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Abstract

We study a particular number pyramid b, ; that relates the binomial, Deleham,
Eulerian, MacMahon-type and Stirling number triangles. The numbers b,, ;.; are gen-
erated by a function B¢(x,y,t), ¢ € C, that appears in the calculation of derivatives of
a class of functions whose derivatives can be expressed as polynomials in the function
itself or a related function. Based on the properties of the numbers b, ;. ;, we derive
several new relations related to these triangles. In particular, we show that the number
triangle T}, x, recently constructed by Deleham (Sloane’s [A088877), is generated by the
Maclaurin series of sech®t, ¢ € C. We also give explicit expressions and various partial
sums for the triangle T, ;. Further, we find that ej,, the numbers appearing in the
Maclaurin series of cosh™ ¢, for all m € N, equal the number of closed walks, based at
a vertex, of length 2p along the edges of an m-dimensional cube.

1 Introduction

In this work we study a function B¢(z,y,t), the c-th power of B(xz,y,t) defined in Eq.
(B-1]), that plays a central role in the calculation of derivatives, of a class of functions whose
derivatives can be expressed as polynomials in the function itself or a related function. The
construction of these polynomials, in terms of the function B(x,y,t), is treated in a separate
paper [[|. Here we focus on B(z,y,t) as a generating function in its own right, and derive
from it some interesting number-theoretic results.
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We show that the function B¢(x,y,t) generates a number pyramid by, ;;, of which various
partial sums are closely related to some important number triangles, including the binomial
coefficients (}), a number triangle T, s recently constructed by Deleham [[T], [EU8837]], the
Eulerian numbers A, ; [H], a particular kind of MacMahon numbers B, [}, p. 331], and
Stirling numbers of the first kind s(n, k) [I, p. 824, 24.1.3].

We derive several new expressions related to these triangles. For the triangles A, ; and
B, 1, we obtain new generating functions. We show in particular that the so far unstudied
triangle T), ;. is generated by the Maclaurin series of secht, for all ¢ € C. The numbers T,
are thus as fundamental for sech®t as the Euler numbers E,, are for sech ¢ [, p. 804, 23.1.2].
We give explicit expressions and various partial sums for the numbers 7, 4.

Moreover, the special cases ¢ = m € Z, and ¢ = —m € Z_ give rise to a particular
generalization of the Euler numbers £, here denoted E* and called “multinomial Euler
numbers”, and a generalization of even parity numbers e, (defined in Eq. (2.9)), here denoted
et and called “even multinomial parity numbers”, respectively. The E]" are generated by
the Maclaurin series of sech™ ¢ (so E! = E,,) and the ¢ by the Maclaurin series of cosh™ ¢
(so €, = en). Obviously, By, = 0 and ey, = 0, for all p € N, because sech™¢ and
cosh™t are even functions of t. We obtain explicit formulas for the numbers E3} and e,
as well as relations between them. The numbers ej, turn out to have as combinatorial
interpretation, the number of closed walks, based at a vertex, of length 2p along the edges
of an m-dimensional cube.

2 Notation and definitions

1. Define the sets of positive odd and even integers Z, . and Z, ., the negative odd and
even integers Z,_ and Z. _, the odd integers Z, £ Lo, U Lo+ and the even integers
Ze & Ze U{0} UZe, the positive integers Z, £ Z,, UZ. , and negative integers
Z_ = 7y _UZ, _, the natural numbers N £ {0}UZ, and the integers Z = Z_U{0}UZ, .
Let Zy, 2 {1,2,...n}, Z_, £ {-n,—(n—1),..,—1}, N,, £ {0} UZ, ,, and denote
by C the complex numbers.

2. Define
~ | 1, if condition is true;
5condition =

0, if condition is false, 21)

and for all n € Z the even and odd parity numbers

€n 6716267

> 1>

OTL 6TL€ZO °

3. Denote the n-th derivative with respect to x by D?.

4. We define 0" £ §,_¢, for all n € N, and 2° £ 1, for all z € C.
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5. Let n € N and z € C. Denote by

2 A o+ S0 2(z 4+ D (2 +2). (24 (n— 1)), (2.4)
I'(z+n)
= Z(_1>n7k8 (na k) Zk? (26)

the rising factorial polynomial (Pochhammer’s symbol). In particular, 0 = §,_, and
m™ = (m —1+n)!/(m —1)! for m € Z,.

Also, denote by

2y = Opeo+ Opso2(z — 1)(2 — 2)...(z — (n — 1)), (2.7)
Tz +1)
- T(z+1-n) (28)
= s(n, k) 2", (2.9)
k=0

the falling factorial polynomial. In particular, 0,y = 6,—0 and m,) = (m!/(m —n)!) 6p<m,
for m € Z,. In Egs. (£.4) and (R.9), s (n, k) are Stirling numbers of the first kind. We
have z(,) = (—1)" (—2)™.

6. We will need

+oo

1 2"
= 2 2.10
Ty - X (2.10)

+o00 n

c z
(1+2)° = > cwr (2.11)

n=0 ’

being absolutely and uniformly convergent series for all z € {z € C: |z| < 1} and for
all ¢ € C. We have for all n € N and for all a,b € C,

n

(a+b)" = > (am M, (2.12)
k=0
(a+ b)(n) = Z (Z) A(n—k)b(k)- (2.13)
k=0
In particular, for a = ¢ = —b, we get the orthogonality relations, for all n € N and for
all c € C,
Y (e (=" = G, (2.14)
k=0
(Dem—r (=) = Gn=o- (2.15)
k=0



7. Withm,n € Nand K £ {ky, ko, ..., k,, € N}, define |K| £ kj+ko+...+kp, # (K) £ m
and (") = nl/ (k'ks!.. k"), expressions that are used in the last section.

3 The generating function B¢(x,y,t)

For all z,y,t € C define

=,y LT FY;
B(I‘,y,t) = zeiTtIyeJth . (31)
T if v =y.
Proposition 3.1. The Maclaurin series of the c-th power of B(x,y,t), for all ¢ € C, is
gien by
(z,y,t 22 "By(x,y;¢)—, (3.2)
and converges absolutely and uniformly for |t| < w . For alln € N,
B, (z,y;¢) = Z By (c)x" Fy (3.3)
k=0
with the coefficients By, ;(c) satisfying, for all k € N,
Buiia(c) = (2(k +1) + ¢) Bugsa(c) + (2(n — k) + ¢) Bug(c), (3.4)

with Boo(c) =1 and we define B, ;(c) £ 0, for all k ¢ N,,.

