Journal of Integer Sequences, Vol. 8 (2005), Article 05.3.2

On Families of Nonlinear Recurrences Related to Digits

Th. Stoll ${ }^{1}$
Faculty of Mathematics
University of Vienna
Nordbergstraße 15
1090 Vienna
Austria
thomas.stoll@univie.ac.at
and
Institute of Discrete Mathematics and Geometry
Wiedner Hauptstraße 8-10
1040 Vienna
Austria
stoll@dmg.tuwien.ac.at

Abstract

Consider the sequence of positive integers $\left(u_{n}\right)_{n \geq 1}$ defined by $u_{1}=1$ and $u_{n+1}=$ $\left\lfloor\sqrt{2}\left(u_{n}+\frac{1}{2}\right)\right\rfloor$. Graham and Pollak discovered the unexpected fact that $u_{2 n+1}-2 u_{2 n-1}$ is just the n-th digit in the binary expansion of $\sqrt{2}$. Fix $w \in \mathbb{R}_{>0}$. In this note, we first give two infinite families of similar nonlinear recurrences such that $u_{2 n+1}-2 u_{2 n-1}$ indicates the n-th binary digit of w. Moreover, for all integral $g \geq 2$, we establish a recurrence such that $u_{2 n+1}-g u_{2 n-1}$ denotes the n-th digit of w in the g-ary digital expansion.

1 Introduction

In 1969, Hwang and Lin [6] studied Ford and Johnson's algorithm for sorting partially-sorted sets (see also [7]). In doing so, they came across the sequence of integers

$$
1,2,3,4,6,9,13,19,27,38,54,77,109 \ldots
$$

[^0]defined by the nonlinear recurrence
\[

$$
\begin{equation*}
u_{1}=1, \quad u_{n+1}=\left\lfloor\sqrt{2 u_{n}\left(u_{n}+1\right)}\right\rfloor, \quad n \geq 1 \tag{1}
\end{equation*}
$$

\]

Since there is no integral square between $2 u_{n}^{2}+2 u_{n}$ and $2 u_{n}^{2}+2 u_{n}+\frac{1}{2}=2\left(u_{n}+\frac{1}{2}\right)^{2}$ we can rewrite the recurrence in a more striking form, i.e.,

$$
\begin{equation*}
u_{1}=1, \quad u_{n+1}=\left\lfloor\sqrt{2}\left(u_{n}+1 / 2\right)\right\rfloor, \quad n \geq 1 \tag{2}
\end{equation*}
$$

While investigating closed-form expressions for u_{n} in (2), Graham and Pollak [4] discovered the following amazing fact:

Fact 1 (Graham/Pollak). We have that

$$
d_{n}=u_{2 n+1}-2 u_{2 n-1}
$$

is the n-th digit in the binary expansion of $\sqrt{2}=(1.011010100 \ldots)_{2}$.
Since then, sequences arising from the recurrence relation given in (2) are referred to as Graham-Pollak sequences [9, 10]. Sloane [9] gives three special sequences depending on the initial term u_{1}, i.e., sequence $\underline{\text { A001521 for } u_{1}=1, \underline{A 091522} \text { for } u_{1}=5 \text { and sequence } \underline{A 091523}}$ for $u_{1}=8$.

The curiosity of Fact 1 has drawn the attention of several mathematicians and has been cited a few times, see Ex. 30 in Guy [5], Ex. 3.46 in Graham/Knuth/Patashnik [3] and in Borwein/Bailey [1, pp. 62-63]. A generalization to numbers other than $\sqrt{2}$ is, however, not straightforward from Graham and Pollak's proof. Nevertheless, Erdős and Graham [2, p. 96] suspected that similar results would also hold "for \sqrt{m} and other algebraic numbers", but they concluded that "we have no idea what they are."

