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Abstract

We study a particular number pyramid bn,k,l that relates the binomial, Deleham,
Eulerian, MacMahon-type and Stirling number triangles. The numbers bn,k,l are gen-
erated by a function Bc(x, y, t), c ∈ C, that appears in the calculation of derivatives of
a class of functions whose derivatives can be expressed as polynomials in the function
itself or a related function. Based on the properties of the numbers bn,k,l, we derive
several new relations related to these triangles. In particular, we show that the number
triangle Tn,k, recently constructed by Deleham (Sloane’s A088874), is generated by the
Maclaurin series of sechc t, c ∈ C. We also give explicit expressions and various partial
sums for the triangle Tn,k. Further, we find that em

2p, the numbers appearing in the
Maclaurin series of coshm t, for all m ∈ N, equal the number of closed walks, based at
a vertex, of length 2p along the edges of an m-dimensional cube.

1 Introduction

In this work we study a function Bc(x, y, t), the c-th power of B(x, y, t) defined in Eq.
(3.1), that plays a central role in the calculation of derivatives, of a class of functions whose
derivatives can be expressed as polynomials in the function itself or a related function. The
construction of these polynomials, in terms of the function Bc(x, y, t), is treated in a separate
paper [3]. Here we focus on Bc(x, y, t) as a generating function in its own right, and derive
from it some interesting number-theoretic results.
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We show that the function Bc(x, y, t) generates a number pyramid bn,k,l, of which various
partial sums are closely related to some important number triangles, including the binomial
coefficients

(

n
k

)

, a number triangle Tn,k recently constructed by Deleham [11, A088874], the
Eulerian numbers An,k [2], a particular kind of MacMahon numbers Bn,k [5, p. 331], and
Stirling numbers of the first kind s(n, k) [1, p. 824, 24.1.3].

We derive several new expressions related to these triangles. For the triangles An,k and
Bn,k, we obtain new generating functions. We show in particular that the so far unstudied
triangle Tn,k is generated by the Maclaurin series of sechc t, for all c ∈ C. The numbers Tn,k

are thus as fundamental for sechc t as the Euler numbers En are for sech t [1, p. 804, 23.1.2].
We give explicit expressions and various partial sums for the numbers Tn,k.

Moreover, the special cases c = m ∈ Z+ and c = −m ∈ Z− give rise to a particular
generalization of the Euler numbers En, here denoted Em

n and called “multinomial Euler
numbers”, and a generalization of even parity numbers en (defined in Eq. (2.2)), here denoted
em

n and called “even multinomial parity numbers”, respectively. The Em
n are generated by

the Maclaurin series of sechm t (so E1
n = En) and the em

n by the Maclaurin series of coshm t
(so e1

n = en). Obviously, Em
2p+1 = 0 and em

2p+1 = 0, for all p ∈ N, because sechm t and
coshm t are even functions of t. We obtain explicit formulas for the numbers Em

2p and em
2p,

as well as relations between them. The numbers em
2p turn out to have as combinatorial

interpretation, the number of closed walks, based at a vertex, of length 2p along the edges
of an m-dimensional cube.

2 Notation and definitions

1. Define the sets of positive odd and even integers Zo,+ and Ze,+, the negative odd and
even integers Zo,− and Ze,−, the odd integers Zo , Zo,− ∪ Zo,+ and the even integers
Ze , Ze,− ∪ {0} ∪ Ze,+, the positive integers Z+ , Zo,+ ∪ Ze,+ and negative integers
Z− , Zo,−∪Ze,−, the natural numbers N , {0}∪Z+ and the integers Z , Z−∪{0}∪Z+.
Let Z+,n , {1, 2, ..., n}, Z−,n , {−n,−(n − 1), ...,−1}, Nn , {0} ∪ Z+,n and denote
by C the complex numbers.

2. Define

δcondition ,

{

1, if condition is true;
0, if condition is false,

(2.1)

and for all n ∈ Z the even and odd parity numbers

en , δn∈Ze
, (2.2)

on , δn∈Zo
. (2.3)

3. Denote the n-th derivative with respect to x by Dn
x .

4. We define 0n , δn=0, for all n ∈ N, and z0 , 1, for all z ∈ C.
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5. Let n ∈ N and z ∈ C. Denote by

z(n) , δn=0 + δn>0 z(z + 1)(z + 2)...(z + (n − 1)), (2.4)

=
Γ(z + n)

Γ(z)
, (2.5)

=
n

∑

k=0

(−1)n−ks (n, k) zk, (2.6)

the rising factorial polynomial (Pochhammer’s symbol). In particular, 0(n) = δn=0 and
m(n) = (m − 1 + n)!/(m − 1)! for m ∈ Z+.

Also, denote by

z(n) , δn=0 + δn>0 z(z − 1)(z − 2)...(z − (n − 1)), (2.7)

=
Γ(z + 1)

Γ(z + 1 − n)
, (2.8)

=
n

∑

k=0

s (n, k) zk, (2.9)

the falling factorial polynomial. In particular, 0(n) = δn=0 and m(n) = (m!/(m − n)!) δn≤m

for m ∈ Z+. In Eqs. (2.6) and (2.9), s (n, k) are Stirling numbers of the first kind. We

have z(n) = (−1)n (−z)(n).

6. We will need

1

(1 − z)c =
+∞
∑

n=0

c(n) z
n

n!
, (2.10)

(1 + z)c =
+∞
∑

n=0

c(n)
zn

n!
, (2.11)

being absolutely and uniformly convergent series for all z ∈ {z ∈ C : |z| < 1} and for
all c ∈ C. We have for all n ∈ N and for all a, b ∈ C,

(a + b)(n) =
n

∑

k=0

(

n
k

)

a(n−k)b(k), (2.12)

(a + b)(n) =
n

∑

k=0

(

n
k

)

a(n−k)b(k). (2.13)

In particular, for a = c = −b, we get the orthogonality relations, for all n ∈ N and for
all c ∈ C,

n
∑

k=0

(

n
k

)

c(n−k) (−c)(k) = δn=0, (2.14)

n
∑

k=0

(

n
k

)

c(n−k) (−c)(k) = δn=0. (2.15)
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7. With m,n ∈ N and K , {k1, k2, ..., km ∈ N}, define |K| , k1+k2+...+km, # (K) , m
and

(

n
K

)

, n!/ (k1!k2!...km!), expressions that are used in the last section.

3 The generating function Bc(x, y, t)

For all x, y, t ∈ C define

B(x, y, t) ,

{

x−y

xe−
x−y

2
t−ye+

x−y
2

t
, if x 6= y;

1
1−xt

, if x = y.
(3.1)

Proposition 3.1. The Maclaurin series of the c-th power of B(x, y, t), for all c ∈ C, is

given by

Bc(x, y, t) =
+∞
∑

n=0

2−nBn(x, y; c)
tn

n!
, (3.2)

and converges absolutely and uniformly for |t| <
∣

∣

∣

ln x−ln y
x−y

∣

∣

∣
. For all n ∈ N,

Bn(x, y; c) =
n

∑

k=0

Bn,k(c)x
n−kyk, (3.3)

with the coefficients Bn,k(c) satisfying, for all k ∈ Nn,

Bn+1,k+1(c) = (2(k + 1) + c) Bn,k+1(c) + (2(n − k) + c) Bn,k(c), (3.4)

with B0,0(c) = 1 and we define Bn,k(c) , 0, for all k /∈ Nn.

Proof. The point t = 0 is an ordinary point of Bc(x, y, t), so Bc(x, y, t) has a Maclaurin

power series, converging absolutely and uniformly for |t| <
∣

∣

∣

ln x−ln y
x−y

∣

∣

∣.

Define the partial differential operator

D(x, y, t; c) ,

(

1 −
x + y

2
t

)

∂

∂t
+

x − y

2

(

x
∂

∂x
− y

∂

∂y

)

− c
x + y

2
. (3.5)

A direct calculation shows that

D(x, y, t; c)Bc(x, y, t) = 0. (3.6)

Substituting in Eq. (3.6) for Bc(x, y, t) the uniformly convergent series (3.2) gives

+∞
∑

n=0

2−n (Dn(x, y; c)Bn(x, y; c))
tn

n!
= 0,

wherein

Dn(x, y; c) ,
1

2
T1 +

x − y

2

(

x
∂

∂x
− y

∂

∂y

)

− (n + c)
x + y

2
(3.7)

4



and Tp is the difference shift operator such that TpBn(x, y; c) = Bn+p(x, y; c). This holds for
any t, so we have

Dn(x, y; c)Bn(x, y; c) = 0. (3.8)

Substituting in Eq. (3.8) for Bn(x, y; c) the bivariate homogeneous polynomial (3.3) gives
n

∑

k=0

(Dn,k(x, y; c)Bn,k(c)) xn−kyk = 0,

wherein

Dn,k(x, y; c) ,
1

2
T1,0 − ((n − k + 1) + c/2) T0,−1 − (k + c/2) (3.9)

and Tp,q is the bivariate difference shift operator such that Tp,qBn,k(c) = Bn+p,k+q(c). This
holds for any x and y, so we have

Dn,k(x, y; c)Bn,k(c) = 0, (3.10)

which is just Eq. (3.4).
¿From the fact that Bc(x, y, 0) = 1, we obtain B0(x, y; c) = B0,0(c) = 1.