Proof. The point t = 0 is an ordinary point of B¢(z,y,t), so B°(x,y,t) has a Maclaurin

power series, converging absolutely and uniformly for |t < lni:zny
Define the partial differential operator
T+ v, o x—y 0 0 T+y
D t; 11— — —y— | - . .
(2,9, t5¢) £ ( 2 )8t+ 2 (xax Yoy) 2 (8:5)
A direct calculation shows that
D(z,y,t;¢)B(x,y,t) = 0. (3.6)

Substituting in Eq. (B.6) for B¢(x,y,t) the uniformly convergent series (B.9) gives

tn

Zz " .77 yYs € )Bn(xaya C>>E :Ov

wherein

1 — 0
Dn(x,y;c)é§T1+¥ (x——y—) —(n+c)x+y (3.7)



and 7T}, is the difference shift operator such that 7,B, (z,y;c) = Bpny,(x,y; c). This holds for
any t, so we have

Dn(z,y; ¢)Bn(z,y;¢) = 0. (3:8)

Substituting in Eq. (B.§) for B, (z, y; ¢) the bivariate homogeneous polynomial (B-3) gives

n

> (Duil@,y; ) Buile) 2" FyF =0,
k=0

wherein

Dy, yic) 2 %Tm =k 4 1)+ ¢/2) Ty — (k+c/2) (3.9)

and T, , is the bivariate difference shift operator such that 7, B, k(¢) = Byipx+q(c). This
holds for any = and y, so we have

Dy (%, 5 ¢) Boi(c) = 0, (3.10)

which is just Eq. (B4).
iFrom the fact that B°(x,y,0) = 1, we obtain By(z,y;¢) = Byo(c) = 1. O

We have that B(x,y,t) = B(y,x,t) for all x,y,t € C, hence B,(z,y;c) = B,(y,z;c) for
all n € N, and B, x(c) = By ,—k(c) for all ¢ € C.
3.1 Special cases

(i) For 2 = 0 or y = 0, we get

B0, z,t) = B%(2,0,t) = e2*. (3.11)
This implies that
B, (0,z;¢) = Bn(z,0;¢) = (c2)", (3.12)
and this yields in turn that
Bmk(c) = Cnén:k. (313)
(i) For y = +x, we get
1
B t) = ——m—= 3.14
@nt) = oo (3.14)
Be(z,—x,t) = sech®(xt). (3.15)
This gives
By(z,x;¢) = 2™z, (3.16)
B.(xz,—z;¢) = 2" (]ltir% Dy sech® t> ", (3.17)
and this yields in turn
> Buile) = 2"c™, (3.18)
k=0
S (=1 Buyle) = 2 Qin% DP sech® t) . (3.19)



2 1 1

3 1 6 1
4 1 23 23 1
5 1 76 230 76 1

[§ 1 237 1682 1682 237 1

Table 1: The number triangle B,, j

3.2 The numbers B, ;(1) and B, ;(2)
Putting ¢ = 0 in Eq. (B-3) shows that B, (z,y;0) = d,—0, s0 B, x(0) = d,—o.
(i) For ¢ = 1, Eq. (B:4) becomes
Briarsa(l) = 2k +1) +1) Bupa (1) + (2(n — k) +1) Bu (1),

SO
BnJc(l) = Bn+1,k+17 (320)

with B, the numbers derived by MacMahon [, p. 331], (Sloane’s A0G0187), cf. Table [I.
In this case, Egs. (B-I) and (B:19) become

> Bujigsr = 2'nl, (3.21)
k=0
Y (~1)fBuiyipn = 2"E,, (3.22)

k=0

with E,, the Euler (or secant) numbers [[, p. 804, 23.1.2], (| Es,| are Sloane’s [A000364). The
numbers B, are thus (also) generated by (for [¢| < 3 “—‘ and y # 1)

+o0o n

1—
6_(1_y) ye‘i‘ 1 y)t Z Z Bn+1 k+1y (323)
n=0 k=0

We can also obtain from Eq. (B:23) the following more standard generating function for the
Bk, (i.e., on the same footing as Eq. (B:29) below), (for |t| < %) and y # 1)

1 — ¢
y 2%k—1
sh————— = Boyy™ . (3.24)
2 e T S n!
e 2 fy@ 2 n=1 k=1
-y

Eqgs. (BZ3) and (B-Z]) appear to be new.
(i) For ¢ = 2, Eq. (B.4) becomes

Bn+1’k+1(2> = (k + 2) 2Bn7k+1<2) + (n —k + 1) 2Bn’k(2),

6
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2 1 1

3 1 4 1

4 1 11 11 1

5 1 26 66 26 1

6 1 57 302 302 57 1

Table 2: The number triangle A,

SO
Boi(2) = 2" A1 p, (3.25)

with A, ; the Eulerian numbers [[], (Sloane’s [A008297), cf. Table fJ. Another notation for
the Eulerian numbers is <Z> = Ap it

In this case, Egs. (B-1§) and (B-I9) become

> Ak = (n+1), (3.26)

n

S (DA = 20T (22— 1)

k=0

with B, the Bernoulli numbers [}, p. 804, 23.1.2], (| B,| are Sloane’s [A02764]] and [A027677).
In Eq. (B:27) we used DI'sech*t = D}"** tanht. The Eulerian numbers A, are thus (also)
generated by

Bn+2

n—_{_Q’ (3.27)

+oco n

=> > Aun, kﬂy (3.28)

—17t
€ —ye n=0 k=0
1-y

The well-known standard generating function for the Eulerian numbers is

+oo n n

1_1y;1 S=1EY > A L (3.29)

n=1 k=1

For further convenience we define A, £ 0 and B, i £, for all k ¢ Zy .

3.3 Examples of some B,(z,y;c)

The first six B,(z,y;c) are:
BO(xa Y3 C) = 17

By (z,y;¢) = cx + cy,
By(x,y;¢) = ®2® 4+ 2¢ (2 4 ¢) wy + P,
Bs(z,y;¢) = 1 + ¢ (3¢ +12¢ + 8) 2’y + ¢ (3¢® + 12¢ + 8) zy” + ¢y,

7
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ctat
+4c (c® 4 6¢ + 8¢+ 4) 3y
By(z,y;¢) = 42¢(3¢® + 24¢* 4 56¢ + 32) x?y?
+4c (3 + 662 + 8¢+ 4) zy?
+ctyt
A’
+c (5t + 403 + 80c? + 80c + 32) zty
Bs(z,y:¢) = +¢ (10c* 4 1203 + 480c* + 720c¢ + 352) 23y?
Y= (106t 4 12068 + 48062 + T20¢ + 352) 22y
+c (5¢* + 40¢* + 80¢2 + 80c + 32) wy*
+C5y5

4 Properties of the B,(z,y;c)

4.1 Additive property with respect to the parameter c
Obviously, for all a,b € C,
B*"(z,y,t) = B(z,y,t)B’(x,y, 1), (4.1)

and from this follows, for all n € N,

n

By(z,y;a+b) =) (3)Bur(z,y;a)Bi(z, y;b). (4.2)
k=0

Substituting Eq. (B) in Eq. (2) gives
Bnkz(a“‘b Z ZB" —p,k— q (b) (4'3)
p=0

For instance, by letting a = b = 1, Eq. ([[.]) yields the following quadratic expansion of
Eulerian numbers A, in the MacMahon numbers B, j,

n k
1
Aptiper = on Z (g) Z B pi1k—q+1Bpr1,g+1- (4.4)

p=0 q=0

4.2 Infinite series

Proposition 4.1. For all c € C and for alln € N,

n+c n .T k i
o Zk oc! (2/<?+C)" Gl if x| < Jyl,

where x,y € C and the series converges absolutely.