By applying a computational guessing approach, Rabinowitz and Gilbert [8] could give an answer in the binary case:

Theorem 1.1 (Rabinowitz/Gilbert). Let $w \in \mathbb{R}_{>0}$ and $t=w / 2^{m}$, where $m=\left\lfloor\log _{2} w\right\rfloor$. Furthermore, set

$$
a=2\left(1-\frac{1}{t+2}\right), \quad b=\frac{2}{a} .
$$

Define a sequence $\left(u_{n}\right)_{n \geq 1}$ by the recurrence

$$
\begin{aligned}
u_{1} & =1 \\
u_{n+1} & = \begin{cases}\left\lfloor a\left(u_{n}+1 / 2\right)\right\rfloor, & \text { if } n \text { is odd } ; \\
\left\lfloor b\left(u_{n}+1 / 2\right)\right\rfloor, & \text { if } n \text { is even } .\end{cases}
\end{aligned}
$$

Then $u_{2 n+1}-2 u_{2 n-1}$ is the n-th digit in the binary expansion of w.
Note that for $w=\sqrt{2}$ we get $a=b=\sqrt{2}$ and the statement of Fact 1 is obtained. However, the values of a and b in Theorem 1.1 are somehow wrapped in mystery. Rabinowitz and Gilbert first varied a and b in order that $u_{2 n+1}-2 u_{2 n-1} \in\{0,1\}$. They found that
$a b=2$ and discovered that the represented w indeed equals $2(a-1) /(2-a)$ provided that $1<a<3 / 2$.

It is a natural question to ask, whether there exist other values of a and b such that the binary expansion of w is obtained. Here we prove

Theorem 1.2. Let $w \in \mathbb{R}_{>0}$ and $t=w / 2^{m}$, where $m=\left\lfloor\log _{2} w\right\rfloor$. Furthermore, let $j \in \mathbb{Z}_{>0}$ and set the values of a and b according to one of the following cases:

Case I:

$$
a=2\left(j-\frac{1}{t+2}\right), \quad b=\frac{2}{a} .
$$

Case II:

$$
a=2 j-\frac{t}{t+2}, \quad b=\frac{2}{a} .
$$

Define a sequence $\left(u_{n}\right)_{n \geq 1}$ by the recurrence

$$
\begin{aligned}
u_{1} & =1 \\
u_{n+1} & = \begin{cases}\left\lfloor a\left(u_{n}+1 / 2\right)\right\rfloor, & \text { if } n \text { is odd } ; \\
\left\lfloor b\left(u_{n}+\varepsilon\right)\right\rfloor, & \text { if } n \text { is even, }\end{cases}
\end{aligned}
$$

where $1 / 3 \leq \varepsilon<2 / 3$ in CASE I and $\varepsilon=1 / 2$ in CASE II, respectively. Then $u_{2 n+1}-2 u_{2 n-1}$ is the n-th digit in the binary expansion of w.

In the closing paragraph of [8], the authors finally posed the question, whether there exists an analogous statement for ternary digits. Here we prove

Theorem 1.3. Let $w \in \mathbb{R}_{>0}$ and $g \geq 2$ be an integer. Furthermore, set $t=w / g^{m}$, where $m=\left\lfloor\log _{g} w\right\rfloor$ and

$$
a=\frac{g}{(g-1)(t+g)}, \quad b=\frac{g}{a} .
$$

Define a sequence $\left(u_{n}\right)_{n \geq 1}$ by the recurrence

$$
\begin{aligned}
u_{1} & =1 \\
u_{n+1} & = \begin{cases}\left\lfloor a\left(u_{n}+\varepsilon\right)\right\rfloor, & \text { if } n \text { is odd } \\
\left\lfloor b\left(u_{n}+1 /(g-1)\right)\right\rfloor, & \text { if } n \text { is even },\end{cases}
\end{aligned}
$$

where $-1 / g \leq \varepsilon<(g+1)(g-2) / g$. Then $u_{2 n+1}-g u_{2 n-1}$ is the n-th digit in the g-ary digital expansion of w.