We have that B(x, y, t) = B(y, x, t) for all x, y, t ∈ C, hence Bn(x, y; c) = Bn(y, x; c) for
all n ∈ N, and Bn,k(c) = Bn,n−k(c) for all c ∈ C.

3.1 Special cases

(i) For x = 0 or y = 0, we get

Bc(0, z, t) = Bc(z, 0, t) = e
c
2
zt. (3.11)

This implies that
Bn(0, z; c) = Bn(z, 0; c) = (cz)n , (3.12)

and this yields in turn that
Bn,k(c) = cnδn=k. (3.13)

(ii) For y = ±x, we get

Bc(x, x, t) =
1

(1 − xt)c , (3.14)

Bc(x,−x, t) = sechc(xt). (3.15)

This gives

Bn(x, x; c) = 2nc(n)xn, (3.16)

Bn(x,−x; c) = 2n
(

lim
t→0

Dn
t sechc t

)

xn, (3.17)

and this yields in turn
n

∑

k=0

Bn,k(c) = 2nc(n), (3.18)

n
∑

k=0

(−1)kBn,k(c) = 2n
(

lim
t→0

Dn
t sechc t

)

. (3.19)
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n\ k 1 2 3 4 5 6

1 1

2 1 1

3 1 6 1

4 1 23 23 1

5 1 76 230 76 1

6 1 237 1682 1682 237 1

Table 1: The number triangle Bn,k

3.2 The numbers Bn,k(1) and Bn,k(2)

Putting c = 0 in Eq. (3.2) shows that Bn(x, y; 0) = δn=0, so Bn,k(0) = δn=0.
(i) For c = 1, Eq. (3.4) becomes

Bn+1,k+1(1) = (2(k + 1) + 1) Bn,k+1(1) + (2(n − k) + 1) Bn,k(1),

so
Bn,k(1) = Bn+1,k+1, (3.20)

with Bn,k the numbers derived by MacMahon [5, p. 331], (Sloane’s A060187), cf. Table 1.
In this case, Eqs. (3.18) and (3.19) become

n
∑

k=0

Bn+1,k+1 = 2nn!, (3.21)

n
∑

k=0

(−1)kBn+1,k+1 = 2nEn, (3.22)

with En the Euler (or secant) numbers [1, p. 804, 23.1.2], (|E2n| are Sloane’s A000364). The

numbers Bn,k are thus (also) generated by (for |t| < 1
2

∣

∣

∣

ln y
1−y

∣

∣

∣
and y 6= 1)

1 − y

e−(1−y)t − ye+(1−y)t
=

+∞
∑

n=0

n
∑

k=0

Bn+1,k+1y
k tn

n!
. (3.23)

We can also obtain from Eq. (3.23) the following more standard generating function for the

Bn,k, (i.e., on the same footing as Eq. (3.29) below), (for |t| <
∣

∣

∣

ln y
1−y

∣

∣

∣ and y 6= 1)

1

2
ln

e−
1−y2

2
t+ye+

1−y2

2
t

1+y

e−
1−y2

2
t−ye+

1−y2

2
t

1−y

=
+∞
∑

n=1

n
∑

k=1

Bn,ky
2k−1 tn

n!
. (3.24)

Eqs. (3.23) and (3.24) appear to be new.
(ii) For c = 2, Eq. (3.4) becomes

Bn+1,k+1(2) = (k + 2) 2Bn,k+1(2) + (n − k + 1) 2Bn,k(2),
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n\ k 1 2 3 4 5 6

1 1

2 1 1

3 1 4 1

4 1 11 11 1

5 1 26 66 26 1

6 1 57 302 302 57 1

Table 2: The number triangle An,k

so
Bn,k(2) = 2nAn+1,k+1, (3.25)

with An,k the Eulerian numbers [2], (Sloane’s A008292), cf. Table 2. Another notation for
the Eulerian numbers is

〈

n
k

〉

= An,k+1.
In this case, Eqs. (3.18) and (3.19) become

n
∑

k=0

An+1,k+1 = (n + 1)!, (3.26)

n
∑

k=0

(−1)kAn+1,k+1 = 2n+2
(

2n+2 − 1
) Bn+2

n + 2
, (3.27)

with Bn the Bernoulli numbers [1, p. 804, 23.1.2], (|Bn| are Sloane’s A027641 and A027642).
In Eq. (3.27) we used Dn

t sech2 t = Dn+1
t tanh t. The Eulerian numbers An,k are thus (also)

generated by

1
(

e−
1−y
2

t−ye+
1−y
2

t

1−y

)2 =
+∞
∑

n=0

n
∑

k=0

An+1,k+1y
k tn

n!
. (3.28)

The well-known standard generating function for the Eulerian numbers is

1 − y

1 − ye(1−y)t
= 1 +

+∞
∑

n=1

n
∑

k=1

An,ky
k tn

n!
. (3.29)

For further convenience we define An,k , 0 and Bn,k , 0, for all k /∈ Z+,n.

3.3 Examples of some Bn(x, y; c)

The first six Bn(x, y; c) are:
B0(x, y; c) = 1,

B1(x, y; c) = cx + cy,

B2(x, y; c) = c2x2 + 2c (2 + c) xy + c2y2,

B3(x, y; c) = c3x3 + c
(

3c2 + 12c + 8
)

x2y + c
(

3c2 + 12c + 8
)

xy2 + c3y3,
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B4(x, y; c) =

c4x4

+4c (c3 + 6c2 + 8c + 4) x3y
+2c (3c3 + 24c2 + 56c + 32) x2y2

+4c (c3 + 6c2 + 8c + 4) xy3

+c4y4

,

B5(x, y; c) =

c5x5

+c (5c4 + 40c3 + 80c2 + 80c + 32) x4y
+c (10c4 + 120c3 + 480c2 + 720c + 352) x3y2

+c (10c4 + 120c3 + 480c2 + 720c + 352) x2y3

+c (5c4 + 40c3 + 80c2 + 80c + 32) xy4

+c5y5

.

4 Properties of the Bn(x, y; c)

4.1 Additive property with respect to the parameter c

Obviously, for all a, b ∈ C,

Ba+b(x, y, t) = Ba(x, y, t)Bb(x, y, t), (4.1)

and from this follows, for all n ∈ N,

Bn(x, y; a + b) =
n

∑

k=0

(

n
k

)

Bn−k(x, y; a)Bk(x, y; b). (4.2)

Substituting Eq. (3.3) in Eq. (4.2) gives

Bn,k(a + b) =
n

∑

p=0

(

n
p

)

k
∑

q=0

Bn−p,k−q(a)Bp,q(b). (4.3)

For instance, by letting a = b = 1, Eq. (4.3) yields the following quadratic expansion of
Eulerian numbers An,k in the MacMahon numbers Bn,k,

An+1,k+1 =
1

2n

n
∑

p=0

(

n
p

)

k
∑

q=0

Bn−p+1,k−q+1Bp+1,q+1. (4.4)

4.2 Infinite series

Proposition 4.1. For all c ∈ C and for all n ∈ N,

Bn(x, y; c) =

{

(x−y)n+c

xc

∑+∞
k=0 c(k) (2k + c)n (y/x)k

k!
if |y| < |x| ;

(y−x)n+c

yc

∑+∞
k=0 c(k) (2k + c)n (x/y)k

k!
if |x| < |y| ,

(4.5)

where x, y ∈ C and the series converges absolutely.
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Proof. (i) Applying Eq. (2.10) to Bc(x, y, t) gives, for all (x, y) ∈ D|y|<|x| , {(x, y) ∈ C
2 : |y| < |x|}

and for all t ∈ Λt (x, y) , {t ∈ C : Re((1 − y/x)t) < (ln |x| − ln |y|)}, the absolutely conver-
gent series

Bc(x, y, t) =
(x − y)c

xc

+∞
∑

k=0

c(k) (y/x)k

k!
e+(k+c/2)(x−y)t.

Expanding herein e+(k+c/2)(x−y)t in Maclaurin series gives

Bc(x, y, t) =
(x − y)c

xc

+∞
∑

k=0

c(k) (y/x)k

k!

+∞
∑

n=0

(k + c/2)n (x − y)n tn

n!
.

Both series are absolutely convergent, so we may interchange the order of summation [10, p.
175, Theorem 8.3], yielding

Bc(x, y, t) =
+∞
∑

n=0

(

(x − y)n+c

xc

+∞
∑

k=0

c(k) (k + c/2)n (y/x)k

k!

