimes fruit-
ful, and more efficient, to first test for divisibility by cyclotomic polynomials [2]. Cyclotomic
polynomials also play a role here in determining the reducibility of certain {0, 1}–polynomials
over Fp. A slight adjustment is required since cyclotomic polynomials do not always remain
irreducible modulo a prime. Theorem 2.2 describes explicitly the factorization of cyclotomic
polynomials in Fp[x].

Theorem 2.2. [3] Let p be a prime, and let n = pam be a positive integer, where p does
not divide m. Let b be the smallest positive integer such that pb ≡ 1 (mod m). Then Φn(x)

factors as the product of
φ(m)

b
incongruent irreducible monic polynomials modulo p, each of

degree b, and each raised to the φ(pa) power.
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We also make use of the following immediate corollary of Theorem 2.2 in the proof of
Theorem 4.3.

Corollary 2.1. Let p be a prime, and let n = pam be a positive integer, where p does not
divide m. Then Φn(x) is irreducible modulo p if and only if p is a primitive root modulo m,
and either a = 0, or p = 2 with a = 1.

Although straightforward, Lemma 2.4 provides insight into the basic understanding of
root patterns for the sequences (f, k, p).

Lemma 2.4. Let p be a prime, and let r ∈ Fpm, with |r|pm = s 6= 1. Let k ≥ 1 be an integer,
and let a = gcd(s, k). For any polynomial g(x) and any n ≥ 0, define the polynomial
h(x) := g(x) + xk(n+1) + xk(n+2) + · · ·+ xk(n+b), where b = p if a = s, and b = s/a otherwise.
Then g(r) ≡ 0 (mod p) if and only if h(r) ≡ 0 (mod p).

Proof. If a = s, then clearly h(r) ≡ g(r) (mod p). Otherwise, we have

h(r) = g(r) + rk(n+1) + rk(n+2) + · · ·+ rk(n+b)

= g(r) + rk(n+1)(1 + rk + (rk)2 + · · ·+ (rk)b−1)

= g(r) + rk(n+1)

(

(rk)b − 1

rk − 1

)

= g(r) + rk(n+1)

(

(rs)k/a − 1

rk − 1

)

≡ g(r) (mod p),

and the lemma follows.

Before we present our main results, we give some examples of sequences (f, k, p).

3 Examples of Sequences (f, k, p)

In the following examples, a computer was used to determine likely candidates forM, and,
with the exception of Example 3.1, Lemma 2.4 was used to verify this evidence by establishing
the existence of any root or factor patterns.

Example 3.1. (1, 4, 3)
Although this example is a special case of Theorem 4.3(3), we nevertheless provide a

separate analysis here to give the reader an introduction to some of the techniques used in
this paper.
We claim that fn = 1 + x4 + x8 + · · · + x4(n−1), for n ≥ 2. First note that x4 + 1 =

(x2 + x + 2)(x2 + 2x + 2) over F3 so that f2 = 1 + x4. When n ≡ 0, 1, 3, 5 (mod 6), there
exists an odd prime q that divides n, and it is easy to show then that Φq is a proper divisor
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of 1+x4+x8+ · · ·+x4(n−1). Similarly, when n ≡ 2, 4 (mod 6), with n > 2, we have that Φ8

is a proper divisor of 1 + x4+ x8+ · · ·+ x4(n−1), establishing the claim, and proving thatM
is empty. The observation that fn has a zero modulo 3 if and only if n ≡ 0 (mod 3) proves
that (1, 4, 3) has no root pattern in F3.

Example 3.2. (1 + x, 1, 5)
First note that 1 + x + x2 and 1 + x + x3 are irreducible over F5. But f2 = 1 + x + x4,

f3 = 1 + x + x4 + x5, f4 = 1 + x + x4 + x5 + x6 and f5 = 1 + x + x4 + x5 + x6 + x7, since,
modulo 5, they have the respective zeros: 3,4,2,4. Thus, by Lemma 2.4, (1 + x, 1, 5) has the
root pattern [3, 4, 2, 4] in F5, andM = {2, 3} .