Proof. (i) Applying Eq. (E-10) to B¢(x, y,t) gives, for all (z,y) € Dy« = {(z,y) € C*: |y| < ||}
and for all t € Ay (2,9) = {t € C: Re((1 —y/2)t) < (In|z| —In|y|)}, the absolutely conver-
gent series

B, .1 z W) crtkrepen

Expanding herein et(*+¢/2@=v)t i Maclaurin series gives

RO k1 1L B P Y

¢ n!
k=0 n=0

Both series are absolutely convergent, so we may interchange the order of summation [[[}, p.
175, Theorem 8.3], yielding

Bc(x,y,t):i.o( "+CZ°°C(k k+c/2)" n /) )Z:

n=0

Inz— lny

On the other hand holds by Proposition B], for all ¢ € Q, (x,7) £ {t ceC:|t| <
that

3

(z,y,t 22 "Bn(x,y;c tn.

For (z,y) € Diy<jaf, M (2,y) N Q (, y) ;é @. Then for all t € Ay (z,y) N (z,y) holds

tn +0o n+c 400 I’k n
22 "B(x,y;c Z( ) ck)(k+c/2)"(y2!) )%,

=0 k=0
and the first part of Eq. ([L3) follows.
(ii) Similar. O
In particular, Eq. ([L5) becomes, for c =m € Z .,

+0o0
Bu(w,y;m) = (x—y)" ™ (") 2k 4 m)" Bk, (4.6)
k=0
and forc=-meZ_,
. _ n—m S k(m n _m—k, k
By(w,y; —=m) = (z — )" ™" Y (=D (}) 2k —m)" 2™ *y~. (4.7)
k=0

Moreover, Eq. ([]) reduces to the following special form, for all ¢ € C,

2" B.(1,z;¢)
2kt = s 48
ZC C k' (1 . Z)n+c ‘ | ( )
+00 —k
B 1;
Y@k o i = z(z—f)m > 1 (4.9)
k=0 & (z=1)



In particular, Eqgs. (.§) and (f.9) become,
(i) for ¢ =1, for all n € N,

—+00

d @k+1)" Sk = M, 2] < 1, (4.10)
— (1 . Z)n—I—l
- n_—k By (2,1)
k=0

Herein is B, (z,y) the MacMahon homogeneous bivariate polynomial,

Bn(xv Y; 1) é Bn($a y) = Z Bn-i—l,k:—i—lxn_kyk' (412)

(ii) for ¢ =2, for all n € Z,

n 4
Zl Zl = mAn_l(l,Z),|Z| < ]., (413)
+o00
L S 1 | 4.14
Z z = (Z—l)n+1 n71<27 )7|Z’ > L. ( . )

Herein is A, (z,y) the Eulerian homogeneous bivariate polynomial,

27" Bu(w,5;2) & An(z,y) = > Anprppaz” "y, (4.15)
k=0

Notice that the left hand side of Eq. ([.13J) is by definition the polylogarithm of negative
integer order, Li_,(z) [f]. Further, combining Eq. ([LI3) with [[J, Eq. (14)], we get the
interesting identity, for all n € N,

n

Z(—l)”_pp!S(n,p)zp_l =An_1(z,2 —1). (4.16)
p=1
Taking in Eq. ([[7]) the lim, ., and using Eq. (B-I7]) we obtain, for all m,n € N,
: n m 1 - m n
lim Dy cosh™ ¢ = 2—m§ (%) (2k —m)". (4.17)

Taking in Eq. ([£7) the lim,_., and using Eq. (B-IQ) yields, for all m € N,

imzmj 2k —m)™ = (=1)"ml. (4.18)

k=0

10



4.3 Generating expression

Proposition 4.2. For alln € N and for all ¢,z € C,
B,(1,z;¢) = (1 —2)""(c+22D.)" (1 — 2)"°. (4.19)

Proof. 1t is easy to show from Eq. (EI]]) that, for all n € N, for all b,z € C and for all
z €{z € C: |z] < 1}, the following identity holds

+00 k
n b n <
(+2:D.)" (1+2)" =Y (2k+ ) bs) 77
k=0
Then
00 k Zk
(1+2)(x+22D,)" (1+ z) :Z<Z 2H_I)>H'
k=0 \1=0
Putting x = ¢, a = n + ¢, b = —c and substituting z — —z, we get
(1—2)""( c+ 22D)" (1 —2z2)"°¢
+oco k Zk
”+C)( 1) <_C)(z) (20 +¢) ik
k=0 1=0
Due to the fact that (1 — 2)""°(c+22D.)" (1 — 2)"° is a polynomial of degree n in z, we

must have that

~1) Z (5 (n+ -ty () 2L+ )" =0,

for all k ¢ Z, ,,. Hence using Eq. () below, Eq. (B]) and the fact that B, ;(c) £ 0, for
all k ¢ Z. ,,, Eq. (E19) follows. O

In particular, for ¢ = 1, we obtain
(1—2)"""(1+22D.)" (1 —2) Z Briirs12, (4.20)
and for ¢ = 2, we obtain
(1—2)"" 1 +2D.)"(1—2) Z Ap1pp12". (4.21)

These appear to be new generating expressions for the MacMahon and Eulerian numbers.
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5 Properties of the B, j(c)

Proposition 5.1. For all m,n € N and for all c € C,
S () 0+ " (KB k() = ™) (2m + )" (5.1
k=0

Proof. For all ¢ € C and for all z € C such that |z] < 1 we have the absolutely convergent
series (). As |z] < 1, we can apply Eq. (EI0) and get