In view of Fact 1, we note two immediate consequences of Theorem 1.2 and Theorem 1.3. To begin with, we substitute $w=t=\sqrt{2}$ in Case I and Case II of Theorem 1.2. This implies $a=2 j-2+\sqrt{2}$ (CASE I) and $a=2 j+1-\sqrt{2}$ (CASE II) for $j \geq 1$. By ordering all such values into a single sequence, we obtain

Corollary 1.1. Let $a_{j}=j+(-1)^{j} \sqrt{2}$ for $j=0,2,3 \ldots$ and $b_{j}=2 / a_{j}$. Define a sequence $\left(u_{n}\right)_{n \geq 1}$ by

$$
\begin{aligned}
u_{1} & =1 \\
u_{n+1} & = \begin{cases}\left\lfloor a_{j}\left(u_{n}+1 / 2\right)\right\rfloor, & \text { if } n \text { is odd } \\
\left\lfloor b_{j}\left(u_{n}+1 / 2\right)\right\rfloor, & \text { if } n \text { is even } .\end{cases}
\end{aligned}
$$

Then $u_{2 n+1}-2 u_{2 n-1}$ is the n-th digit in the binary expansion of $\sqrt{2}=(1.011010100 \ldots)_{2}$.
Note that for $j=1$ we have $a_{1}=1-\sqrt{2}<0$ and $u_{5}-2 u_{3}=7-2 \cdot 2=3$, which is not a binary digit.

On the other hand, if we take $g=3, w=t=\sqrt{2}$ and $\varepsilon=1 / 2$ in Theorem 1.3, we get Corollary 1.2. Define a sequence $\left(u_{n}\right)_{n \geq 1}$ by

$$
\begin{aligned}
u_{1} & =1 \\
u_{n+1} & = \begin{cases}\left\lfloor a\left(u_{n}+1 / 2\right)\right\rfloor, & \text { if } n \text { is odd; } \\
\left\lfloor b\left(u_{n}+1 / 2\right)\right\rfloor, & \text { if } n \text { is even, }\end{cases}
\end{aligned}
$$

where $a=(9-3 \sqrt{2}) / 14$ and $b=6+2 \sqrt{2}$. Then $u_{2 n+1}-3 u_{2 n-1}$ is the n-th digit in the ternary expansion of $\sqrt{2}=(1.102011221 \ldots)_{3}$.

2 Proofs

For later reference we state an easy, but useful proposition.
Proposition 2. Let $g \geq 2$ be an integer and $w=\left(d_{1} d_{2} d_{3} \ldots\right)_{g}$ be the g-ary digital expansion of w with $d_{1} \neq 0$ and $0 \leq d_{n}<g$ for $n \geq 1$. Suppose further that for $n \geq 1$ not all of d_{n}, d_{n+1}, \ldots equal $g-1$. Then

- $t=\left(d_{1} \cdot d_{2} d_{3} \ldots\right)_{g}$ with $1 \leq t<g$,
- $d_{n}=\left\lfloor t g^{n-1}\right\rfloor-g\left\lfloor t g^{n-2}\right\rfloor$.

Proof. Since $m=\left\lfloor\log _{g} w\right\rfloor$ it is immediate that $1 \leq w / g^{m}<g$. Moreover,

$$
\left\lfloor t g^{n-1}\right\rfloor-g\left\lfloor t g^{n-2}\right\rfloor=\left(d_{1} d_{2} \ldots d_{n}\right)_{g}-\left(d_{1} d_{2} \ldots d_{n-1} 0\right)_{g}=d_{n}
$$

2.1 Proof of Theorem 1.2

First, we prove that in Case I there hold

$$
\begin{aligned}
u_{2 k} & =2^{k-1}+\left\lfloor t 2^{k-1}\right\rfloor+(j-1)\left(2^{k}+2\left\lfloor t 2^{k-2}\right\rfloor+1\right) \\
u_{2 k+1} & =2^{k}+\left\lfloor t 2^{k-1}\right\rfloor
\end{aligned}
$$

so that Proposition 2 gives $u_{2 n+1}-2 u_{2 n-1}=d_{n}$. To begin with, we have $u_{1}=2^{0}+\lfloor t / 2\rfloor=1$ because of $1 \leq t<2$. We are going to employ an induction argument. Suppose that the result holds true for $u_{2 k-1}$. Then

$$
\begin{aligned}
u_{2 k} & =\left\lfloor 2\left(j-\frac{1}{t+2}\right)\left(2^{k-1}+\left\lfloor t 2^{k-2}\right\rfloor+\frac{1}{2}\right)\right\rfloor \\
& =(j-1)\left(2^{k}+2\left\lfloor t 2^{k-2}\right\rfloor+1\right)+\left\lfloor\left(1-\frac{1}{t+2}\right)\left(2^{k}+2\left\lfloor t 2^{k-2}\right\rfloor+1\right)\right\rfloor
\end{aligned}
$$