Example 3.3. (1, 1, 5)
While this sequence has the same root pattern [3, 4, 2, 4] in F5 as the sequence (1+x, 1, 5)

in Example 3.2, we see that the pattern does not emerge as soon in this sequence since here
M = {1, 3, 12, 25, 36, 37, 49, 323, 1985, 4054, 5885, 6648} .

Example 3.4. (1, 1, 7)
There are, in fact, two root patterns for this sequence in F7: [4, 2, 3, 4, 2, 6] and [4, 6, 3, 6, 2, 6].

Here,M = {1, 2, 4, 17, 36, 41}.

Example 3.5. (1 + x, 1, 17)
This sequence has the root pattern [8, 16, 9, 4, 2, 16, 15, 4] in F17, andM = {2, 5, 8, 11, 24}.

Example 3.6. (1 + x+ x2 + x5 + x6 + x8 + x10, 1, 3)
This sequence has the root pattern [2, α, 2, α + 1, 2, α, 2, α + 2] in F9, where α

2 + 1 = 0.
The corresponding factor pattern in F3 is given by [g1, g2, . . . , g8], where

g1 = g3 = g5 = g7 = x− 2

g2 = g6 = x2 + 1

g4 = x2 + x+ 2 and

g8 = x2 + 2x+ 2.

Here,M is empty.

4 Main Results

Theorem 4.1. Every sequence (f, k, p) is infinite.

Proof. For any prime p, positive integer k, and polynomial h(x) ∈ Fp[x], we claim that there
exists a positive integer t, with t divisible by k and larger than the degree of h(x), such that
h(x) + xt is reducible modulo p.
Suppose that ps is the exact power of p that divides k, and let L = k/ps. Let a = psv(k−1),

where v = 1 if L = 1, and v is the order of ps modulo L, otherwise. Let g(x) be an irreducible
factor of h(x) + xa+1, and let m > s be a multiple of the degree of g(x) with pm + a larger
than the degree of h(x), such that L divides pm−1. Note that ps divides pm+a since m > s
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and v ≥ 1. Also, L divides pm + a by the choices of m and v. Hence, k divides pm + a. By
Lemma 2.3, g(x) divides xpm

−x. Since g(x) divides h(x)+xa+1, it follows that g(x) divides

h(x) + xa+1 + xa
(

xpm

− x
)

= h(x) + xpm+a,

establishing the claim with t = pm + a, and completing the proof of the theorem.

Theorem 4.2. Let p = 2 or 3. Then the sequence (f, k, p) does not have a root pattern in
Fp.

Proof. The only possible root patterns are [1], if p = 2, and [1], [2] and [1, 2] if p = 3. Since
the arguments are similar for each of these cases, we show only that the root pattern [1, 2] is
impossible when p = 3. If [1, 2] is the root pattern for the sequence (f, k, 3), then, for some
index i, it follows that

0 ≡ fi(1) ≡ fi+2(1) = fi(1) + 1 + 1 ≡ 2 (mod 3),

which is impossible.

Theorem 4.3.

1. If k = 1, then M is never empty for the sequence (1, k, p) for any prime p.

2. If k = 2, then M is empty for the sequence (1, k, p) if and only if p = 2 or p ≡ 1
(mod 4).

3. If k ≥ 3, then M is empty for the sequence (1, k, p) if and only if k 6= qa, where a ≥ 1,
and q ≥ 3 is a prime such that p is a primitive root modulo q2.

Moreover, in each case that M is empty, the sequence (1, k, p) has no root pattern in Fpm

for any m.