L too 1
z z
Zcm) (2m +¢)" — Zk'Bnk )5 (n+c)(l)l—!.
1=0
Interchanging the summation order gives
+oo +oo n Zk+l
Zc(m (2m+c)" — ZZ k+l n+c k!BnJg(c)k e
m=0 ’ =0 k=0 (k+1)!
With the definition B, x(c) £ 0, for all k ¢ Z, ,,, we can write this as
+oo +oo 400 Zk+l
Z ™ (2m + )" ZZ k+l (n+c)! k!Bmk(C)k, N
m=0 m! 1=0 k=0 (k+1)!
This is equivalent to
“+o00 +oo0 m Zm
Zc(m (2m+¢)" — ZZ n—l—c(mkk'B k(€)=
m=0 m=0 k=0 m:
and since z is arbitrary, Eq. (B-]]) follows. O
In particular, for ¢ = 1, we obtain
D () Bugig = 2m+1)", (5.2)
k=0
and for ¢ = 2, we obtain
m
Z n+1;ff M Apirie = (m+ " (5.3)
k=0

These are well-known partial sums of the MacMahon and Eulerian number triangles [, p.
328 and p. 331].
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5.1 Expressions

Proposition 5.2. For alln € N, for all k € N,, and for all c € C,

k
BBu(e) = 3 () (= (n+ )0l @lte), (5.4)
=0

= (=1 Z (';) (n+¢) gy (=€) 21 +)". (5.5)

Proof. (i) We will show that Eq. (f-4) is a solution of Eq. (B.]). Substitute Eq. (F.4) in Eq.
(P-]) and get

=

Z (%) (n + o)! Z (n+e)* DD (20 +¢)" = ™ (2m +¢)"

k=0 =0

Interchanging the summation order gives

i (mz_ (mq—l) (n+ c)(m—l—q) (—(n+ c))(q)> A2 +e)" =™ 2m+ o).

=0 q=0

Due to the orthogonality relation (R.14)) this simplifies to

Z )01=mc® (20 + )" = ™ (2m + )",
1=0

and this is an identity.
(ii) Use 2@y = (=1)" (—2)™. O

In particular, for c = —m € Z_,
(i) forn > m

min(k,m)

Bui(—m)= (=1 > (1)@ -m)", (5.6)

l=max(0,k+m—n)

(ii) for n <m

Boi(—m)= > (=D (") () 21— m)". (5.7)

An equivalent form of Egs. (£.4) and (B.3) is

Fn+c+ 1) (c+1)

k
k!B i(c) = )Y
ik ; T(ntc+l—(k—10))T(c)

(20 + )" (5.8)

13



In particular, for ¢ = 1, we obtain

k

B = 3 (DM (D) (20 +1)" (5.9)

=0

Expression (B.9) coincides with that given by MacMahon [f], p. 331]. For ¢ = 2 and using
Eq. (B:23), we get the familiar result

k
Ani1 g = Z(_l) (n+2) (1+1)"*, (5.10)
1=0
or equivalently, for all n —1 € Z, and for all k € Z ,,_1,
k
G =Ane =Y (D) (k=1 (5.11)
1=0

Let S (j,i) denote the Stirling numbers of the second kind (Sloane’s A008277).

Proposition 5.3. For alln € N, for all k € N,, and for all c € C,

n min(k,j)
Bu(e) = (11} ()2 Y (-1 ()8 G e (512)

Proof. Using Eqs. (f-17) and (F.1q) from Proposition .4 below, we have

By (c) = anyk,zcl,

n ! min(k,n—p)
= DD G2 Y (I)Se-pi)s (il -p)d,
=0 p=0 i=l—p
Interchanging the order of the first two summation gives
min(k,n—p)
B,i(c) = ZZ 2" P Z (Z Z)S(n p,i)s(i,l —p)d,
p=0 I=p i=l—p
n min(k,n—p)
— Z Z " 2” P Z (Z:Z)S(n—p,i)s(i,l—p)cl_p+p,
p=0 l—p=0 i=l—p
n n—p min(k,n—p)
= (DY D)2 D0 (E)S (- pi)s ) et
p=0 j=0 1=J
q 'mm(kﬂJ)
= '“Z "Ny (=) (2=0)S (q,1) s (i, )
=0 i=j
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Taking into account that S (n, k) = s(n, k) =0, for all k ¢ N,,, we can write this as

Interchanging the two last summations yields

n 7

Boi(e) = (—1F 3 ()20 03 (1) (0,) S s (i) (<.

q=0 i

Jj=0

Using the fundamental property of the Stirling numbers of the first kind [[[l, p. 824, 24.1.3,
I’ B7 1]’

we obtain

q=0 )

Bui(e) = (=1)F Y (129" (120)S (4,9) (=0))-

By using the identity (—c)u) = (—1)%c, writing j for ¢ and replacing the upper limit in the
second sum with min(k, j), Eq. (£:19) follows. O

In particular, for ¢ = 1, we get

3
£

B=
>

<

Buown = (1Y ()2 32 ((D (DS G, (5.13)

§=0 i=0
and for ¢ = 2, we get
n min(k,j)
A = (CDFST() S0 (DI (D G+ DS Gia) (5.14)
§=0 i=0

These appear to be new expressions for the MacMahon and Eulerian numbers, in terms of
Stirling numbers of the second kind.

5.2 Polynomial expression

Proposition 5.4. For alln € N and for all z € C,

Bn,k’(c) = Z bmk,lcl, (515)
1=0
where, for all k,1 € N,
l min(k,n—p) 4
b= (DM Y (=pp()2nr Y (1Z)s@l-p)Sn—pi).  (5.16)
p=max(0,l—k) i=l—p
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Proof. Using

(c+22D,)" = (1) 12! (D),
0

o~
Il

we get
(1—2)""(c+2:D)" (1 —2) = (1—-2)""Y () "2 (zD.) (1—-2)°.