)

tn

n!
.

On the other hand holds by Proposition 3.1, for all t ∈ Ωt (x, y) ,

{

t ∈ C : |t| <
∣

∣

∣

ln x−ln y
x−y

∣

∣

∣

}

,

that

Bc(x, y, t) =
+∞
∑

n=0

2−nBn(x, y; c)
tn

n!
.

For (x, y) ∈ D|y|<|x|, Λt (x, y) ∩ Ωt (x, y) 6= ∅. Then for all t ∈ Λt (x, y) ∩ Ωt (x, y) holds

+∞
∑

n=0

2−nBn(x, y; c)
tn

n!
=

+∞
∑

n=0

(

(x − y)n+c

xc

+∞
∑

k=0

c(k) (k + c/2)n (y/x)k

k!

)

tn

n!
,

and the first part of Eq. (4.5) follows.
(ii) Similar.

In particular, Eq. (4.5) becomes, for c = m ∈ Z+,

Bn(x, y; m) = (x − y)n+m
+∞
∑

k=0

(

m−1+k
k

)

(2k + m)n x−(k+m)yk, (4.6)

and for c = −m ∈ Z−,

Bn(x, y;−m) = (x − y)n−m
m

∑

k=0

(−1)k
(

m
k

)

(2k − m)n xm−kyk. (4.7)

Moreover, Eq. (4.5) reduces to the following special form, for all c ∈ C,

+∞
∑

k=0

c(k) (2k + c)n zk

k!
=

Bn(1, z; c)

(1 − z)n+c , |z| < 1, (4.8)

+∞
∑

k=0

c(k) (2k + c)n z−k

k!
= zc Bn(z, 1; c)

(z − 1)n+c , |z| > 1. (4.9)
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In particular, Eqs. (4.8) and (4.9) become,
(i) for c = 1, for all n ∈ N,

+∞
∑

k=0

(2k + 1)n zk =
Bn(1, z)

(1 − z)n+1 , |z| < 1, (4.10)

+∞
∑

k=0

(2k + 1)n z−k = z
Bn(z, 1)

(z − 1)n+1 , |z| > 1. (4.11)

Herein is Bn(x, y) the MacMahon homogeneous bivariate polynomial,

Bn(x, y; 1) , Bn(x, y) =
n

∑

k=0

Bn+1,k+1x
n−kyk. (4.12)

(ii) for c = 2, for all n ∈ Z+,

+∞
∑

l=1

lnzl =
z

(1 − z)n+1 An−1(1, z), |z| < 1, (4.13)

+∞
∑

l=1

lnz−l =
z

(z − 1)n+1 An−1(z, 1), |z| > 1. (4.14)

Herein is An(x, y) the Eulerian homogeneous bivariate polynomial,

2−nBn(x, y; 2) , An(x, y) =
n

∑

k=0

An+1,k+1x
n−kyk. (4.15)

Notice that the left hand side of Eq. (4.13) is by definition the polylogarithm of negative
integer order, Li−n(z) [6]. Further, combining Eq. (4.13) with [13, Eq. (14)], we get the
interesting identity, for all n ∈ N,

n
∑

p=1

(−1)n−pp!S(n, p)zp−1 = An−1(z, z − 1). (4.16)

Taking in Eq. (4.7) the limy→−x and using Eq. (3.15) we obtain, for all m,n ∈ N,

lim
t→0

Dn
t coshm t =

1

2m

m
∑

k=0

(

m
k

)

(2k − m)n . (4.17)

Taking in Eq. (4.7) the limy→x and using Eq. (3.16) yields, for all m ∈ N,

1

2m

m
∑

k=0

(−1)k
(

m
k

)

(2k − m)m = (−1)mm!. (4.18)
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4.3 Generating expression

Proposition 4.2. For all n ∈ N and for all c, z ∈ C,

Bn(1, z; c) = (1 − z)n+c (c + 2zDz)
n (1 − z)−c . (4.19)

Proof. It is easy to show from Eq. (2.11) that, for all n ∈ N, for all b, x ∈ C and for all
z ∈ {z ∈ C : |z| < 1}, the following identity holds

(x + 2zDz)
n (1 + z)b =

+∞
∑

k=0

(2k + x)n b(k)
zk

k!
.

Then

(1 + z)a (x + 2zDz)
n (1 + z)b =

+∞
∑

k=0

(

k
∑

l=0

(

k
l

)

a(k−l)b(l) (2l + x)n

)

zk

k!
.

Putting x = c, a = n + c, b = −c and substituting z → −z, we get

(1 − z)n+c (c + 2zDz)
n (1 − z)−c

=
+∞
∑

k=0

(

(−1)k

k
∑

l=0

(

k
l

)

(n + c)(k−l) (−c)(l) (2l + c)n

)

zk

k!
.

Due to the fact that (1 − z)n+c (c + 2zDz)
n (1 − z)−c is a polynomial of degree n in z, we

must have that

(−1)k

k
∑

l=0

(

k
l

)

(n + c)(k−l) (−c)(l) (2l + c)n = 0,

for all k /∈ Z+,n. Hence using Eq. (5.5) below, Eq. (3.3) and the fact that Bn,k(c) , 0, for
all k /∈ Z+,n, Eq. (4.19) follows.

In particular, for c = 1, we obtain

(1 − z)n+1 (1 + 2zDz)
n (1 − z)−1 =

n
∑

k=0

Bn+1,k+1z
k, (4.20)

and for c = 2, we obtain

(1 − z)n+2 (1 + zDz)
n (1 − z)−2 =

n
∑

k=0

An+1,k+1z
k. (4.21)

These appear to be new generating expressions for the MacMahon and Eulerian numbers.
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5 Properties of the Bn,k(c)

Proposition 5.1. For all m,n ∈ N and for all c ∈ C,

m
∑

k=0

(

m
k

)

(n + c)(m−k) (k!Bn,k(c)) = c(m) (2m + c)n . (5.1)

Proof. For all c ∈ C and for all z ∈ C such that |z| < 1 we have the absolutely convergent
series (4.8). As |z| < 1, we can apply Eq. (2.10) and get

+∞
∑

m=0

c(m) (2m + c)n zm

m!
=

n
∑

k=0

k!Bn,k(c)
zk

k!

+∞
∑

l=0

(n + c)(l) zl

l!
.

Interchanging the summation order gives

+∞
∑

m=0

c(m) (2m + c)n zm

m!
=

+∞
∑

l=0

n
∑

k=0

(

k+l
k

)

(n + c)(l) k!Bn,k(c)
zk+l

(k + l)!
.

With the definition Bn,k(c) , 0, for all k /∈ Z+,n, we can write this as

+∞
∑

m=0

c(m) (2m + c)n zm

m!
=

+∞
∑

l=0

+∞
∑

k=0

(

k+l
k

)

(n + c)(l) k!Bn,k(c)
zk+l

(k + l)!
.

This is equivalent to

+∞
∑

m=0

c(m) (2m + c)n zm

m!
=

+∞
∑

m=0

m
∑

k=0

(

m
k

)

(n + c)(m−k) k!Bn,k(c)
zm

m!
,

and since z is arbitrary, Eq. (5.1) follows.

In particular, for c = 1, we obtain

m
∑

k=0

(

n+m−k
n

)

Bn+1,k+1 = (2m + 1)n , (5.2)

and for c = 2, we obtain

m
∑

k=0

(

n+1+m−k
n+1

)

An+1,k+1 = (m + 1)n+1 . (5.3)

These are well-known partial sums of the MacMahon and Eulerian number triangles [5, p.
328 and p. 331].
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5.1 Expressions

Proposition 5.2. For all n ∈ N, for all k ∈ Nn and for all c ∈ C,

k!Bn,k(c) =
k

∑

l=0

(

k
l

)

(− (n + c))(k−l) c(l) (2l + c)n , (5.4)

= (−1)k

k
∑

l=0

(

k
l

)

(n + c)(k−l) (−c)(l) (2l + c)n . (5.5)

Proof. (i) We will show that Eq. (5.4) is a solution of Eq. (5.1). Substitute Eq. (5.4) in Eq.
(5.1) and get

m
∑

k=0

(

m
k

)

(n + c)(m−k)
k

∑

l=0

(

k
l

)

(− (n + c))(k−l) c(l) (2l + c)n = c(m) (2m + c)n .

Interchanging the summation order gives

m
∑

l=0

(

m
l

)

(

m−l
∑

q=0

(

m−l
q

)

(n + c)(m−l−q) (− (n + c))(q)

)

c(l) (2l + c)n = c(m) (2m + c)n .

Due to the orthogonality relation (2.14) this simplifies to

m
∑

l=0

(

m
l

)

δl=mc(l) (2l + c)n = c(m) (2m + c)n ,

and this is an identity.
(ii) Use z(n) = (−1)n (−z)(n).