Proof. We first establish parts (1), (2) and (3) of the theorem, and then show that whenM
is empty, the sequence (1, k, p) has no root pattern in Fpm for any m. Throughout the proof,
for n ≥ 2, we let gn := gn(x) = 1 + xk + x2k + · · ·+ x(n−1)k.
When k = 1, we have that 1 ∈M, since 1+x is irreducible for all primes p. So, statement

(1) of the theorem is obvious.
Making use of the fact that Φn(x

k) divides gn(x), we prove statements (2) and (3) of the
theorem by determining exactly when fn = gn for all n ≥ 2, or equivalently, when gn(x) is
reducible over Fp for all n ≥ 2. First note that

deg
(

Φn

(

xk
))

= φ(n)k ≤ (n− 1)k = deg (gn (x)) .

Therefore, since Φn(x
k) divides gn(x) for all n ≥ 2, it follows that gn(x) is reducible over

Q, and hence over Fp, except possibly when n is a prime q. Also, by Lemma 2.2, Φq

(

xk
)

is reducible over Q, and hence over Fp, if there exists a prime divisor r of k with r 6= q.
Thus, for k ≥ 2, we have that M is empty when k 6= qa, for some prime q with a ≥ 1.
Consequently, our focus is narrowed to the examination of when Φq

(

xqa)

= Φqa+1 (x), with
a ≥ 1, is reducible over Fp.
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If k = q = 2, then a = 1, and Φqa+1 (x) = Φ4(x) = x2 + 1, which is easily seen to be
reducible over Fp if and only if p = 2 or p ≡ 1 (mod 4). Combining this fact with the above
discussion completes the proof of statement (2) of the theorem.
When k = 2a, with a ≥ 2, we have immediately, from Lemma 2.1 and Corollary 2.1,

that Φ2a+1 (x) is reducible over Fp for all primes p. When k = qa, for some prime q ≥ 3,
with a ≥ 1, we appeal again to Lemma 2.1 and Corollary 2.1 to conclude that Φqa+1 (x) is
irreducible over Fp if and only if p is a primitive root modulo q

2. Therefore, statement (3)
of the theorem has been established.
We now show that whenM is empty, the sequence (1, k, p) has no root pattern in Fpm

for all m. We do this by showing that (1, k, p) has no factor pattern in Fp[x]. Note that
under the assumption thatM is empty, we have that fn = gn for all n ≥ 2, so we use the
notation gn. Let q > p be prime. For any divisor d of k, we can write dq = paqmd, where
p does not divide md. Let b be the smallest positive integer such that p

b ≡ 1 (mod qmd).
Since

pb > pb − 1 ≥ qmd ≥ q,

we have that b > log (q) / log (p). Therefore, from Theorem 2.2, each irreducible factor of
Φdk(x) modulo p has degree larger than log (q) / log (p), and this is independent of the divisor
d. Since

gq(x) = Φq

(

xk
)

=
∏

d|k

Φdq(x),

it follows that, as q approaches infinity, the minimum degree of an irreducible factor of gq

also approaches infinity, proving the impossibility of the existence of a factor pattern for
(1, k, p) in Fp[x].

The following lemma, which is needed for the proof of Theorem 4.5, indicates in certain
situations how a sequence whose terms are not all {0, 1}–polynomials can be used to construct
a sequence where all terms are {0, 1}–polynomials, and such that the two sequences share
particular properties.

Lemma 4.1. Let p be a prime and let g(x) = 1+
∑d

i=1 aix
i be a polynomial of degree d ≤ p−1

that is not a {0, 1}–polynomial in Fp[x]. Suppose that the sequence (g, 1, p) has a root pattern
in Fp and that M is empty. Then there exists a {0, 1}–polynomial f(x) of degree at most
p2 − 3p + d + 3, such that the sequence (f, 1, p) has a root pattern equivalent to (g, 1, p) in
Fp, and M is empty.

Proof. The following two-step algorithm, which incorporates Fermat’s Little Theorem, is
used to construct f(x).