Thus, it suffices to show that

$$
\begin{equation*}
\left\lfloor\frac{t+1}{t+2} \cdot\left(2^{k}+2\left\lfloor t 2^{k-2}\right\rfloor+1\right)\right\rfloor=2^{k-1}+\left\lfloor t 2^{k-1}\right\rfloor . \tag{3}
\end{equation*}
$$

Since $2\left\lfloor t 2^{k-2}\right\rfloor=\left\lfloor t 2^{k-1}\right\rfloor-d_{k}$ by Proposition 2, we may rewrite (3) in the equivalent form

$$
\begin{aligned}
(t+2)\left(2^{k-1}+\left\lfloor t 2^{k-1}\right\rfloor\right) & \leq(t+1)\left(2^{k}+\left\lfloor t 2^{k-1}\right\rfloor-d_{k}+1\right) \\
& <(t+2)\left(2^{k-1}+\left\lfloor t 2^{k-1}\right\rfloor+1\right)
\end{aligned}
$$

Straightforward algebraic manipulation leads to

$$
t 2^{k-1}+\left\lfloor t 2^{k-1}\right\rfloor \leq t 2^{k}+\left(1-d_{k}\right)(t+1)<\left(t 2^{k-1}+\left\lfloor t 2^{k-1}\right\rfloor+1\right)+1 \cdot(t+1)
$$

which is obviously true because of $\left\lfloor t 2^{k-1}\right\rfloor \leq t 2^{k-1}<\left\lfloor t 2^{k-1}\right\rfloor+1$.
Now, assume that the result is true for $u_{2 k}$. Thus, we have to show that

$$
\begin{equation*}
u_{2 k+1}=\left\lfloor\frac{t+2}{j(t+2)-1}\left(u_{2 k}+\varepsilon\right)\right\rfloor=2^{k}+\left\lfloor t 2^{k-1}\right\rfloor . \tag{4}
\end{equation*}
$$

The equality of integer floors (4) can be rewritten in terms of two inequalities, i.e.,

$$
\begin{aligned}
(j(t+2)-1)\left(2^{k}+\left\lfloor t 2^{k-1}\right\rfloor\right) & \leq(t+2)\left(2^{k-1}+\left\lfloor t 2^{k-1}\right\rfloor+\varepsilon+(j-1)\left(2^{k}+2\left\lfloor t 2^{k-2}\right\rfloor+1\right)\right) \\
& <(j(t+2)-1)\left(2^{k}+\left\lfloor t 2^{k-1}\right\rfloor+1\right) .
\end{aligned}
$$

Again, we use Proposition 2 and proper term cancelling such that (4) translates into

$$
0 \leq\left\lfloor t 2^{k-1}\right\rfloor-t 2^{k-1}+(t+2)\left(\varepsilon+(j-1)\left(1-d_{k}\right)\right)<j(t+2)-1 .
$$

Since $-1<\left\lfloor t 2^{k-1}\right\rfloor-t 2^{k-1} \leq 0$ and $\varepsilon<2 / 3$ we have

$$
\left\lfloor t 2^{k-1}\right\rfloor-t 2^{k-1}+(t+2)\left(\varepsilon+(j-1)\left(1-d_{k}\right)\right)<(t+2)(2 / 3+(j-1)) \leq j(t+2)-1
$$

On the other hand, $\varepsilon \geq 1 / 3$ implies

$$
\left\lfloor t 2^{k-1}\right\rfloor-t 2^{k-1}+(t+2)\left(\varepsilon+(j-1)\left(1-d_{k}\right)\right)>-1+(t+2) \varepsilon \geq 0
$$

This finishes the proof of Theorem 1.2 for CASE I.