Using herein the formula [f], p. 144],

we obtain

(1—2)""(c4+22D)" (1 —2)"°

= (1- Z)WZ (72! Z S(l,p)2"DP (1 —2)"°,

=0 p=0
n !
- Z (7)0”_121 Z S(l,p) 2PelP) (1 — 2)"7P,
=0 p=0

n

= Z " lQlZS l,p) ( (p)( 2)" P (=2)",

1=0
= Z Z "12'S (l,p) (—c )(p) (1=2)""(=2)".
p=0 I=p
Substituting herein the binomial expansion for (1 — 2)" " gives

(1 —2)" (e +22D,)" (1 — 2)~°

_ ZZ )" 125 (1,p) (=) gy D ()7) (=2)" (—=2)",

pOlp q=0

Y (D) (<0 S W) (—2)"

pOlpm—p

= ZZZ 12 (<) ) S (Lp) (—2)™,

p=0 m=p I=p
n

= Y 3T (=) D (TS (Lp) (—2)™

m=0 p=0 I=p
Making use of the fundamental relation of the Stirling numbers of the first kind,

p

(_C)(p) = Z s(p, k) (_C)k )

k=0

16



we get

(1—=2)""(c+22D.)" (1 —2)"°

= 22 ) (D s ok Z )215 (q,p) "I (—2)",
= D> () (=1)'s 0.3 ()28 (n — 1p) e (~ o).
m=0 p=0 k=0 1=0

Summing over diagonals in the two last summations and putting S (n, k) = s (n, k) £ 0, for
all k& ¢ N,,, this becomes

(1—2)""(c+22D,)" (1—2)"°
n n— p

= ZZ (=1 ()2 S (n—1,p)s(p,g— 1) (=2)",

m=0 p=0 0 =0

= ZZZZ ™27 (n—1,p) s (pg — 1) ¢ (—2)",

quOpOlO

- ZZZZ M2 (n— 1, p) s (pog — 1) & (—2)™,

quOpOlO

- ZZZZ M2 (n— 1, p) s (pog — 1) & (—2)™,

m=0 ¢g=0 [=0 p=0

min(m,n—1)

:ZZZ D2ty (B E)S(—Lp)s(pa—1)c(=2)"

m=0 ¢g=0 =0 p=max(0,q—1)
Renaming indexes gives

(1—2)""(c+22D,)" (1 —2)"°

n n n

= YD (Y

k=0 1=0 §=0

min(k,n—7j)
2" Z (S (n—j,i)s(i,l —n+n—j)| 2",
i=max(0,l—n+n—j)

n n n

= S )y

k=0 1=0 §=0

min(k,j)
<2j Z (" z)S(], i)s (z’,j—i—ln)) el

i=max(0,j+l—n)

17



Applying Proposition [[.] and identification with

B, (1, z;¢) = i (i bn,k,lcl> 2",
0 \ =0

k=

yields, for all k£, € N,,,

bogs = (D)"Y (1) (2 D) (2SS Gi)s (g — (n—1)
j=n—l i=j—(n—1)
This can be rewritten as
n 4 ' min(k,j) .
bn,k,l = (_1)n+l+k Z (_1)J (?)2] Z (Z:E)S (]a Z) S (Zaj - (n - l)) )

J=n—l i=j—(n—1)
!

= (-1 Z (1)~ (j_(n—gﬂn_z))

j—(n—1)=0
min(k,j—(n—1)+(n-1))
9/~ (n=+(n=0) > (C)SG—(=0+m=1),1)s,j—(n=1),
i—j—(n—1)
!
= (D" 2 (1)
q=0
min(k,q-+(n—1))
20t N (1S (g + (n— 1)) s (i,q)
i=q
min(k,n—(l—q))

= (=DFY (=0 )20 Y (DS (= (1= q),1) s (irg),

q=0 i=q
l min(k,n—p)
= DS @ S (S - pi)s (il —p).
p=max(0,l—k) i=l—p

[J

Using basic properties of the Stirling numbers, it is easy to derive the following special
values for the b, 1,

bn,n,l - bn,O,l - 5n:l7 (5 ].7)
bn,k,n - (Z)’ (518)
buko = Or=00n=0 (5.19)

18



5.3 Symmetry
Recall Eq. (B7) and a variant of it obtained by replacing k& with n — k,

K!Bui(c) = (1) Z () (n+ iy (=€) (2L + )",

1=0
n—k
(0 BN Bus(e) = (<13 (1) (14 gy () (240"
1=0
Due to the symmetry B, (¢) = By, n—k(c), there must hold, for all n € N, for all £ € N,, and

for all ¢ € C, that

("*k) (n+¢) gy (=) (20 + o). (5.20)

(=)' g (et 2" = = (5.21)

and for k =1,

—1)" & rm (c+n+1)(c+n n+1
| n!) 21 (l)((c++l—l—i_—1))((cil)> (c+20)"

1=0
c(c+2) c(<;+n+ )c ' (5.22)

5.4 A result of Ruiz
Summing Eq. (f-§) over k from 0 to n and using result (B-1§), we get, for all n € N and for
all c € C,

C(n) = 2niBn,k(6),
k=0
D D G Vi (5 | Gara NURSRTP) B
or . .
(Screm) (1 aer —en
=0 q=0

19



Using the binomial identity

—

n—

1) = 0 (),

we get
(D RED ) Ur /2 =,
=0
("D 2 T () e/t =,
(=)™ () (L +¢/2)" =nl,
=0
or finally
S ) (o) - =1, (5.23)

1=0
Identity (B-23) is a result of Ruiz [§]. Written in the form

[ (0

n

— > (=) (") (e+20)" = 2m, (5.24)

1
n!
=

o

it can be regarded as the first identity in a series of identities of which Eqgs. (5.21]) and (£:29)
are the next two successors. Ruiz’s result however is special because the sum in Eq. (p.24)
is independent of c.

In addition, applying D™ to Eq. (B.24) we obtain the following derived identities, for all
n € N, for all m € N,, and for all ¢ € C,

n

D) (2 = (=1)" 2" lb . (5.25)

=0

6 Properties of the b,

Due to the symmetry relation B,, j(c) = B, »—(c), we have that by, ,_x; = by 4, for alln € N
and for all k,l € N,,.

6.1 Recursion relation for the 0,

Proposition 6.1. For alln € N and for all k,l € N,,,

bt t1i41 = 2(k + D)bpsr1a41 + bngr1s + 2(n — K)bn i1 + b, (6.1)
with booo =1 and buys 2 0 if k1 ¢ Zo .

20



Proof. ;jFrom the fact that B, x(0) = d,—¢ we find that b, xo = Jk—0dn—o and hence by o = 1.
Substituting Eq. (B.I9) in Eq. (B4), we get

n+1

an+1k+1lc —(2(/64‘1 +c ank—i-llc +( —|—C anklcl.

1=0
This is equivalent to

n+1

n n
I I+1 I+1
E bpti1kr10C = E by jet1,1C +E by i€
1=0

2(k+1) ank+1lc +2(n—k anklc
1=0

or

n+1 n+1 n+1

[
E bn—f—l,k-‘,—l,lc = E bn,k+1,q—lcq + E bn,k,q—lcq
=0 = =

2(k+1) ank+1lc +2(n—k anklc
=0

or, because b,k 20ifk,l ¢ Ly, wWe get

n+1 n+1 n+1
!
E buj1ri10C = E b j41,g—1¢7 + E br . q—1¢"
=0 q=0 q=0
n+1 n+1

k"f“l ank—HIC +2n— anklc
=0

This holds for all ¢, so we obtain

bt = 2(k + 1)bp 1y + bpgg1,—1 + 2(n — k)by g + bngi—1.