1. Replace every non-constant term aix
i of g(x) with

∑ai−1
j=0 xi+j(p−1). Since 1 ≤ i ≤ p − 1, we have that no two exponents of the re-

sulting polynomial are the same. That is, this step produces a {0, 1}–polynomial
g1(x) such that g1(x) ≡ g(x) (mod p) for all x ∈ Fp, and the degree of g1(x) is
d1 = max

1≤i≤d
{i+ (ai − 1)(p− 1)}.
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2. Define f(x) to be g1(x)+x
d+1+c(p−1), where c is the smallest positive integer such that

d+ 1 + c(p− 1) > d1.

Then, if the root pattern for the sequence (g, 1, p) is [r1, r2, . . . , rt], this definition of f(x)
guarantees that the sequence (f, 1, p) has the equivalent root pattern [r2, r3, . . . , rt, r1], and
thatM is empty. Since d1 ≤ d+ (p− 2)(p− 1), it follows that the degree of f(x) is at most
d+ 1 + (p− 2)(p− 1) = p2 − 3p+ d+ 3.

We give an example to illustrate Lemma 4.1.

Example 4.4. Let p = 7, k = 1 and g(x) = 6x4+4x3+6x2+2x+1. Then (g, 1, 7) has the
root pattern [2, 6, 4, 6, 3, 6] in F7, which begins with the addition of x

5. Using Lemma 4.1, we
get f(x) = x35+x34+x32+x28+x26+x22+x21+x20+x16+x15+x14+x10+x9+x8+x7+
x4 + x3 + x2 + x+ 1. The sequence (f, 1, 7), with the equivalent root pattern [6, 4, 6, 3, 6, 2]
in F7, has M empty, and is constructed by adding consecutively x36, x35, . . . , instead of,
respectively x5, x6, . . . , for the sequence (g, 1, 7). Note that the sequence (f − x35, 1, 7) has
M empty, and has the exact same root pattern as (g, 1, 7), beginning with the addition of
x35.

Theorem 4.5. For any prime p ≥ 5, there exists a {0, 1}–polynomial f(x), with f(0) = 1,
such that the sequence (f, 1, p) has a root pattern in Fp, andM is empty. Moreover, if p ≡ 3
(mod 4), then f can be found whose degree is at most p2− 3p+ q+5, where q is the smallest
odd prime factor of p − 1, and the period of the root pattern is 2q; while if p ≡ 1 (mod 4),
then f can be found such that the degree of f is at most 2p − 6, and the period of the root
pattern is 4.

Remark. The proof of Theorem 4.5 is constructive, and although the technique we use to
construct f when p ≡ 3 (mod 4) can be modified slightly to construct f when p ≡ 1 (mod 4),
we use a different approach in the latter case since the alternative approach has two distinct
advantages. The first advantage is that the construction of the polynomial f requires fewer
computations, while the second advantage is that the upper bound on the degree of f is
significantly less.

Proof. Suppose first that p ≡ 3 (mod 4), and let q be the smallest odd prime factor of p−1.
Let β ∈ Fp with |β|p = 2q. Then

|β2|p = |β
4|p = · · · = |β

2q−2|p = q and |βq|p = 2.

If we can demonstrate the existence of a polynomial g(x) = 1 +
∑q+1

i=1 aix
i, with aq+1 6≡ 0

(mod p), satisfying all of the following conditions:
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g(βq) + (βq)q+2 ≡ 0 (mod p)

g(β2) + (β2)q+2 + (β2)q+3 ≡ 0 (mod p)

g(β4) + (β4)q+2 + (β4)q+3 + (β4)q+4 + (β4)q+5 ≡ 0 (mod p)
...

...
...