Let now a, b and ε be according to CASE II. Again, by Proposition 2 it suffices to show that

$$
\begin{aligned}
u_{2 k} & =2^{k}+\left\lfloor t 2^{k-2}\right\rfloor+(j-1)\left(2^{k}+2\left\lfloor t 2^{k-2}\right\rfloor+1\right), \\
u_{2 k+1} & =2^{k}+\left\lfloor t 2^{k-1}\right\rfloor
\end{aligned}
$$

As before, we have $u_{1}=2^{0}+\lfloor t / 2\rfloor=1$. Assume that the closed-form expression holds true for $u_{2 k-1}$. Then

$$
\begin{aligned}
u_{2 k} & =\left\lfloor\left(2 j-\frac{t}{t+2}\right)\left(2^{k-1}+\left\lfloor t 2^{k-2}\right\rfloor+\frac{1}{2}\right)\right\rfloor \\
& =(j-1)\left(2^{k}+2\left\lfloor t 2^{k-2}\right\rfloor+1\right)+\left\lfloor\left(1-\frac{t}{2(t+2)}\right)\left(2^{k}+2\left\lfloor t 2^{k-2}\right\rfloor+1\right)\right\rfloor
\end{aligned}
$$

Hence, it is sufficient to prove that

$$
\begin{equation*}
2^{k}+\left\lfloor t 2^{k-2}\right\rfloor \leq \frac{t+4}{2(t+2)} \cdot\left(2^{k}+2\left\lfloor t 2^{k-2}\right\rfloor+1\right)<2^{k}+\left\lfloor t 2^{k-2}\right\rfloor+1 \tag{5}
\end{equation*}
$$

By multiplying (5) with $2(t+2)$ and simply canceling out all terms with $\left\lfloor t 2^{k-2}\right\rfloor$, (5) simplifies to

$$
\begin{equation*}
0 \leq 4\left(\left\lfloor t 2^{k-2}\right\rfloor-t 2^{k-2}\right)+t+4<2 t+4 \tag{6}
\end{equation*}
$$

Relation (6) is obviously true, since $-1<\left\lfloor t 2^{k-2}\right\rfloor-t 2^{k-2} \leq 0$.
For the induction step from $u_{2 k}$ to $u_{2 k+1}$ we have to ensure that

$$
u_{2 k+1}=\left\lfloor\frac{2(t+2)}{2 j(t+2)-t}\left(u_{2 k}+\frac{1}{2}\right)\right\rfloor=2^{k}+\left\lfloor t 2^{k-1}\right\rfloor,
$$

or equivalently, that

$$
\begin{aligned}
2^{k}+\left\lfloor t 2^{k-1}\right\rfloor & \leq \frac{2(t+2)}{2 j(t+2)-t}\left(2^{k}+\left\lfloor t 2^{k-2}\right\rfloor+\frac{1}{2}+(j-1)\left(2^{k}+2\left\lfloor t 2^{k-2}\right\rfloor+1\right)\right) \\
& <2^{k}+\left\lfloor t 2^{k-1}\right\rfloor+1
\end{aligned}
$$

We replace all $\left\lfloor t 2^{k-2}\right\rfloor$ by $\left(\left\lfloor t 2^{k-1}\right\rfloor-d_{k}\right) / 2$ and after some term sorting we obtain

$$
\begin{equation*}
0 \leq(t+2)(2 j-1)\left(1-d_{k}\right)+t 2^{k}-2\left\lfloor t 2^{k-1}\right\rfloor<2 j(t+2)-t \tag{7}
\end{equation*}
$$

Since $0 \leq t 2^{k}-2\left\lfloor t 2^{k-1}\right\rfloor=d_{k+1}+t 2^{k}-\left\lfloor t 2^{k}\right\rfloor=\left(d_{k+1} \cdot d_{k+2} d_{k+3} \ldots\right)_{2}<2$, the inequalities given in (7) hold true for all $k \geq 1$. The proof of Theorem 1.2, Case II is done. It is not difficult to see that $\varepsilon=1 / 2$ cannot be replaced by any other value.

