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Abstract

The descent set D(w) of a permutation w of 1, 2, . . . , n is a standard and well-
studied statistic. We introduce a new statistic, the connectivity set C(w), and show
that it is a kind of dual object to D(w). The duality is stated in terms of the inverse of
a matrix that records the joint distribution of D(w) and C(w). We also give a variation
involving permutations of a multiset and a q-analogue that keeps track of the number
of inversions of w.

1 A duality between descents and connectivity.

Let Sn denote the symmetric group of permutations of [n] = {1, 2, . . . , n}, and let w =
a1a2 · · · an ∈ Sn. The descent set D(w) is defined by

D(w) = {i : ai > ai+1} ⊆ [n− 1].

The descent set is a well-known and much studied statistic on permutations with many
applications, e.g., [6, Exam. 2.24, Thm. 3.12.1][7, §7.23]. Now define the connectivity set
C(w) by

C(w) = {i : aj < ak for all j ≤ i < k} ⊆ [n− 1]. (1)

The connectivity set seems not to have been considered before except for equivalent defini-
tions by Comtet [3, Exer. VI.14] and Callan [1] with no further development. H. Wilf has
pointed out to me that the set of splitters of a permutation arising in the algorithm Quicksort
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[8, §2.2] coincides with the connectivity set. Some notions related to the connectivity set
have been investigated. In particular, a permutation w with C(w) = ∅ is called connected or
indecomposable. If f(n) denotes the number of connected permutations in Sn, then Comtet
[3, Exer. VI.14] showed that

∑

n≥1

f(n)xn = 1−
1

∑

n≥0 n!x
n
,

and he also considered the number #C(w) of components. He also obtained [2][3, Exer. VII.16]
the complete asymptotic expansion of f(n). For further references on connected permuta-
tions, see Sloane [4]. In this paper we will establish a kind of “duality” between descent sets
and connectivity sets.

We write S = {i1, . . . , ik}< to denote that S = {i1, . . . , ik} and i1 < · · · < ik. Given
S = {i1, . . . , ik}< ⊆ [n− 1], define

η(S) = i1! (i2 − i1)! · · · (ik − ik−1)! (n− ik)!.

Note that η(S) depends not only on S but also on n. The integer n will always be clear from
the context. The first indication of a duality between C and D is the following result.

Proposition 1.1. Let S ⊆ [n− 1]. Then

#{w ∈ Sn : S ⊆ C(w)} = η(S)

#{w ∈ Sn : S ⊇ D(w)} =
n!

η(S)
.

Proof. The result forD(w) is well-known, e.g., [6, Prop. 1.3.11]. To obtain a permutation
w satisfying S ⊇ D(w), choose an ordered partition (A1, . . . , Ak+1) of [n] with #Aj = ij−ij−1

(with i0 = 0, ik+1 = n) in n!/η(S) ways, then arrange the elements of A1 in increasing order,
followed by the elements of A2 in increasing order, etc.

Similarly, to obtain a permutation w satisfying S ⊆ C(w), choose a permutation of [i1]
in i1! ways, followed by a permutation of [i1 + 1, i2] := {i1 + 1, i1 + 2, . . . , i2} in (i2 − i1)!
ways, etc. 2

Let S, T ⊆ [n− 1]. Our main interest is in the joint distribution of the statistics C and
D, i.e., in the numbers

XST = #{w ∈ Sn : C(w) = S, D(w) = T},

where S = [n− 1]−S. (It will be more notationally convenient to use this definition of XST

rather than having C(w) = S.) To this end, define

ZST = #{w ∈ Sn : S ⊆ C(w), T ⊆ D(w)}

=
∑

S′⊇S

T ′⊇T

XS′T ′ . (2)

For instance, if n = 4, S = {2, 3}, and T = {3}, then ZST = 3, corresponding to the
permutations 1243, 1342, 1432, while XST = 1, corresponding to 1342. Tables of XST for
n = 3 and n = 4 are given in Figure 1, and for n = 5 in Figure 2.
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S\T ∅ 1 2 12
∅ 1
1 0 1
2 0 0 1
12 0 1 1 1

S\T ∅ 1 2 3 12 13 23 123
∅ 1
1 0 1
2 0 0 1
3 0 0 0 1
12 0 1 1 0 1
13 0 0 0 0 0 1
23 0 0 1 1 0 0 1
123 0 1 2 1 2 4 2 1

Figure 1: Table of XST for n = 3 and n = 4

S\T ∅ 1 2 3 4 12 13 14 23 24 34 123 124 134 234 1234
∅ 1
1 0 1
2 0 0 1
3 0 0 0 1
4 0 0 0 0 1
12 0 1 1 0 0 1
13 0 0 0 0 0 0 1
14 0 0 0 0 0 0 0 1
23 0 0 1 1 0 0 0 0 1
24 0 0 0 0 0 0 0 0 0 1
34 0 0 0 1 1 0 0 0 0 0 1
123 0 1 2 1 0 2 4 0 2 0 0 1
124 0 0 0 0 0 0 0 1 0 1 0 0 1
134 0 0 0 0 0 0 1 1 0 0 0 0 0 1
234 0 0 1 2 1 0 0 0 2 4 2 0 0 0 1
1234 0 1 3 3 1 3 10 8 6 10 3 3 8 8 3 1