6.2 Partial sums of the b,

The following result shows that various partial sums over the number pyramid b,j,; are
related to several important number triangles.
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Proposition 6.2. For alln € N and for all k,l € N,
an,k,l = Bnyiks1s
1=0
Dbk = (1" () — 200000())
D by = (=1)"'2"s(n,1),
k=0
Z(_1>kbn,k,l = en(_l)n/QZnélgn/2Tn/2,l-

Proof. (i) This immediately follows from Eq. (B.20).
(ii) We have, for all z,t € C,

B7Y(1, 2,t)
_ ]_ eilgizt_ z €+lgzt

1—2 1—2 ’

= tn = n
. —n o n . n—1 - —n . n—1 -
- ;2 (1" (=2 Z;Q (1=2)"" =,

n—1 "

DA CIEP T e

— ZZ”‘ On=0 + Onso ((—=1)" — 2) y (ngl)(_z)k> 2_7:’
B7'(1,z2,t)
oo X (—1 n 1
= D27 (Gumotduso |+ 05 (CUM() + GID) (20 ) |
n=0 +(=2)" .
With the identity
e+ ) = (e a-con ) )

22
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the expression inside the first pair of parentheses becomes

On=0 + On>0 ((—1)” + i ((—D” (1= (=1)") %) (R (=2)"+ (—z)”)

= 3 (sumot o (17 + 1= 0 E) ) (-2

= 3 (1-dso- 0 E)

and we get for the full expression

V12 Zz D (1—5n>0<1—<—1>">§)zk;—’}

k=0
or

11, 2, 1) Zz "3 (-1 P () — 20000 (1)

k=0
Identifying this expression with

+oo n n
11, 2,8) ZZ<2”anM )%

n=0 k=0

yields

n

D (=D g = (=1)"* () = 2000850 (371)) -

1=0
(iii) Applying Eq. (BI§) to the following double sum we obtain, for all ¢ € C,

Zzbnklc_ZBnk ) = 2",

k=0 1=0

or
n

Z ((—1)n_12_n Z bm’ml) d = C(n)
k=0

1=0
Identifying this with the definition of the Stirling numbers of the first kind gives

1)n—l2—n Z bn,k,l = s(n, l)
k=0

(iv) This result is related to the Maclaurin series of sech®t, considered in the next section.

There it is shown that (i)
2m+1

Z (_1>k62m+1,k,l - Oa

k=0
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and (ii) (see Proposition [(]] below)

Z(_l)kbn,k,l = (=1)"?2"€, 812 /2T )21,
k=0

where the number triangle 75, ; is Sloane’s sequence [A088874]. O

We can add to the sums given by Proposition .3, Eq. (B-27), which expressed in terms
of the b, x; reads

D bna2 = 2" Ansr g (6.6)
=0

6.3 The numbers T},

We now give an explicit expression for the numbers [A0S8874.

Proposition 6.3. For alln € N and for all | € N,,,
!

6n(slgn/2(_]-)TL/Q_ZI-Z—'TL/Z,Z - Z(_l)p (Z)wn—p,l—pa (67)
p=0
wherein .
Wom 22" S (n, k) s (k,m) (1/2)" . (6.8)
k=m

Proof. Summing over k£ from 0 to n in the expression for b, ;; given by Proposition p-4, we
get

n l n  min(k,n—p)
k=0 p=0 = i=l—p
Using S (n, k) = s (n, k) 20, Vk ¢ N,,, we can write this as
n l n k
Z(_l)kbn,k,l - Z(_l) 2n P Z Z n b, ) (Zvl - p) :
k=0 p=0 k=0 =0

Interchanging the last two summations gives

S (1) by = Z(—l)l-p(z>2”-pz< '<z_;>)s<n—p,z'>s<i,z—p>,

l n

= S ()2 ey 2 (- i) s (6,1 p)

p=0 =0
or
n l n—p
27" Y (D b =Y (D)) Y 2S (n—p,i) s (il —p)
k=0 p=0 i=l—p
Using herein definition ([.§) and the result ([.§) from Proposition [[.] below, Eq. ([.7)
follows. O
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n\ k 0 1 2 3 4 5 6 7 8
0 1
1 0 1
2 0 2 3
3 0 16 30 15
4 0 272 588 420 105
5 0 7936 18960 16 380 6300 945
6 0 353792 911328 893 640 429 660 103950 10395
7 0 22368 256 61152000 65825 760 36 636 600 11351 340 1891 890 135135
8 0 1903757312 5464904 448 6327 135 360 3918554 640 1427025600 310269 960 37837800 2027025

Table 3: The number triangle T;,

We give the onset of the number triangle T,,; in Table f. In particular, T, o = d,—0,
T, are the tangent numbers (Sloane’s [AU00I8Y), and 7}, ,, = 1.3.5...(2n — 1) are the double
factorial numbers (Sloane’s A00T147).

7 The Maclaurin series of sech®t

Substituting + = —y = 1 in Egs. (B.J) and (B.3), and using Eq. (B.17), shows that the
Maclaurin series of the c-th power of secht is given by, for all ¢ € C,

sech® t — ioz pn(c);, (7.1)

where -
pale) = 2—"§<—1>'f3n,k<c>, (7.2
= Zn: (2—" zn:(—m’“bn,k,l) c. (7.3)

The polynomials p,(c) have the following properties.

(1) part1(c) =0, for all k£ € N and for all ¢ € C, because sech®t is even in ¢.

(ii) pn(c) has degree n/2. This can be seen as follows. We have, for all m € N,
lim. o D™sech®t = (Insecht)™ and (Insecht)™ = O (*™). Hence p,(c) must have degree
n/2.

(1) P (0) = G

Then due to (i) we have, for all m € N,

2m—+1

Z (=1 bom1ks = 0, (7.4)

k=0

25


http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A000182
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A001147

and we define, in accordance with (ii),

2m
Z(—l)kbm,k,z £ (=1)" 2% 1con Ton-
k=0
Hence m
pom(c) = 1:1% D?™sech®t = (—1)™ z_: Trnac,
SO

+oo 252m
sech™t = miC | 74—
=3 (o 3on) o

m=0

Due to (iii), 7,0 = dn=o, for all n € N.
We now clarify the nature of the numbers 7},,; defined in Eq. ([.3).