In particular, for c = −m ∈ Z−,
(i) for n ≥ m

Bn,k(−m) = (−1)k

min(k,m)
∑

l=max(0,k+m−n)

(

n−m
k−l

)(

m
l

)

(2l − m)n , (5.6)

(ii) for n < m

Bn,k(−m) =

min(k,m)
∑

l=0

(−1)l
(

m−n−1+(k−l)
k−l

)(

m
l

)

(2l − m)n . (5.7)

An equivalent form of Eqs. (5.4) and (5.5) is

k!Bn,k(c) =
k

∑

l=0

(−1)k−l
(

k
l

) Γ (n + c + 1) Γ (c + l)

Γ (n + c + 1 − (k − l)) Γ (c)
(2l + c)n . (5.8)
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In particular, for c = 1, we obtain

Bn+1,k+1 =
k

∑

l=0

(−1)k−l
(

n+1
k−l

)

(2l + 1)n . (5.9)

Expression (5.9) coincides with that given by MacMahon [5, p. 331]. For c = 2 and using
Eq. (3.25), we get the familiar result

An+1,k+1 =
k

∑

l=0

(−1)k−l
(

n+2
k−l

)

(l + 1)n+1 , (5.10)

or equivalently, for all n − 1 ∈ Z+ and for all k ∈ Z+,n−1,

〈

n−1
k−1

〉

= An−1,k =
k

∑

l=0

(−1)l
(

n
l

)

(k − l)n−1 . (5.11)

Let S (j, i) denote the Stirling numbers of the second kind (Sloane’s A008277).

Proposition 5.3. For all n ∈ N, for all k ∈ Nn and for all c ∈ C,

Bn,k(c) = (−1)k

n
∑

j=0

(

n
j

)

2jcn−j

min(k,j)
∑

i=0

(−1)i
(

n−i
k−i

)

S (j, i) c(i). (5.12)

Proof. Using Eqs. (5.15) and (5.16) from Proposition 5.4 below, we have

Bn,k(c) =
n

∑

l=0

bn,k,lc
l,

= (−1)k

n
∑

l=0

(−1)l

l
∑

p=0

(−1)p
(

n
p

)

2n−p

min(k,n−p)
∑

i=l−p

(

n−i
k−i

)

S (n − p, i) s (i, l − p) cl.

Interchanging the order of the first two summation gives

Bn,k(c) = (−1)k

n
∑

p=0

n
∑

l=p

(−1)l−p
(

n
p

)

2n−p

min(k,n−p)
∑

i=l−p

(

n−i
k−i

)

S (n − p, i) s (i, l − p) cl,

= (−1)k

n
∑

p=0

n−p
∑

l−p=0

(−1)l−p
(

n
n−p

)

2n−p

min(k,n−p)
∑

i=l−p

(

n−i
k−i

)

S (n − p, i) s (i, l − p) cl−p+p,

= (−1)k

n
∑

p=0

n−p
∑

j=0

(−1)j
(

n
n−p

)

2n−p

min(k,n−p)
∑

i=j

(

n−i
k−i

)

S (n − p, i) s (i, j) cj+p,

= (−1)k

n
∑

q=0

(

n
q

)

2qcn−q

q
∑

j=0

(−c)j

min(k,q)
∑

i=j

(

n−i
k−i

)

S (q, i) s (i, j) .
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Taking into account that S (n, k) = s (n, k) , 0, for all k /∈ Nn, we can write this as

Bn,k(c) = (−1)k

n
∑

q=0

(

n
q

)

2qcn−q

q
∑

j=0

(−c)j

k
∑

i=0

(

n−i
k−i

)

S (q, i) s (i, j) .

Interchanging the two last summations yields

Bn,k(c) = (−1)k

n
∑

q=0

(

n
q

)

2qcn−q

k
∑

i=0

(

n−i
k−i

)

S (q, i)
i

∑

j=0

s (i, j) (−c)j.

Using the fundamental property of the Stirling numbers of the first kind [1, p. 824, 24.1.3,
I, B, 1],

(−c)(i) =
i

∑

j=0

s (i, j) (−c)j,

we obtain

Bn,k(c) = (−1)k

n
∑

q=0

(

n
q

)

2qcn−q

k
∑

i=0

(

n−i
k−i

)

S (q, i) (−c)(i).

By using the identity (−c)(i) = (−1)ic(i), writing j for q and replacing the upper limit in the
second sum with min(k, j), Eq. (5.12) follows.

In particular, for c = 1, we get

Bn+1,k+1 = (−1)k

n
∑

j=0

(

n
j

)

2j

min(k,j)
∑

i=0

(−1)i
(

n−i
k−i

)

i!S (j, i) , (5.13)

and for c = 2, we get

An+1,k+1 = (−1)k

n
∑

j=0

(

n
j

)

min(k,j)
∑

i=0

(−1)i
(

n−i
k−i

)

(i + 1)!S (j, i) . (5.14)

These appear to be new expressions for the MacMahon and Eulerian numbers, in terms of
Stirling numbers of the second kind.

5.2 Polynomial expression

Proposition 5.4. For all n ∈ N and for all z ∈ C,

Bn,k(c) =
n

∑

l=0

bn,k,lc
l, (5.15)

where, for all k, l ∈ Nn,

bn,k,l = (−1)k+l

l
∑

p=max(0,l−k)

(−1)p
(

n
p

)

2n−p

min(k,n−p)
∑

i=l−p

(

n−i
k−i

)

s (i, l − p) S (n − p, i) . (5.16)
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Proof. Using

(c + 2zDz)
n =

n
∑

l=0

(

n
l

)

cn−l2l (zDz)
l ,

we get

(1 − z)n+c (c + 2zDz)
n (1 − z)−c = (1 − z)n+c

n
∑

l=0

(

n
l

)

cn−l2l (zDz)
l (1 − z)−c .

Using herein the formula [9, p. 144],

(zDz)
l =

l
∑

p=0

S (l, p) zpDp
z ,

we obtain

(1 − z)n+c (c + 2zDz)
n (1 − z)−c

= (1 − z)n+c
n

∑

l=0

(

n
l

)

cn−l2l

l
∑

p=0

S (l, p) zpDp
z (1 − z)−c ,

=
n

∑

l=0

(

n
l

)

cn−l2l

l
∑

p=0

S (l, p) zpc(p) (1 − z)n−p ,

=
n

∑

l=0

(

n
l

)

cn−l2l

l
∑

p=0

S (l, p) (−c)(p) (1 − z)n−p (−z)p ,

=
n

∑

p=0

n
∑

l=p

(

n
l

)

cn−l2lS (l, p) (−c)(p) (1 − z)n−p (−z)p .

Substituting herein the binomial expansion for (1 − z)n−p gives

(1 − z)n+c (c + 2zDz)
n (1 − z)−c

=
n

∑

p=0

n
∑

l=p

(

n
l

)

cn−l2lS (l, p) (−c)(p)

n−p
∑

q=0

(

n−p
q

)

(−z)q (−z)p ,

=
n

∑

p=0

n
∑

l=p

n
∑

m=p

(

n
l

)(

n−p
m−p

)

cn−l2l (−c)(p) S (l, p) (−z)m ,

=
n

∑

p=0

n
∑

m=p

n
∑

l=p

(

n
l

)(

n−p
m−p

)

cn−l2l (−c)(p) S (l, p) (−z)m ,

=
n

∑

m=0

m
∑

p=0

(

n−p
m−p

)

(−c)(p)

n
∑

l=p

(

n
l

)

cn−l2lS (l, p) (−z)m .

Making use of the fundamental relation of the Stirling numbers of the first kind,

(−c)(p) =

p
∑

k=0

s (p, k) (−c)k ,
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we get

(1 − z)n+c (c + 2zDz)
n (1 − z)−c

=
n

∑

m=0

m
∑

p=0

(

n−p
m−p

)

p
∑

k=0

(−1)ks (p, k)
n

∑

q=p

(

n
q

)

2qS (q, p) cn−q+k (−z)m ,

=
n

∑

m=0

m
∑

p=0

(

n−p
m−p

)

p
∑

k=0

(−1)ks (p, k)

n−p
∑

l=0

(

n
n−l

)

2n−lS (n − l, p) cl+k (−z)m .

Summing over diagonals in the two last summations and putting S (n, k) = s (n, k) , 0, for
all k /∈ Nn, this becomes

(1 − z)n+c (c + 2zDz)
n (1 − z)−c

=
n

∑

m=0

m
∑

p=0

(

n−p
m−p

)

n
∑

q=0

n−p
∑

l=0

(−1)q−l
(

n
l

)

2n−lS (n − l, p) s (p, q − l) cq (−z)m ,

=
n

∑

m=0

n
∑

q=0

m
∑

p=0

n−p
∑

l=0

(

n−p
m−p

)

(−1)q−l
(

n
l

)

2n−lS (n − l, p) s (p, q − l) cq (−z)m ,

=
n

∑

m=0

n
∑

q=0

m
∑

p=0

n
∑

l=0

(

n−p
m−p

)

(−1)q−l
(

n
l

)

2n−lS (n − l, p) s (p, q − l) cq (−z)m ,

=
n

∑

m=0

n
∑

q=0

n
∑

l=0

m
∑

p=0

(

n−p
m−p

)

(−1)q−l
(

n
l

)

2n−lS (n − l, p) s (p, q − l) cq (−z)m ,

=
n

∑

m=0

n
∑

q=0

n
∑

l=0

(−1)q−l
(

n
l

)

2n−l

min(m,n−l)
∑

p=max(0,q−l)

(

n−p
m−p

)

S (n − l, p) s (p, q − l) cq (−z)m .

