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Abstract

The descent set D(w) of a permutation w of 1,2,...,n is a standard and well-
studied statistic. We introduce a new statistic, the connectivity set C(w), and show
that it is a kind of dual object to D(w). The duality is stated in terms of the inverse of
a matrix that records the joint distribution of D(w) and C(w). We also give a variation
involving permutations of a multiset and a ¢g-analogue that keeps track of the number
of inversions of w.

1 A duality between descents and connectivity.

Let &,, denote the symmetric group of permutations of [n] = {1,2,...,n}, and let w =
ajay - --a, € &,. The descent set D(w) is defined by

D(UJ) = {Z a; > Cl,i_,_l} - [n— 1]

The descent set is a well-known and much studied statistic on permutations with many
applications, e.g., [, Exam. 2.24, Thm. 3.12.1][[], §7.23]. Now define the connectivity set
C(w) by

Cw)=A{t : a; <agforall j <i<k}C[n—1]. (1)

The connectivity set seems not to have been considered before except for equivalent defini-
tions by Comtet [, Exer. VI.14] and Callan [[ with no further development. H. Wilf has
pointed out to me that the set of splitters of a permutation arising in the algorithm Quicksort

!Partially supported by NSF grant #DMS-9988459 and by the Institut Mittag-Leffler.


mailto:rstan@math.mit.edu

B, §2.2] coincides with the connectivity set. Some notions related to the connectivity set
have been investigated. In particular, a permutation w with C(w) = ) is called connected or

indecomposable. If f(n) denotes the number of connected permutations in &,,, then Comtet
H, Exer. VI.14] showed that

Zf(n)a:" =1 !

— —'n’

and he also considered the number #C(w) of components. He also obtained [[]|[[, Exer. VIL.16]
the complete asymptotic expansion of f(n). For further references on connected permuta-
tions, see Sloane [[]]. In this paper we will establish a kind of “duality” between descent sets
and connectivity sets.

We write S = {i1,...,ix}< to denote that S = {iy,...,ix} and i3 < -+ < ;. Given
S ={i1,...,ix}< C [n— 1], define

Note that 7(S) depends not only on S but also on n. The integer n will always be clear from
the context. The first indication of a duality between C' and D is the following result.

Proposition 1.1. Let S C [n—1]. Then
#{weG, : SCCw)} = n9)

#{weB, : SODw)} = %

Proof. The result for D(w) is well-known, e.g., [[], Prop. 1.3.11]. To obtain a permutation
w satisfying S O D(w), choose an ordered partition (Ay, ..., Agt1) of [n] with #A4; = i;—i;4
(with ig = 0, ig41 = n) in n!/n(S) ways, then arrange the elements of A; in increasing order,
followed by the elements of A, in increasing order, etc.

Similarly, to obtain a permutation w satisfying S C C(w), choose a permutation of [iy]
in 7;! ways, followed by a permutation of [i; + 1,ia] := {i1 + 1,41 + 2,...,i2} in (iy — iq)!
ways, etc. O

Let S,T C [n — 1]. Our main interest is in the joint distribution of the statistics C' and
D, i.e., in the numbers

Xor=#{w e &, : C(w)=S, D(w) =T},

where S = [n — 1] — S. (It will be more notationally convenient to use this definition of X g7
rather than having C'(w) = S.) To this end, define

Zsr = #{we 6, : §C C(w), T C D(w)}

= )Xo (2)

For instance, if n = 4, S = {2,3}, and T" = {3}, then Zgr = 3, corresponding to the
permutations 1243, 1342, 1432, while Xg¢r = 1, corresponding to 1342. Tables of Xgr for
n =3 and n = 4 are given in Figure [], and for n = 5 in Figure [J.

2



S\T |0 1 2 12

=

12

o
(@] —
—
o
a1 —
[ap]
it — O <f
(@]
“ — O O N
[ap) — O O —
(@] SO —H O —~H A
— — O —-H O O —~
= (— O O OO OO
&~ ™
[a\ BN s EEas]
&@1 ACRERCE XA

Figure 1: Table of Xg7 forn =3 and n =4
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Figure 2: Table of Xgr forn =5



Theorem 1.1. We have

g _ [ n(S/n(T), if ST
ST 0, otherwise,

Proof. Let w=ay---a, € 6,. If i € C(w) then a; < a;41, 807 € D(w). Hence Zgr =0
itS2T.
Assume therefore that S O T'. Let C(w) = {c1,...,¢j}< with ¢ = 0 and ¢j1; = n. Fix
0<h<y,and let
[chy en] NT = {ep = iv, 02, .o ig = Chp f<
If w=ay--a, with § C C(w) and T C D(w), then the number of choices for a,, + 1, a., +
2,...,0c,,, is just the multinomial coefficient

( Ch+1 — Ch ) — (Ch+1 - Ch)!
iy — i1yi5 — oy oip — 1) (i — 1) (i3 — d2)! -+ (35 — ip_1)!
Taking the product over all 0 < h < j yields n(S)/n(T). O

Theorem [[]] can be restated matrix-theoretically. Let M = (Mgr) be the matrix whose
rows and columns are indexed by subsets S,T C [n — 1] (taken in some order), with

1, it SOT;
Mesr = { 0, otherwise.