Proposition 7.1. The number triangle T, ;, for alln € N and for all | € N,,, satisfies the

recursion relation
Tov1i+1 = ZQP( p;f{l + 0> (p+1)> T tps
with T,, 0 = On—o-
Proof. Starting from the identity
D?sech®t = ¢?sech®t — c(c + 1) sech®*? ¢,
and substituting herein the series expansion for secht, Eq. ([.7]), we get

t2(n 1)

; ZT“C (20— 1))

—+00 n 2n

- ZZ Z nlclé—nn)!—c(c+1)2(—1)”2Tn,l(c—|—2)l®.

n=0 1=0
As this holds for all ¢, we must have that

n+1

—ZTn+1lC = ZTmc —c c+1)ZTnJ(c+2)l.

This can be rearranged in the form

n

Y Toirind =+ 1)) Tulc+2) ZTnlC

=0 1=0

26
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By the binomial theorem,

n

l
E Tn+1,z+1C =
1=0

l

Tn,l Z (}i) 2l—kck+1
+ZTMZ )2l heh ZTmc
=0

Interchanging the order of summation in the double sum terms gives

\E

n n n—k
k+1
E Tt g1¢ E E 29(TH) Ty gkC
=0 k=0 ¢=0
n n—k n+1
q+k k k
+ 21 (1) T gin® = > T
k=0 g=0
We can rearrange this further into
n n+1n— (
E E E ' q+l 1 l
Tn+1,l+1c 2q nq+l 1€
=0 =1 ¢=0
n n—l n+1
q+l l § l
+ 2q( I )qu_i_lc — Tn,l_lc .
=0 ¢=0

As this holds for all ¢, we must have that

Tn+1,1 - quTn,q;

n n n—(1—1) 2q(q—H l)T B
Tn ! _ Zq 0 -1 n,q+l—1 l
lz:; +1,0+1C Z ( + Zn l 94 (q+l)Tn,q+l - Tn,l—l > c

n+1
+Tn,nc - Tn,nc )
or
n
Tn+1,1 - E 2an,q;
q=0
n—(1—1) n—l
+1—-1 +1
Tn+1,l+1 - 21 (ql_1 )Tn,qulfl + E 21 (ql )Tn,qul - Tn,lflal € Z+,n7
q=0 q=0
or
Tn—i—l,l = E nq;
+l 1
Tn+1,l+1 = E -1 nq+l 1+ E 2q nq—l—lal € Z+ ns
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or

Tn+1,1 - ZQan,q;

l
T = Z 2p+1 p+ T pt1 + Z 2p np+l,l € Ly p,

or

Tn+1,1 - E 2PT, np7

l l
Tn+1,l+1 = Z 21) p+ p+ )) Tn,p—i—la l € Z—i—,na

or

Tn+1,1 = Z 2an,p7l = 0;

Thprin = Z?’( () + (7)) Tapins L € Zi .

With the basic additive (Pascal’s first) binomial identity
+ Y (pH+
(;))-1—1) + (pp ) - (pp—i-l )’

we can write this also as

Tn+1,1 - Zszn,p;

+l+1 +1
Tn+1,l+l = Z or < pp+1 (£+1)) Tn,l+p7l € Z+,n-

Both these equations can be combined into the following single equation, for all [ € N,,,

Toy1i+1 = Z 2v ( (P + 610 (p+1)> Toitp-

Finally, from the fact that sech’t = 1 we conclude that 150 = Op=o- O
Identifying our results with those given in Sloane [T}, [AU85734 and [AUSS87]] we see that

the T, satisfying recursion relation ([7.§) and boundary condition 7}, o = 0,9, are indeed
Sloane’s sequence [RU8887] (there constructed by Deleham using a delta operator). Thus
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Eq. ([.7) shows that the number triangle 7}, ; is as fundamental for the Maclaurin series of
secht as the Euler numbers E,, are for the Maclaurin series of sech t.
Eq. ([7) also immediately leads to the orthogonality relation, for all n,k € N,

n min(k,p)
> G > (=) TaspiaiTps = Sn=obi0. (7.9)
p=0 l=max(0,k+p—n)

The series ([7]) shows that the numbers ES2 £ (—1)™ St Ty, for all m € N and for
all ¢ € C, are a set of generalized Euler numbers (although they are polynomials in ¢) in the
sense of Luo, et al. [f]]. It seems more natural however, to regard the integer numbers 7,
as a more fundamental set, because they are independent of c.

7.1 Multinomial Euler numbers E"

For the important special case that ¢ = m € N, it might be convenient to introduce a
generalization of the Euler numbers that are also integers.
By identifying Eq. (.7]) with the Maclaurin series of sech™ ¢, written in the form

+oo
m mtn
sech™t = Z E] pl (7.10)
n=0
we get, for all p € N, Ey ;=0 and
p
Ep = (-1 T,m. (7.11)
1=0
On the other hand, we also have that sech™ ¢t = ( :i% En%)m, so we obtain,
#(K)
B = Sm=obn=o + 0ms0 > (%) T[ Ew. (7.12)
K:|K|=n i=1

Expression ([.19) suggests that the E* be called multinomial Euler numbers. Equating the
right hand sides of Eq. ([I]]) and Eq. ([-IJ) gives

n #(K)
(=" Thum' = bmoduo+0ms0 > (1) [[ B (7.13)
=0 =1

K:|K|=n

This reduces, for m =1, to
(=)™ Ty = Enp. (7.14)
1=0

Some particular multinomial Euler numbers are mentioned in Sloane [[1]. Eq. ([.I1])
reduces to the following particular cases: EJ* = 1, Bl = —m, EJ" = m (3m + 2) (rhombic
matchstick numbers, Sloane’s [A045044)) and EJ* = —m (15m? 4 30m + 16) (not in Sloane).
Also, EY = 6,9, E! = E, (Euler or sech numbers, |E,| is Sloane’s [R000304), E? ;| are the
tanh numbers (due to Dy sech’t = Dj"*' tanht, with |E2_,| being Sloane’s [S000183).