Renaming indexes gives

(1 − z)n+c (c + 2zDz)
n (1 − z)−c

=
n

∑

k=0

(−1)k

n
∑

l=0

(−1)l

n
∑

j=0

(

n
j

)

(−1)j



2n−j

min(k,n−j)
∑

i=max(0,l−n+n−j)

(

n−i
k−i

)

S (n − j, i) s (i, l − n + n − j)



 clzk,

=
n

∑

k=0

(−1)k

n
∑

l=0

(−1)l

n
∑

j=0

(

n
j

)

(−1)n−j



2j

min(k,j)
∑

i=max(0,j+l−n)

(

n−i
k−i

)

S (j, i) s (i, j + l − n)



 clzk.
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Applying Proposition 4.2 and identification with

Bn(1, z; c) =
n

∑

k=0

(

n
∑

l=0

bn,k,lc
l

)

zk,

yields, for all k, l ∈ Nn,

bn,k,l = (−1)n+k+l

n
∑

j=n−l

(−1)j
(

n
j

)



2j

min(k,j)
∑

i=j−(n−l)

(

n−i
k−i

)

S (j, i) s (i, j − (n − l))



 .

This can be rewritten as

bn,k,l = (−1)n+l+k

n
∑

j=n−l

(−1)j
(

n
j

)

2j

min(k,j)
∑

i=j−(n−l)

(

n−i
k−i

)

S (j, i) s (i, j − (n − l)) ,

= (−1)k

l
∑

j−(n−l)=0

(−1)j−(n−l)
(

n
j−(n−l)+(n−l)

)

2j−(n−l)+(n−l)

min(k,j−(n−l)+(n−l))
∑

i=j−(n−l)

(

n−i
k−i

)

S (j − (n − l) + (n − l), i) s (i, j − (n − l)) ,

= (−1)k

l
∑

q=0

(−1)q
(

n
q+(n−l)

)

2q+(n−l)

min(k,q+(n−l))
∑

i=q

(

n−i
k−i

)

S (q + (n − l), i) s (i, q) ,

= (−1)k

l
∑

q=0

(−1)q
(

n
l−q

)

2n−(l−q)

min(k,n−(l−q))
∑

i=q

(

n−i
k−i

)

S (n − (l − q), i) s (i, q) ,

= (−1)k

l
∑

p=max(0,l−k)

(−1)l−p
(

n
p

)

2n−p

min(k,n−p)
∑

i=l−p

(

n−i
k−i

)

S (n − p, i) s (i, l − p) .

Using basic properties of the Stirling numbers, it is easy to derive the following special
values for the bn,k,l,

bn,n,l = bn,0,l = δn=l, (5.17)

bn,k,n =
(

n
k

)

, (5.18)

bn,k,0 = δk=0δn=0. (5.19)
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5.3 Symmetry

Recall Eq. (5.5) and a variant of it obtained by replacing k with n − k,

k!Bn,k(c) = (−1)k

k
∑

l=0

(

k
l

)

(n + c)(k−l) (−c)(l) (2l + c)n ,

(n − k)!Bn,n−k(c) = (−1)n−k

n−k
∑

l=0

(

n−k
l

)

(n + c)(n−k−l) (−c)(l) (2l + c)n .

Due to the symmetry Bn,k(c) = Bn,n−k(c), there must hold, for all n ∈ N, for all k ∈ Nn and
for all c ∈ C, that

(−1)k

k!

k
∑

l=0

(

k
l

)

(n + c)(k−l) (−c)(l) (2l + c)n

=
(−1)n−k

(n − k)!

n−k
∑

l=0

(

n−k
l

)

(n + c)(n−k−l) (−c)(l) (2l + c)n . (5.20)

In particular, for k = 0, Eq. (5.20) yields

(−1)n

n!

n
∑

l=0

(−1)l
(

n
l

)c + n

c + l
(c + 2l)n =

cn

c(n)
, (5.21)

and for k = 1,

(−1)n

n!

n
∑

l=0

(−1)l
(

n
l

)(c + n + 1) (c + n)

(c + l + 1)(c + l)
(c + 2l)n+1

=
c (c + 2)n+1 − (c + n + 1) cn+1

c(n)
. (5.22)

5.4 A result of Ruiz

Summing Eq. (5.8) over k from 0 to n and using result (3.18), we get, for all n ∈ N and for
all c ∈ C,

c(n) = 2−n

n
∑

k=0

Bn,k(c),

=
n

∑

k=0

k
∑

l=0

(−1)k−l
(

n+c
k−l

)(

c−1+l
l

)

(l + c/2)n ,

or
n

∑

l=0

(

n−l
∑

q=0

(−1)q
(

n+c
q

)

)

(

c−1+l
l

)

(l + c/2)n = c(n).
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Using the binomial identity

n−l
∑

q=0

(−1)q
(

n+c
q

)

= (−1)n−l (n+c−1
n−l

)

,

we get
n

∑

l=0

(−1)n−l (n+c−1
n−l

)(

c−1+l
l

)

(l + c/2)n = c(n),

or
(

n+c−1
n

)

n
∑

l=0

(−1)n−l (n
l

)

(l + c/2)n = c(n),

or
n

∑

l=0

(−1)n−l (n
l

)

(l + c/2)n = n!,

or finally
1

n!

n
∑

l=0

(−1)l (n
l

)

((−c/2) − l)n = 1. (5.23)

Identity (5.23) is a result of Ruiz [8]. Written in the form

1

n!

n
∑

l=0

(−1)n−l (n
l

)

(c + 2l)n = 2n, (5.24)

it can be regarded as the first identity in a series of identities of which Eqs. (5.21) and (5.22)
are the next two successors. Ruiz’s result however is special because the sum in Eq. (5.24)
is independent of c.

In addition, applying Dm
c to Eq. (5.24) we obtain the following derived identities, for all

n ∈ N, for all m ∈ Nn and for all c ∈ C,

n
∑

l=0

(−1)l (n
l

)

(c + 2l)n−m = (−1)n 2nn!δm=0. (5.25)

6 Properties of the bn,k,l

Due to the symmetry relation Bn,k(c) = Bn,n−k(c), we have that bn,n−k,l = bn,k,l, for all n ∈ N

and for all k, l ∈ Nn.

6.1 Recursion relation for the bn,k,l

Proposition 6.1. For all n ∈ N and for all k, l ∈ Nn,

bn+1,k+1,l+1 = 2(k + 1)bn,k+1,l+1 + bn,k+1,l + 2(n − k)bn,k,l+1 + bn,k,l, (6.1)

with b0,0,0 = 1 and bn,k,l , 0 if k, l /∈ Z+,n.
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Proof. ¿From the fact that Bn,k(0) = δn=0 we find that bn,k,0 = δk=0δn=0 and hence b0,0,0 = 1.
Substituting Eq. (5.15) in Eq. (3.4), we get

n+1
∑

l=0

bn+1,k+1,lc
l = (2(k + 1) + c)

n
∑

l=0

bn,k+1,lc
l + (2(n − k) + c)

n
∑

l=0

bn,k,lc
l.

This is equivalent to

n+1
∑

l=0

bn+1,k+1,lc
l =

n
∑

l=0

bn,k+1,lc
l+1 +

n
∑

l=0

bn,k,lc
l+1

+2(k + 1)
n

∑

l=0

bn,k+1,lc
l + 2(n − k)

n
∑

l=0

bn,k,lc
l,

or

n+1
∑

l=0

bn+1,k+1,lc
l =

n+1
∑

q=1

bn,k+1,q−1c
q +

n+1
∑

q=1

bn,k,q−1c
q

+2(k + 1)
n

∑

l=0

bn,k+1,lc
l + 2(n − k)

n
∑

l=0

bn,k,lc
l,

or, because bn,k,l , 0 if k, l /∈ Z+,n, we get

n+1
∑

l=0

bn+1,k+1,lc
l =

n+1
∑

q=0

bn,k+1,q−1c
q +

n+1
∑

q=0

bn,k,q−1c
q

+2(k + 1)
n+1
∑

l=0

bn,k+1,lc
l + 2(n − k)

n+1
∑

l=0

bn,k,lc
l.