Let D = (Dgr) be the diagonal matrix with Dgs = n(5). Let Z = (Zsr), i.e., the ma-
trix whose (S,T)-entry is Zgr as defined in ([]). Then it is straightforward to check that
Theorem can be restated as follows:

Z =DMD™. (3)
Similarly, let X = (Xgr). Then it is immediate from equations ([]) and ([J) that
MXM = Z. (4)

The main result of this section (Theorem [.] below) computes the inverse of the matrices
X, Z, and a matrix Y = (Ysr) intermediate between X and Z. Namely, define

Ysr = #{w e &, : SCC(w), T = D(w)}. (5)
It is immediate from the definition of matrix multiplication and ([) that the matrix Y satisfies

Y =MX=7ZM". (6)

In view of equations (fJ), () and (g) the computation of Z~! Y1 and X! will reduce
to computing M1, which is a simple and well-known result. For any invertible matrix
N = (Ngr), write Ng; for the (S, T)-entry of N~1.

Lemma 1.1. We have
Mgp = (=1)">*# Mgy (7)



Proof. Let f, g be functions from subsets of [n] to R (say) related by

F(8)=>_g(T). (8)

TCS

Equation ([]) is then equivalent to the inversion formula

9(8) = Y (D) L(T). (9)

TCS

This is a standard combinatorial result with many proofs, e.g., [, Thm. 2.1.1, Exam. 3.8.3].
O

Theorem 1.2. The matrices Z,Y, X have the following inverses:

Zsp = ()" Zgy (10)
Vil = (-)*HTR{wes, : §=Clw), T C D)) (1)
Xop = (1) Xop. (12)

Proof. By equations ([]), ([), and ([]) we have
Z'=DM D', Y'=MDM'D!', X '=MDM D 'M.

Equation ([[(]) is then an immediate consequence of Lemma and the definition of matrix

multiplication.
Since Y ! = M Z~! we have for fixed S O U that
Yoo = Z (—)*# Zpy

T:S2T2U

= Y ()" {wed, : TCC(w), UC D(w)}
T:S2T2U

= ()l e &, : T C Cw), U C D(w)}.
T:UCTCS

Equation ([]) is now an immediate consequence of the Principle of Inclusion-Exclusion (or
of the equivalence of equations () and (f])). Equation ([J) is proved analogously to ([[])
using X ' =Y"'M. O

NOTE. The matrix M represents the zeta function of the boolean algebra B,, [fJ, §3.6].
Hence Lemma [L] can be regarded as the determination of the M&bius function of B, [[,
Exam. 3.8.3]. All our results can easily be formulated in terms of the incidence algebra of
B,..

NOTE. The matrix Y arose from the theory of quasisymmetric functions in response to a
question from Louis Billera and Vic Reiner and was the original motivation for this paper, as
we now explain. See for example [[, §7.19] for an introduction to quasisymmetric functions.
We will not use quasisymmetric functions elsewhere in this paper.
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Let Comp(n) denote the set of all compositions a = (aq,...,ax) of n, i.e, a; > 1 and
Yo = n. Let @« = (aq,...,a5) € Comp(n), and let &, denote the subgroup of &,
consisting of all permutations w = ay ---a, such that {1,..., a1} = {a1,..., a4, }, {01 +
L...,01 + as} = {Gay415 - -, Gastas ), €tc. Thus G, = G, x -+ X &,, and #6, = n(95),
where S = {ay, 01 + a9, ..., 00 + -+ a1} fw € &, and D(w) = {iy,...,ik}<, then
define the descent composition co(w) by

co(w) = (i1,4 — i1, ..., 0k — ig_1,n — i) € Comp(n).

Let L, denote the fundamental quasisymmetric function indexed by « [i, (7.89)], and define

Ra = Z Lco(w)' (13)
wWEGqy
Given a = (ayq,...,ax) € Comp(n), let S, = {1, 1 + g, ..., a1 + -+ + ax_1}. Note that
w € B, if and only if S, C C(w). Hence equation ([J) can be rewritten as

Ry =) Ygug,Ls,
B

with Yg g, as in (B). Tt follows from ([) that the transition matrix between the bases L,
and R, is lower unitriangular (with respect to a suitable ordering of the rows and columns).
Thus the set {R, : a € Comp(n)} is a Z-basis for the additive group of all homogeneous
quasisymmetric functions over Z of degree n. Moreover, the problem of expressing the Lg’s
as linear combinations of the R,’s is equivalent to inverting the matrix Y = (Ysr).