...
... (1)

g(β2q−2) + (β2q−2)q+2 + · · ·+ (β2q−2)3q−1 ≡ 0 (mod p)

g(β) + βq+2 + βq+3 + · · ·+ β3q+1 ≡ 0 (mod p),

then g(x) has the root pattern [βq, β2, βq, β4, . . . , βq, β2q−2, βq, β] by Lemma 2.4, clearlyM
is empty since aq+1 6≡ 0 (mod p), and using Lemma 4.1, we can construct the desired poly-
nomial f(x).
The conditions imposed on g(x) in (1) give a system of q+1 linear equations in the q+1

variables a1, a2, . . . , aq+1. Thus, to show the existence of a polynomial g(x) ∈ Fp[x] satisfying
(1), it suffices to show that the coefficient matrix

A =



















βq (βq)2 (βq)3 . . . (βq)q+1

β2 (β2)2 (β2)3 . . . (β2)q+1

β4 (β4)2 (β4)3 . . . (β4)q+1

...
...

...
. . .

...
β2q−2 (β2q−2)2 (β2q−2)3 . . . (β2q−2)q+1

β β2 β3 . . . βq+1



















is invertible modulo p. To do this, we show that p does not divide det(A). Factor out
the power of β in each row that appears in the first column of A to get that det (A) =
βq2+1 det (V ), where

V =



















1 βq (βq)2 . . . (βq)q

1 β2 (β2)2 . . . (β2)q

1 β4 (β4)2 . . . (β4)q

...
...

...
. . .

...
1 β2q−2 (β2q−2)2 . . . (β2q−2)q

1 β β2 . . . βq



















.

Now, V is a Vandermonde matrix, and its determinant is well-known. Labelling the entries
of the second column of V as

x1 = βq, xi = β2i−2, for i = 2, 3, . . . , q, and xq+1 = β,
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we have that det(V ) =
∏

i>j

(xi − xj). Since |β|p = 2q, the xi are distinct powers of β in

Fp, so that det(V ) 6≡ 0 (mod p), which proves the existence of a polynomial g(x) satisfying
(1). There is no guarantee, however, that the polynomial g(x) produced here is such that
aq+1 6≡ 0 (mod p), and so it could be that M is not empty for the sequence (g, 1, p). If,
in fact, aq+1 6≡ 0 (mod p), then, since q + 1 < p − 1, we can invoke Lemma 4.1 on g(x) to
produce a polynomial f(x) of degree at most p2− 3p+ q+4 such that the sequence (f, 1, p)
has the root pattern [β2, βq, β4, . . . , βq, β2q−2, βq, β, βq] withM empty. On the other hand,
if aq+1 ≡ 0 (mod p), we let h(x) = g(x) + xq+2. Then the sequence (h, 1, p) has the root
pattern [β2, βq, β4, . . . , βq, β2q−2, βq, β, βq] withM empty. Since q + 2 < p − 1, Lemma 4.1
can be applied to h(x) which yields a polynomial f(x) of degree at most p2 − 3p + q + 5,
such that the sequence (f, 1, p) has the root pattern [βq, β4, . . . , βq, β2q−2, βq, β, βq, β2, ] with
M empty, completing the proof of the theorem when p ≡ 3 (mod 4).
Now suppose that p ≡ 1 (mod 4). Let r ∈ Fp with |r|p = 4. Since r 6≡ −1 (mod p), there

exists a with 2 ≤ a ≤ p − 1 such that a(r + 1) ≡ 1 (mod p). Then the following facts are
easily derived, and we make use of them in the remainder of the proof:

|r3|p = 4, r2 ≡ (r3)2 ≡ −1 (mod p),

(2)

r3 ≡ r−1 ≡ −r ≡ a(r3 + 1) (mod p).

Define the polynomial f of degree 4a− 4 as

f := f(x) = x4a−4 + (x+ 1)
a−2
∑

k=0

x4k.