We give the onset of the number square E], for even n, in Table [l
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n\ m 1 2 3 4 5 6

0 1 1 1 1 1 1

2 -1 -2 -3 -4 -5 -6
4 5 16 33 56 85 120
6 -61 -272 723 -1504 -2705 -4416
8 1385 7936 25953 64 256 134185 249 600

10 -50521 -353792 -1376643 -3963 904 -9451 805 -19781376

Table 4: The number square E)"

7.2 Even multinomial parity numbers ¢’

By identifying Eq. ([17]) with the Maclaurin series of cosh™ ¢, written in the form

+o0
tn
cosh™t = g e = (7.15)
n!
n=0

we get, for all p € N, e, ; =0 and

p
ey = (=1 Y Tpu(—m)". (7.16)
1=0
On the other hand, we also have that cosh™t = ( :;O% €én tnn,) , SO we obtain,
#(K)
eZL = m:06n:0 + 5m>0 Z (Z') H eki' (717)
K:|K|=n i=1

Expression ([.17) suggests that the e/ be called even multinomial parity numbers. Eq. (.17
gives us the following explicit expression for the e/ numbers,

1 m
= Tmz m — 2j)" (7.18)

J=0

Equating the right hand sides of Eq. ([.Iq) and Eq. ([-I§) gives

_1) S Ty(—m)l = 2im S () (m - 25y (7.19)
=0 7=0
(D)"Y (=)', =1, (7.20)

and, for m = 2, to

(=)™ T (=2) =221 (7.21)



n\ m 1 2 3 4 5 6

0 1 1 1 1 1 1

2 1 2 3 4 5 6
4 1 8 21 40 65 96
6 1 32 183 544 1205 2256
8 1 128 1641 8320 26 465 64 896

10 1 512 14763 131584 628 805 2086 656

Table 5: The number square e}

Various particular even multinomial parity numbers are mentioned in Sloane [[1]. For
instance, e’ =1, e = m, e]' =m (3m — 2) (octagonal numbers, Sloane s [A000567) and
el = m (15m? — 30m + 16) (not in Sloane). Also, € = §,—¢, e} =e¢,, € "= = 0p—0+0n>0en2""
(€3, is Sloane’s [RO09TTY), € = e, (3" +3)/4 (€3, is Sloane’s EU54879), et = e, (4" +4.2™) /8
(€3, is Sloane’s [A0928TY) and €] = e, (10 +5.3" +5") /16 (not in Sloane). In general,
expression ([[.1§) shows that ey, equals the number of closed walks, based at a vertex, of
length 2p along the edges of an m-dimensional cube [[J].

We give the onset of the number square €™, for even n, in Table [l

7.3 Relations between the L)' and the ¢’ numbers

(i) Evidently, due to the fact that cosh™¢ sech™¢ = 1, for all m € N, holds the following
orthogonality relation, for all n,m € N,

n

> (Der B = dn. (7.22)

=0

Combining Egs. ([.29) and ([.1§), and using the fact that €' = 1, for all m € N, we

obtain the following recursion relation for the E",

n—

E = 60— 650 Y _ (}) 2im Z — 2j)" T E™, (7.23)
=0

Jj=0

In particular, for m = 1, Eq. ([.23) yields

Eap = 0o p>oz o) Ea;. (7.24)

Due to the symmetry of the binomial expression in Eq. ([[:29) and because EJ* = 1, for all
m € N, we get equivalently a recursion relation for the €] in terms of the E* numbers,

n—1

en' = On=o — Onso ¥ (1) EN e (7.25)

=0
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In particular, for m = 1, by using el = ¢, and ey = 1 = Ej, we get

p
Eo = 0p—o — 5p>0 Z @?) EQ(pfj)- (7.26)
i=0

(ii) Comparing Eq. ([.IT) with Eq. ([[.I8) we see that the numbers EY} are the extension
to negative integers m of the numbers e . as expected from their generating functions given

in Egs. ([210) and ([-13).

(iii) Recall Faa di Bruno’s formula for the n-th derivative of a composition of two functions
M, p. 823, 24.1.2, 11, C.], for all n € Z,

n

D) =3 (D) (1) Y n'H%

k=1 P(n):|K|:k =1

where P(n) £ {K 2 0kt ks ook € NV 1ky + 2k + oo + 1k = n} An element K € P(n)

represents a partition of a set of cardinality n into k; classes of cardinality 1, ko classes of
cardinality 2, up to k, classes of cardinality n.
Applied to f o g, with g (¢) = cosh™t and f(g) = 1/g, we get

Ep = lmDif (g (1)),

k=1 P(n)|K|=k i=1

Define, for all n € N, S™(n,0) £ §,—¢ and if n > 0, for all k € Z ,,,

n m\ ki
stk 2 Y al] (€F") (7.27)
Pny|K|=k  i=1 \!
Then .
EP =Y (=1)FkIS! (n, k). (7.28)

k=1
Eq. ([.29) expresses the multinomial Euler numbers in terms of the even multinomial parity
numbers through the intermediate numbers S (n, k).
The even parity symbol e; in the product in Eq. ([.27) makes that all k; with odd index
i must be taken zero, so SI"(n, k) and hence E™ are both zero for odd n. With n = 2p, we
get, for all p € Z,,

kgj

53(2]), k) - Z ‘H k?2] ]{7 |

P.(2p):|Ke|=k

where P,(2p) = {Ke 2 {ka, kg, ooy ki € N} 1 kg + 2ky + ... + phyy = p}. An element K, €

P.(2p) represents a partition of a set of 2p elements into 0 classes of cardinality 1, ky classes
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of cardinality 2, 0 classes of cardinality 3, k4 classes of cardinality 4, up to ks, classes of
cardinality 2p.
In particular, for m = 1, we get from Eq. ([2§), for all p € Z,

AT R SENCI1 | ———

N
P.(2p):|Ke|=k j=1 ((25)1)7 k!

i.e., the number of ways of partitioning a set of 2p elements into k£ non-empty subsets, each

of even cardinality, and
2p

By =Y (1) k!S.(2p, k). (7.29)

k=1
This seems to be a new expression for the (even) Euler numbers. Here the sum involves

partitions into subsets of even cardinality. A similar sum, involving partitions into subsets
of any cardinality, is the well-known result for the Stirling numbers of the second kind,

2p

1= (—1)"kIS(2p, k).

k=0

It thus turns out that the numbers S™(n, k), (which by comparing Eq. ([[:27) with Eq.
(30) might be called “even multinomial Stirling numbers of the second kind”), are more
natural to the £ than the S(n, k). This can be seen by applying Faa di Bruno’s formula

to fog, with g(t) = €' and f(g9) = (3 (g+1/g)) ", and using [[l, p. 823, 24.1.2, II BJ,

n!
Stk = Y (7.30)
iy =k Ll (1) Ki!

We get

E" = Z (hm DF sech™ (In (1 + t))) S(n, k), (7.31)
£~ \i—=0
an expression more complicated than E" = lim,_o D} sech™ (t). For m = 1, the numbers
defined by the expression inside the parentheses in ([.31]) are Sloane’s [R009014.
We can derive another expression for the EJ" in terms of the S(n, k), directly from the
generating function sech™ (z), as was done in Luo, et al. [[], but it turns out to involve a
double sum. In the particular case m = 1 however, we can obtain this other expression from

our results by combining Eqgs. (§:29) and (f-I3), and then it reads

n k

E,=> (1) (-1)'12¢"S (k,1). (7.32)

k=0 =0
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