2.2 Proof of Theorem 1.3

Here we prove

$$
\begin{aligned}
u_{2 k} & =\left(g^{k-1}-1\right) /(g-1), \\
u_{2 k+1} & =g^{k}+\left\lfloor t g^{k-1}\right\rfloor
\end{aligned}
$$

Similarly as before, the statement of Theorem 1.3 is then obtained from Proposition 2. Again, $u_{1}=g^{0}+\lfloor t / g\rfloor=1$. Suppose first, the result holds for $u_{2 k}$. Then

$$
u_{2 k+1}=\left\lfloor b\left(u_{2 k}+\frac{1}{g-1}\right)\right\rfloor=\left\lfloor(t+g)\left(g^{k-1}-1\right)+(t+g)\right\rfloor=g^{k}+\left\lfloor t g^{k-1}\right\rfloor .
$$

Vice versa, assume the result holds for $u_{2 k+1}$. Let $\{x\}$ denote the fractional part of $x \in \mathbb{R}_{>0}$. Then

$$
\begin{aligned}
u_{2 k+2} & =\left\lfloor a\left(u_{2 k+1}+\varepsilon\right)\right\rfloor=\left\lfloor a\left\lfloor g^{k-1}(t+g)\right\rfloor+a \varepsilon\right\rfloor \\
& =\left\lfloor a\left\lfloor\frac{g^{k}}{a(g-1)}\right\rfloor+a \varepsilon\right\rfloor=\frac{g^{k}-1}{g-1}+\left\lfloor\frac{1}{g-1}-a\left\{\frac{g^{k}}{a(g-1)}\right\}+a \varepsilon\right\rfloor .
\end{aligned}
$$

Since $0<a \leq g /\left(g^{2}-1\right)$, we have $1 /(g-1)-a \geq a / g$. Thus, for $\varepsilon \geq-1 / g$ we get

$$
\frac{1}{g-1}-a\left\{\frac{g^{k}}{a(g-1)}\right\}+a \varepsilon>\frac{1}{g-1}-a+a \varepsilon \geq \frac{a}{g}-\frac{a}{g}=0
$$

On the other hand, if $\varepsilon<(g+1)(g-2) / g$ then

$$
\frac{1}{g-1}-a\left\{\frac{g^{k}}{a(g-1)}\right\}+a \varepsilon \leq \frac{1}{g-1}+a \varepsilon<\frac{1}{g-1}+\frac{g}{g^{2}-1} \cdot \frac{(g+1)(g-2)}{g}=1 .
$$

This finishes the proof of Theorem 1.3.

Acknowledgment

The author wishes to thank the referee for her/his detailed remarks on the original manuscript; in particular, for pointing out several inaccuracies in the statement of the results.

References

[1] J. Borwein and D. Bailey, Mathematics by Experiment, Natick, MA, 2003.
[2] P. Erdős and R. L. Graham, Old and New Problems and Results in Combinatorial Number Theory, L'Enseignement Mathématique, Genève, 1980.
[3] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics, Addison-Wesley, MA, second edition, 1994.
[4] R. L. Graham and H. O. Pollak, Note on a nonlinear recurrence related to $\sqrt{2}$, Math. Mag., 43 (1970), 143-145.
[5] R. K. Guy, The strong law of small numbers, Amer. Math. Monthly, 95 (1988), 697-712.
[6] F. Hwang and S. Lin, An analysis of Ford and Johnson's sorting algorithm, in: Proc. Third Annual Princeton Conf. on Inform. Sci. and Systems, 1969, pp. 292-296.
[7] D. E. Knuth, The Art of Computer Programming - Volume 3, Addison-Wesley, Mass.-London-Don Mills, Ont., 2nd ed., 1998.
[8] S. Rabinowitz and P. Gilbert, A nonlinear recurrence yielding binary digits, Math. Mag., 64 (1991), 168-171.
[9] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, published electronically at www.research.att.com/~njas/sequences, 1996-2005.
[10] E. W. Weisstein, Graham-Pollak Sequence (from Mathworld, a Wolfram Web Resource), http://mathworld.wolfram.com/Graham-PollakSequence.html, 1999-2005.

2000 Mathematics Subject Classification: Primary 11B37; Secondary 11A67.
Keywords: Graham-Pollak sequence, nonlinear recurrence, digits.
(Concerned with sequences A001521, A091522 and A091523.)

Received April 1 2005; revised version received May 12 2005. Published in Journal of Integer Sequences, May 242005.

Return to Journal of Integer Sequences home page.

[^0]: ${ }^{1}$ Supported in part by the Austrian Science Foundation (FWF) FSP-Project S8302-MAT