This holds for all c, so we obtain

bn+1,k+1,l = 2(k + 1)bn,k+1,l + bn,k+1,l−1 + 2(n − k)bn,k,l + bn,k,l−1.

6.2 Partial sums of the bn,k,l

The following result shows that various partial sums over the number pyramid bn,k,l are
related to several important number triangles.
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Proposition 6.2. For all n ∈ N and for all k, l ∈ Nn,

n
∑

l=0

bn,k,l = Bn+1,k+1, (6.2)

n
∑

l=0

(−1)lbn,k,l = (−1)n−k
((

n
k

)

− 2onδk>0

(

n−1
k−1

))

, (6.3)

n
∑

k=0

bn,k,l = (−1)n−l2ns(n, l), (6.4)

n
∑

k=0

(−1)kbn,k,l = en(−1)n/22nδl≤n/2Tn/2,l. (6.5)

Proof. (i) This immediately follows from Eq. (3.20).
(ii) We have, for all z, t ∈ C,

B−1(1, z, t)

=
1

1 − z
e−

1−z
2

t −
z

1 − z
e+ 1−z

2
t,

=
+∞
∑

n=0

2−n(−1)n (1 − z)n−1 tn

n!
− z

+∞
∑

n=0

2−n (1 − z)n−1 tn

n!
,

=
+∞
∑

n=0

2−n ((−1)n − z) (1 − z)n−1 tn

n!
,

=
+∞
∑

n=0

2−n

(

δn=0 + δn>0 ((−1)n − z)
n−1
∑

k=0

(

n−1
k

)

(−z)k

)

tn

n!
,

=
+∞
∑

n=0

2−n

(

δn=0 + δn>0

(

(−1)n

n−1
∑

k=0

(

n−1
k

)

(−z)k +
n−1
∑

k=0

(

n−1
k

)

(−z)k+1

))

tn

n!
,

=
+∞
∑

n=0

2−n

(

δn=0 + δn>0

(

(−1)n

n−1
∑

k=0

(

n−1
k

)

(−z)k +
n

∑

l=1

(

n−1
l−1

)

(−z)l

))

tn

n!
,

or

B−1(1, z, t)

=
+∞
∑

n=0

2−n



δn=0 + δn>0





(−1)n

+
∑n−1

k=1

(

(−1)n
(

n−1
k

)

+
(

n−1
k−1

))

(−z)k

+(−z)n









tn

n!
.

With the identity

(−1)n
(

n−1
k

)

+
(

n−1
k−1

)

=

(

(−1)n + (1 − (−1)n)
k

n

)

(

n
k

)

,
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the expression inside the first pair of parentheses becomes

δn=0 + δn>0

(

(−1)n +
n−1
∑

k=1

(

(−1)n + (1 − (−1)n)
k

n

)

(

n
k

)

(−z)k + (−z)n

)

=
n

∑

k=0

(

δn=0 + δn>0

(

(−1)n + (1 − (−1)n)
k

n

))

(

n
k

)

(−z)k,

=
n

∑

k=0

(−1)n−k
(

n
k

)

(

1 − δn>0 (1 − (−1)n)
k

n

)

zk,

and we get for the full expression

B−1(1, z, t) =
+∞
∑

n=0

2−n

n
∑

k=0

(−1)n−k
(

n
k

)

(

1 − δn>0 (1 − (−1)n)
k

n

)

zk tn

n!
,

or

B−1(1, z, t) =
+∞
∑

n=0

2−n

n
∑

k=0

(−1)n−k
((

n
k

)

− 2onδk>0

(

n−1
k−1

))

zk tn

n!
.

Identifying this expression with

B−1(1, z, t) =
+∞
∑

n=0

n
∑

k=0

(

2−n

n
∑

l=0

bn,k,l(−1)l

)

zk tn

n!

yields
n

∑

l=0

(−1)lbn,k,l = (−1)n−k
((

n
k

)

− 2onδk>0

(

n−1
k−1

))

.

(iii) Applying Eq. (3.18) to the following double sum we obtain, for all c ∈ C,

n
∑

k=0

n
∑

l=0

bn,k,lc
l =

n
∑

k=0

Bn,k(c) = 2nc(n),

or
n

∑

l=0

(

(−1)n−l2−n

n
∑

k=0

bn,k,l

)

cl = c(n).

Identifying this with the definition of the Stirling numbers of the first kind gives

(−1)n−l2−n

n
∑

k=0

bn,k,l = s(n, l).

(iv) This result is related to the Maclaurin series of sechc t, considered in the next section.
There it is shown that (i)

2m+1
∑

k=0

(−1)kb2m+1,k,l = 0,
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and (ii) (see Proposition 7.1 below)

n
∑

k=0

(−1)kbn,k,l = (−1)n/22nenδl≤n/2Tn/2,l,

where the number triangle Tm,l is Sloane’s sequence A088874.

We can add to the sums given by Proposition 6.2, Eq. (3.25), which expressed in terms
of the bn,k,l reads

n
∑

l=0

bn,k,l2
l = 2nAn+1,k+1. (6.6)

6.3 The numbers Tn,k

We now give an explicit expression for the numbers A088874.

Proposition 6.3. For all n ∈ N and for all l ∈ Nn,

enδl≤n/2(−1)n/2−lTn/2,l =
l

∑

p=0

(−1)p
(

n
p

)

wn−p,l−p, (6.7)

wherein

wn,m , 2n

n
∑

k=m

S (n, k) s (k,m) (1/2)k . (6.8)

Proof. Summing over k from 0 to n in the expression for bn,k,l given by Proposition 5.4, we
get

n
∑

k=0

(−1)kbn,k,l =
l

∑

p=0

(−1)l−p
(

n
p

)

2n−p

n
∑

k=0

min(k,n−p)
∑

i=l−p

(

n−i
k−i

)

S (n − p, i) s (i, l − p) .

Using S (n, k) = s (n, k) , 0, ∀k /∈ Nn, we can write this as

n
∑

k=0

(−1)kbn,k,l =
l

∑

p=0

(−1)l−p
(

n
p

)

2n−p

n
∑

k=0

k
∑

i=0

(

n−i
k−i

)

S (n − p, i) s (i, l − p) .

Interchanging the last two summations gives

n
∑

k=0

(−1)kbn,k,l =
l

∑

p=0

(−1)l−p
(

n
p

)

2n−p

n
∑

i=0

(

n
∑

k=i

(

n−i
k−i

)

)

S (n − p, i) s (i, l − p) ,

=
l

∑

p=0

(−1)l−p
(

n
p

)

2n−p

n
∑

i=0

2n−iS (n − p, i) s (i, l − p) ,

or

2−n

n
∑

k=0

(−1)kbn,k,l =
l

∑

p=0

(−1)l−p
(

n
p

)

n−p
∑

i=l−p

2n−p−iS (n − p, i) s (i, l − p) .

Using herein definition (6.8) and the result (7.8) from Proposition 7.1 below, Eq. (6.7)
follows.
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n\ k 0 1 2 3 4 5 6 7 8

0 1

1 0 1

2 0 2 3

3 0 16 30 15

4 0 272 588 420 105

5 0 7 936 18 960 16 380 6 300 945

6 0 353 792 911 328 893 640 429 660 103 950 10 395

7 0 22 368 256 61 152 000 65 825 760 36 636 600 11 351 340 1 891 890 135 135

8 0 1 903 757 312 5 464 904 448 6 327 135 360 3 918 554 640 1 427 025 600 310 269 960 37 837 800 2 027 025

Table 3: The number triangle Tn,k

We give the onset of the number triangle Tn,k in Table 3. In particular, Tn,0 = δn=0,
Tn,1 are the tangent numbers (Sloane’s A000182), and Tn,n = 1.3.5...(2n− 1) are the double
factorial numbers (Sloane’s A001147).

7 The Maclaurin series of sechc t

Substituting x = −y = 1 in Eqs. (3.2) and (3.3), and using Eq. (3.15), shows that the
Maclaurin series of the c-th power of sech t is given by, for all c ∈ C,

sechc t =
+∞
∑

n=0

pn(c)
tn

n!
, (7.1)

where

pn(c) = 2−n

n
∑

k=0

(−1)kBn,k(c), (7.2)

=
n

∑

l=0

(

2−n

n
∑

k=0

(−1)kbn,k,l

)

cl. (7.3)

The polynomials pn(c) have the following properties.
(i) p2k+1(c) = 0, for all k ∈ N and for all c ∈ C, because sechc t is even in t.
(ii) pn(c) has degree n/2. This can be seen as follows. We have, for all m ∈ N,

limc→0 Dm
c sechc t = (ln sech t)m and (ln sech t)m = O (t2m). Hence pn(c) must have degree

n/2.
(iii) pn(0) = δn=0.
Then due to (i) we have, for all m ∈ N,

2m+1
∑

k=0

(−1)kb2m+1,k,l = 0, (7.4)

25

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A000182
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A001147


and we define, in accordance with (ii),

2m
∑

k=0

(−1)kb2m,k,l , (−1)m22mδl≤mTm,l. (7.5)

Hence

p2m(c) = lim
t→0

D2m
t sechc t = (−1)m

m
∑

l=0

Tm,lc
l, (7.6)

so

sechc t =
+∞
∑

m=0

(

(−1)m

m
∑

l=0

Tm,lc
l

)

t2m

(2m)!
. (7.7)

Due to (iii), Tn,0 = δn=0, for all n ∈ N.
We now clarify the nature of the numbers Tm,l defined in Eq. (7.5).