The question of Billera and Reiner mentioned above is the following. Let P be a finite
poset, and define the quasisymmetric function

Kp:fo,
f

where f ranges over all order-preserving maps f : P — {1,2,...} and 2/ = [[,.p zq) (see
[, (7.92)]). Billera and Reiner asked whether the quasisymmetric functions Kp generate
(as a Z-algebra) or even span (as an additive abelian group) the space of all quasisymmetric
functions. Let m denote an m-element antichain. The ordinal sum P @& () of two posets
P, () with disjoint elements is the poset on the union of their elements satisfying s < t if
either (1) s,t € Pand s <tin P, (2) s,t € Qand s <tin @, or (3) s€ Pandt e Q. If
a = (ag,...,ax) € Comp(n) then let P, = a; @+ - @ . It is easy to see that Kp, = R, so
the Kp,’s form a Z-basis for the homogeneous quasisymmetric functions of degree n, thereby
answering the question of Billera and Reiner.

2 Multisets and inversions.

In this section we consider two further aspects of the connectivity set: (1) an extension
to permutations of a multiset and (2) a g-analogue of Theorem [.J when the number of
inversions of w is taken into account.



Let T'= {i1,...,ix}< C [n — 1]. Define the multiset
Np = {17,227 (k+1)""}.

Let Gn, denote the set of all permutations of Ny, so #6y, = n!/n(T); and let w =
aiag - - a, € Sy,. In analogy with equation ([]) define

C(w)={i : a; < ay for all j <i < k}.

(Note that we could have instead required only a; < a rather than a; < a;. We will not
consider this alternative definition here.)

Proposition 2.1. Let S,T C [n —1]|. Then

#{w € 6y, : C(w) =5} = (XM)zz
= Z Xsu
_ 4{we6, : C(w) =S, D) T}

Proof. The equality of the three expressions on the right-hand side is clear, so we need
only show that

#{w e Gy, : C(w)=S}=#{we &, : C(w)= S, D(w) DT}. (14)

Let T = {i1,...,ir}< C [n —1]. Given w € &,, with C(w) = S and D(w) 2 T, in w™!
replace 1,2, ... 1; with 1’s, replace 11 + 1,...,iy with 2’s, etc. It is easy to check that this
yields a bijection between the sets appearing on the two sides of ([4). O

Let us now consider g-analogues Z(q), Y (q), X (q) of the matrices Z,Y, X. The g-analogue
will keep track of the number inv(w) of inversions of w = a; - - - a, € &,,, where we define
inv(w) = #{(,7) : i <, a; > a4},

Thus define .
X(Qsr= > ¢

weGn
C(w)=S, D(w)=T

and similarly for Z(q)sr and Y (q)s7. We will obtain g-analogues of Theorems [[.1] and
with completely analogous proofs.

Write (j) =1+ ¢+ -+ ¢t and (5)! = (1)(2) --- (4), the standard g-analogues of j
and j!. Let S = {iy,...,ir}< C [n— 1], and define

0(S, q) = 1! (32 — d1)! - - - (i — 1)} (n — dx)!.

Let T C [n—1], and let T = {4y,...,i,}. Define

il ig — il n— Zk
T) = . _
=) e (27) o ()
Note that z(T) is the least number of inversions of a permutation w € &,, with T'C D(w).
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Theorem 2.1. We have
A7) S, T,q), it SNT =10,
Z(Q)ST { q 77( Q)/U( Q) 1 0

0, otherwise.

Proof. Preserve the notation from the proof of Theorem [[]. If (s,¢) is an inversion
of w (i.e., s < t and a5 > a;) then for some 0 < h < j we have ¢, + 1 < s < t < ¢pyq.
It is a standard fact of enumerative combinatorics (e.g., [0, (21)][[, Prop. 1.3.17]) that if
U={u,...,u}< C[m —1] then

E qinv(v) _ m

ULy U2 — ULge ooy — Uyp
vEG M,
D(v)CU

(m)!

(u)! (ug — ug)!- - (m — u,)!’

a g-multinomial coefficient. From this it follows easily that if U = {1, ...,y }< then

inv(v) _ 2(T) m
> q — 4 (yl,yz—yl,---,m—ys>'

vEG M,
D(v)2U

Hence we can parallel the proof of Theorem [.1], except instead of merely counting the

number of choices for the sequence u = (ac,, ac, +1,...,ac,,,) we can weight this choice by
inv(u) Th

q . Then

Zqinv(“) — q(i25i1)+'“+(i’“7§’“)( Cht+1 — Ch >7

T2 — 21473 — 12509l — -1

summed over all choices u = (a, , a., + 1, ..
vields ¢*™n(S,q)/n(T,q). O
Theorem 2.2. The matrices Z(q),Y (q), X(q) have the following inverses:

2@5t = (VP Z(1g)se
V@i = (CUFHT S g

_ wWES
S=C(w), TCD(w)

X(@sr = (“)"TX(1/q)sr.

Proof. Let D(q) = (D(q)sr) be the diagonal matrix with D(q)ss = n(S,q). Let Q(q)
be the diagonal matrix with Q(q)ss = ¢**). Exactly as for (), ([]) and ([]) we obtain

Z(q) = D(q)MD(q)"'Q(q)

MX(qM = Z(q)
Y(g) = MX(q)=Z(q)M ™.

). Taking the product over all 0 < h < j

© ach+1

The proof now is identical to that of Theorem [ O
Let us note that Proposition P also has a straightforward g-analogue; we omit the
details.
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