Then, using (2) together with the fact that |r|p = 4, we have that f(r) ≡ 1 − r (mod p),
f(r2) ≡ 1 (mod p), f(r3) ≡ 0 (mod p), and consequently,

f(r2) + (r2)4a−3 ≡ 1 + (−1)4a−3 ≡ 0 (mod p),

f(r) + r4a−3 + r4a−2 ≡ (1− r) + (r)−3 + (r)−2 ≡ (1− r) + r + (−1) ≡ 0 (mod p) and

f(r3) + (r3)4a−3 + (r3)4a−2 + (r3)4a−1 + (r3)4a ≡ 0 + (−r)4a−3 + (−r)4a−2 + (−r)4a−1 + 1

≡ −r−3 + r−2 − r−1 + 1 ≡ −r + (−1)− (−r) + 1 ≡ 0 (mod p).

Hence, (f, 1, p) has the root pattern [r2, r, r2, r3] = [p− 1, r, p− 1, p− r] by Lemma 2.4, and
M is empty.
We now show that f can be found with degree at most 2p − 6. Since r 6≡ 1 (mod p),

there exists b, with 2 ≤ b ≤ p − 1, such that b(−r + 1) ≡ 1 (mod p). Then b(r + 1) ≡ r
(mod p) from (2). Since a(r + 1) ≡ 1 (mod p), we have a(−r + 1) ≡ −r (mod p) from (2),
and thus

−r + 1 ≡ a(−r + 1) + 1 ≡ a(−r + 1) + a(r + 1) ≡ 2a (mod p). (3)
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Similarly,
r + 1 ≡ b(r + 1) + 1 ≡ b(r + 1) + b(−r + 1) ≡ 2b (mod p). (4)

Combining (3) and (4), we have

a+ b ≡ 1 (mod p). (5)

Also, from either (3) or (4), we have

2ab ≡ (−r + 1)b ≡ 1 (mod p). (6)

Since 2 ≤ a, b ≤ p−1, if both a and b are greater than or equal to
p+ 1

2
, then (5) implies that

a = b =
p+ 1

2
. But then, from (6), we have 1 ≡ 2ab ≡ 2

(

p+ 1

2

)2

(mod p), so that 2 ≡ 1

(mod p), which is impossible. Hence, at least one of a and b is smaller than
p+ 1

2
. Therefore,

we can choose r such that a ≤
p− 1

2
. Then the degree of f is 4a−4 ≤ 4

(

p− 1

2

)

−4 = 2p−6,

which completes the proof of the theorem.

We give two examples which illustrate Theorem 4.5.

Example 4.6. When p = 7, letting β = 3, the proof of the first part of Theorem 4.5
yields the polynomial g(x) = 4x4 + 3x3 + 5x2 + 6x + 1, which in turn produces f(x) =
x31+x26+x25+x22+x20+x19+x16+x15+x14+x13+x10+x9+x8+x7+x4+x3+x2+x+1,
and (f, 1, 7) has the root pattern [6, 2, 6, 4, 6, 3] in F7. Observe that this polynomial is quite
different from the polynomial in Example 4.4, and the polynomial f̂(x) = x42 + x40 + x39 +
x38 + x37 + x35 + · · · + x18 + x16 + . . . x5 + x3 + 1 constructed from Example 3.4 using the
technique described in Section 2. However, for all three of these polynomials,M is empty,
and their root patterns are equivalent.

Example 4.7. When p = 13, the proof of the second part of Theorem 4.5 produces the
polynomial f(x) = x8 + x5 + x4 + x + 1, and (f, 1, 13) has the root pattern [12, 8, 12, 5] in
F13.

5 Some Open Questions

Computer evidence has led us to pose the following questions.

Question 5.1. If the sequence (f, k, p) has a root pattern in Fpm for some m, then must M
be finite or empty?

Question 5.2. Which of the sequences (1, 1, p) have M finite?

Question 5.3. If we fix any one or two of the parameters f , k and p, can we always find
infinitely many values for the other parameter(s) such that the sequence (f, k, p) has M
nonempty and finite?

12
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