Proposition 7.1. The number triangle Tn,l, for all n ∈ N and for all l ∈ Nn, satisfies the

recursion relation

Tn+1,l+1 =
n−l
∑

p=0

2p
(

(

p+l+1
p+1

)

+ δl>0

(

p+l
p+1

)

)

Tn,l+p, (7.8)

with Tn,0 = δn=0.

Proof. Starting from the identity

D2
t sechc t = c2 sechc t − c(c + 1) sechc+2 t,

and substituting herein the series expansion for sechc t, Eq. (7.7), we get

+∞
∑

n=1

(−1)n

n
∑

l=0

Tn,lc
l t2(n−1)

(2(n − 1))!

= c2

+∞
∑

n=0

(−1)n

n
∑

l=0

Tn,lc
l t2n

(2n)!
− c(c + 1)

+∞
∑

n=0

(−1)n

n
∑

l=0

Tn,l(c + 2)l t2n

(2n)!
.

As this holds for all t, we must have that

−

n+1
∑

l=0

Tn+1,lc
l = c2

n
∑

l=0

Tn,lc
l − c(c + 1)

n
∑

l=0

Tn,l(c + 2)l.

This can be rearranged in the form

n
∑

l=0

Tn+1,l+1c
l = (c + 1)

n
∑

l=0

Tn,l(c + 2)l −
n

∑

l=0

Tn,lc
l+1.
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By the binomial theorem,

n
∑

l=0

Tn+1,l+1c
l =

n
∑

l=0

Tn,l

l
∑

k=0

(

l
k

)

2l−kck+1

+
n

∑

l=0

Tn,l

l
∑

k=0

(

l
k

)

2l−kck −
n

∑

l=0

Tn,lc
l+1.

Interchanging the order of summation in the double sum terms gives

n
∑

l=0

Tn+1,l+1c
l =

n
∑

k=0

n−k
∑

q=0

2q
(

q+k
k

)

Tn,q+kc
k+1

+
n

∑

k=0

n−k
∑

q=0

2q
(

q+k
k

)

Tn,q+kc
k −

n+1
∑

k=1

Tn,k−1c
k.

We can rearrange this further into

n
∑

l=0

Tn+1,l+1c
l =

n+1
∑

l=1

n−(l−1)
∑

q=0

2q
(

q+l−1
l−1

)

Tn,q+l−1c
l

+
n

∑

l=0

n−l
∑

q=0

2q
(

q+l
l

)

Tn,q+lc
l −

n+1
∑

l=1

Tn,l−1c
l.

As this holds for all c, we must have that

Tn+1,1 =
n

∑

q=0

2qTn,q;

n
∑

l=1

Tn+1,l+1c
l =

n
∑

l=1

(

∑n−(l−1)
q=0 2q

(

q+l−1
l−1

)

Tn,q+l−1

+
∑n−l

q=0 2q
(

q+l
l

)

Tn,q+l − Tn,l−1

)

cl

+Tn,nc
n+1 − Tn,ncn+1,

or

Tn+1,1 =
n

∑

q=0

2qTn,q;

Tn+1,l+1 =

n−(l−1)
∑

q=0

2q
(

q+l−1
l−1

)

Tn,q+l−1 +
n−l
∑

q=0

2q
(

q+l
l

)

Tn,q+l − Tn,l−1, l ∈ Z+,n,

or

Tn+1,1 =
n

∑

q=0

2qTn,q;

Tn+1,l+1 =
n−l+1
∑

q=1

2q
(

q+l−1
l−1

)

Tn,q+l−1 +
n−l
∑

q=0

2q
(

q+l
l

)

Tn,q+l, l ∈ Z+,n,
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or

Tn+1,1 =
n

∑

q=0

2qTn,q;

Tn+1,l+1 =
n−l
∑

p=0

2p+1
(

p+l
l−1

)

Tn,p+l +
n−l
∑

p=0

2p
(

p+l
l

)

Tn,p+l, l ∈ Z+,n,

or

Tn+1,1 =
n

∑

p=0

2pTn,p, l = 0;

Tn+1,l+1 =
n−l
∑

p=0

2p
(

2
(

p+l
l−1

)

+
(

p+l
l

))

Tn,p+l, l ∈ Z+,n,

or

Tn+1,1 =
n

∑

p=0

2pTn,p, l = 0;

Tn+1,l+1 =
n−l
∑

p=0

2p
(

2
(

p+l
p+1

)

+
(

p+l
p

)

)

Tn,p+l, l ∈ Z+,n.

With the basic additive (Pascal’s first) binomial identity

(

p+l
p+1

)

+
(

p+l
p

)

=
(

p+l+1
p+1

)

,

we can write this also as

Tn+1,1 =
n

∑

p=0

2pTn,p;

Tn+1,l+1 =
n−l
∑

p=0

2p
(

(

p+l+1
p+1

)

+
(

p+l
p+1

)

)

Tn,l+p, l ∈ Z+,n.

Both these equations can be combined into the following single equation, for all l ∈ Nn,

Tn+1,l+1 =
n−l
∑

p=0

2p
(

(

p+l+1
p+1

)

+ δl>0

(

p+l
p+1

)

)

Tn,l+p.

Finally, from the fact that sech0 t = 1 we conclude that Tn,0 = δn=0.

Identifying our results with those given in Sloane [11, A085734 and A088874] we see that
the Tn,k, satisfying recursion relation (7.8) and boundary condition Tn,0 = δn=0, are indeed
Sloane’s sequence A088874 (there constructed by Deleham using a delta operator). Thus
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Eq. (7.7) shows that the number triangle Tn,k is as fundamental for the Maclaurin series of
sechc t as the Euler numbers En are for the Maclaurin series of sech t.

Eq. (7.7) also immediately leads to the orthogonality relation, for all n, k ∈ N,

n
∑

p=0

(

2n
2p

)

min(k,p)
∑

l=max(0,k+p−n)

(−1)l Tn−p,k−lTp,l = δn=0δk=0. (7.9)

The series (7.7) shows that the numbers E
(c)
2m , (−1)m

∑m
l=0 Tm,lc

l, for all m ∈ N and for
all c ∈ C, are a set of generalized Euler numbers (although they are polynomials in c) in the
sense of Luo, et al. [7]. It seems more natural however, to regard the integer numbers Tm,l

as a more fundamental set, because they are independent of c.

7.1 Multinomial Euler numbers Em
n

For the important special case that c = m ∈ N, it might be convenient to introduce a
generalization of the Euler numbers that are also integers.

By identifying Eq. (7.7) with the Maclaurin series of sechm t, written in the form

sechm t =
+∞
∑

n=0

Em
n

tn

n!
, (7.10)

we get, for all p ∈ N, Em
2p+1 = 0 and

Em
2p = (−1)p

p
∑

l=0

Tp,lm
l. (7.11)

On the other hand, we also have that sechm t =
(
∑+∞

n=0 En
tn

n!

)m
, so we obtain,

Em
n = δm=0δn=0 + δm>0

∑

K:|K|=n

(

n
K

)

#(K)
∏

i=1

Eki
. (7.12)

Expression (7.12) suggests that the Em
n be called multinomial Euler numbers. Equating the

right hand sides of Eq. (7.11) and Eq. (7.12) gives

(−1)n

n
∑

l=0

Tn,lm
l = δm=0δn=0 + δm>0

∑

K:|K|=n

(

n
K

)

#(K)
∏

i=1

Eki
. (7.13)

This reduces, for m = 1, to

(−1)n

n
∑

l=0

Tn,l = E2n. (7.14)

Some particular multinomial Euler numbers are mentioned in Sloane [11]. Eq. (7.11)
reduces to the following particular cases: Em

0 = 1, Em
2 = −m, Em

4 = m (3m + 2) (rhombic
matchstick numbers, Sloane’s A045944) and Em

6 = −m (15m2 + 30m + 16) (not in Sloane).
Also, E0

n = δn=0, E1
n = En (Euler or sech numbers, |En| is Sloane’s A000364), E2

n−1 are the
tanh numbers (due to Dn

t sech2 t = Dn+1
t tanh t, with

∣

∣E2
n−1

∣

∣ being Sloane’s A000182).
We give the onset of the number square Em

n , for even n, in Table 4.
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n\ m 1 2 3 4 5 6

0 1 1 1 1 1 1

2 -1 -2 -3 -4 -5 -6

4 5 16 33 56 85 120

6 -61 -272 -723 -1 504 -2 705 -4 416

8 1 385 7 936 25 953 64 256 134 185 249 600

10 -50 521 -353 792 -1 376 643 -3 963 904 -9 451 805 -19 781 376

Table 4: The number square Em
n

7.2 Even multinomial parity numbers em
n

By identifying Eq. (7.7) with the Maclaurin series of coshm t, written in the form

coshm t =
+∞
∑

n=0

em
n

tn

n!
, (7.15)

we get, for all p ∈ N, em
2p+1 = 0 and

em
2p = (−1)p

p
∑

l=0

Tp,l(−m)l. (7.16)

On the other hand, we also have that coshm t =
(
∑+∞

n=0 en
tn

n!

)m
, so we obtain,

em
n = δm=0δn=0 + δm>0

∑

K:|K|=n

(

n
K

)

#(K)
∏

i=1

eki
. (7.17)

Expression (7.17) suggests that the em
n be called even multinomial parity numbers. Eq. (4.17)

gives us the following explicit expression for the em
n numbers,

em
n =

1

2m

m
∑

j=0

(

m
j

)

(m − 2j)n. (7.18)

Equating the right hand sides of Eq. (7.16) and Eq. (7.18) gives

(−1)n

n
∑

l=0

Tn,l(−m)l =
1

2m

m
∑

j=0

(

m
j

)

(m − 2j)2n. (7.19)

In particular, for m = 1, Eq. (7.19) reduces to

(−1)n

n
∑

l=0

(−1)lTn,l = 1, (7.20)

and, for m = 2, to

(−1)n

n
∑

l=0

Tn,l (−2)l = 22n−1. (7.21)
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n\ m 1 2 3 4 5 6

0 1 1 1 1 1 1

2 1 2 3 4 5 6

4 1 8 21 40 65 96

6 1 32 183 544 1 205 2 256

8 1 128 1 641 8 320 26 465 64 896

10 1 512 14 763 131 584 628 805 2 086 656

Table 5: The number square em
n

Various particular even multinomial parity numbers are mentioned in Sloane [11]. For
instance, em

0 = 1, em
2 = m, em

4 = m (3m − 2) (octagonal numbers, Sloane’s A000567) and
em
6 = m (15m2 − 30m + 16) (not in Sloane). Also, e0

n = δn=0, e1
n = en, e2

n = δn=0+δn>0en2n−1

(e2
2p is Sloane’s A009117), e3

n = en(3n +3)/4 (e3
2p is Sloane’s A054879), e4

n = en (4n + 4.2n) /8
(e4

2p is Sloane’s A092812) and e5
n = en (10 + 5.3n + 5n) /16 (not in Sloane). In general,

expression (7.18) shows that em
2p equals the number of closed walks, based at a vertex, of

length 2p along the edges of an m-dimensional cube [12].
We give the onset of the number square em

n , for even n, in Table 5.

7.3 Relations between the Em
n and the em

n numbers

(i) Evidently, due to the fact that coshm t sechm t = 1, for all m ∈ N, holds the following
orthogonality relation, for all n,m ∈ N,

n
∑

i=0

(

n
i

)

em
n−iE

m
i = δn=0. (7.22)

Combining Eqs. (7.22) and (7.18), and using the fact that em
0 = 1, for all m ∈ N, we

obtain the following recursion relation for the Em
n ,

Em
n = δn=0 − δn>0

n−1
∑

i=0

(

n
i

) 1

2m

m
∑

j=0

(

m
j

)

(m − 2j)n−iEm
i . (7.23)

In particular, for m = 1, Eq. (7.23) yields

E2p = δp=0 − δp>0

p−1
∑

j=0

(

2p
2j

)

E2j. (7.24)

Due to the symmetry of the binomial expression in Eq. (7.22) and because Em
0 = 1, for all

m ∈ N, we get equivalently a recursion relation for the em
n in terms of the Em

n numbers,

em
n = δn=0 − δn>0

n−1
∑

i=0

(

n
i

)

Em
n−ie

m
i . (7.25)
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In particular, for m = 1, by using e1
n = en and e0 = 1 = E0, we get

E0 = δp=0 − δp>0

p−1
∑

j=0

(

2p
2j

)

E2(p−j). (7.26)

(ii) Comparing Eq. (7.11) with Eq. (7.16) we see that the numbers Em
2n are the extension

to negative integers m of the numbers em
2n, as expected from their generating functions given

in Eqs. (7.10) and (7.15).
(iii) Recall Faa di Bruno’s formula for the n-th derivative of a composition of two functions

[1, p. 823, 24.1.2, II, C.], for all n ∈ Z+,

Dn
t f (g (t)) =

n
∑

k=1

(

Dk
gf (g)

)

(t)
∑

P (n):|K|=k

n!
n

∏

i=1

(Di
tg (t))

ki

(i!)ki ki!
,

where P (n) ,

{

K , {k1, k2, ..., kn ∈ N} : 1k1 + 2k2 + ... + nkn = n
}

. An element K ∈ P (n)

represents a partition of a set of cardinality n into k1 classes of cardinality 1, k2 classes of
cardinality 2, up to kn classes of cardinality n.

Applied to f ◦ g, with g (t) = coshm t and f(g) = 1/g, we get

Em
n = lim

t→0
Dn

t f (g (t)) ,

=
n

∑

k=1

(−1)kk!
∑

P (n):|K|=k

n!
n

∏

i=1

(em
i )ki

(i!)ki ki!
.

Define, for all n ∈ N, Sm
e (n, 0) , δn=0 and if n > 0, for all k ∈ Z+,n,

Sm
e (n, k) ,

∑

P (n):|K|=k

n!
n

∏

i=1

(em
i )ki

(i!)ki ki!
. (7.27)

Then

Em
n =

n
∑

k=1

(−1)kk!Sm
e (n, k). (7.28)

Eq. (7.28) expresses the multinomial Euler numbers in terms of the even multinomial parity
numbers through the intermediate numbers Sm

e (n, k).
The even parity symbol ei in the product in Eq. (7.27) makes that all ki with odd index

i must be taken zero, so Sm
e (n, k) and hence Em

n are both zero for odd n. With n = 2p, we
get, for all p ∈ Z+,

Sm
e (2p, k) =

∑

Pe(2p):|Ke|=k

(2p)!

p
∏

j=1

(

em
2j

)k2j

((2j)!)k2j k2j!
,

where Pe(2p) ,

{

Ke , {k2, k4, ..., kn ∈ N} : k2 + 2k4 + ... + pk2p = p
}

. An element Ke ∈

Pe(2p) represents a partition of a set of 2p elements into 0 classes of cardinality 1, k2 classes
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of cardinality 2, 0 classes of cardinality 3, k4 classes of cardinality 4, up to k2p classes of
cardinality 2p.

In particular, for m = 1, we get from Eq. (7.28), for all p ∈ Z+,

Se(2p, k) , S1
e (2p, k) =

∑

Pe(2p):|Ke|=k

(2p)!

p
∏

j=1

1

((2j)!)k2j k2j!
,

i.e., the number of ways of partitioning a set of 2p elements into k non-empty subsets, each
of even cardinality, and

E2p =

2p
∑

k=1

(−1)kk!Se(2p, k). (7.29)

This seems to be a new expression for the (even) Euler numbers. Here the sum involves
partitions into subsets of even cardinality. A similar sum, involving partitions into subsets
of any cardinality, is the well-known result for the Stirling numbers of the second kind,

1 =

2p
∑

k=0

(−1)kk!S(2p, k).

It thus turns out that the numbers Sm
e (n, k), (which by comparing Eq. (7.27) with Eq.

(7.30) might be called “even multinomial Stirling numbers of the second kind”), are more
natural to the Em

n than the S(n, k). This can be seen by applying Faa di Bruno’s formula

to f ◦ g, with g (t) = et and f(g) =
(

1
2
(g + 1/g)

)−m
, and using [1, p. 823, 24.1.2, II B],

S(n, k) =
∑

P (n):|K|=k

n!
∏n

i=1 (i!)ki ki!
. (7.30)

We get

Em
n =

n
∑

k=1

(

lim
t→0

Dk
t sechm (ln (1 + t))

)

S(n, k), (7.31)

an expression more complicated than Em
n = limt→0 Dn

t sechm (t). For m = 1, the numbers
defined by the expression inside the parentheses in (7.31) are Sloane’s A009014.

We can derive another expression for the Em
n in terms of the S(n, k), directly from the

generating function sechm (x), as was done in Luo, et al. [7], but it turns out to involve a
double sum. In the particular case m = 1 however, we can obtain this other expression from
our results by combining Eqs. (3.22) and (5.13), and then it reads

En =
n

∑

k=0

(

n
k

)

k
∑

l=0

(−1)ll!2k−lS (k, l) . (7.32)
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