Figure 2: Table of XST for n = 5
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Theorem 1.1. We have

ZST =

{

η(S)/η(T ), if S ⊇ T ;
0, otherwise,

Proof. Let w = a1 · · · an ∈ Sn. If i ∈ C(w) then ai < ai+1, so i 6∈ D(w). Hence ZST = 0
if S 6⊇ T .

Assume therefore that S ⊇ T . Let C(w) = {c1, . . . , cj}< with c0 = 0 and cj+1 = n. Fix
0 ≤ h ≤ j, and let

[ch, ch+1] ∩ T = {ch = i1, i2, . . . , ik = ch+1}<.

If w = a1 · · · an with S ⊆ C(w) and T ⊆ D(w), then the number of choices for ach +1, ach +
2, . . . , ach+1

is just the multinomial coefficient

(

ch+1 − ch
i2 − i1, i3 − i2, . . . , ik − ik−1

)

:=
(ch+1 − ch)!

(i2 − i1)! (i3 − i2)! · · · (ik − ik−1)!
.

Taking the product over all 0 ≤ h ≤ j yields η(S)/η(T ). 2

Theorem 1.1 can be restated matrix-theoretically. Let M = (MST ) be the matrix whose
rows and columns are indexed by subsets S, T ⊆ [n− 1] (taken in some order), with

MST =

{

1, if S ⊇ T ;
0, otherwise.

Let D = (DST ) be the diagonal matrix with DSS = η(S). Let Z = (ZST ), i.e., the ma-
trix whose (S, T )-entry is ZST as defined in (2). Then it is straightforward to check that
Theorem 1.1 can be restated as follows:

Z = DMD−1. (3)

Similarly, let X = (XST ). Then it is immediate from equations (2) and (3) that

MXM = Z. (4)

The main result of this section (Theorem 1.2 below) computes the inverse of the matrices
X, Z, and a matrix Y = (YST ) intermediate between X and Z. Namely, define

YST = #{w ∈ Sn : S ⊆ C(w), T = D(w)}. (5)

It is immediate from the definition of matrix multiplication and (4) that the matrix Y satisfies

Y = MX = ZM−1. (6)

In view of equations (3), (4) and (6) the computation of Z−1, Y −1, and X−1 will reduce
to computing M−1, which is a simple and well-known result. For any invertible matrix
N = (NST ), write N−1

ST for the (S, T )-entry of N−1.

Lemma 1.1. We have
M−1

ST = (−1)#S+#TMST . (7)
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Proof. Let f, g be functions from subsets of [n] to R (say) related by

f(S) =
∑

T⊆S

g(T ). (8)

Equation (7) is then equivalent to the inversion formula

g(S) =
∑

T⊆S

(−1)#(S−T )f(T ). (9)

This is a standard combinatorial result with many proofs, e.g., [6, Thm. 2.1.1, Exam. 3.8.3].
2

Theorem 1.2. The matrices Z, Y,X have the following inverses:

Z−1
ST = (−1)#S+#TZST (10)

Y −1
ST = (−1)#S+#T#{w ∈ Sn : S = C(w), T ⊆ D(w)} (11)

X−1
ST = (−1)#S+#TXST . (12)

Proof. By equations (3), (4), and (6) we have

Z−1 = DM−1D−1, Y −1 = MDM−1D−1, X−1 = MDM−1D−1M.

Equation (10) is then an immediate consequence of Lemma 1.1 and the definition of matrix
multiplication.

Since Y −1 = MZ−1 we have for fixed S ⊇ U that

Y −1
SU =

∑

T :S⊇T⊇U

(−1)#T+#UZTU

=
∑

T :S⊇T⊇U

(−1)#T+#U#{w ∈ Sn : T ⊆ C(w), U ⊆ D(w)}

=
∑

T :U⊆T⊆S

(−1)#T+#U#{w ∈ Sn : T ⊆ C(w), U ⊆ D(w)}.

Equation (11) is now an immediate consequence of the Principle of Inclusion-Exclusion (or
of the equivalence of equations (8) and (9)). Equation (12) is proved analogously to (11)
using X−1 = Y −1M . 2

Note. The matrix M represents the zeta function of the boolean algebra Bn [6, §3.6].
Hence Lemma 1.1 can be regarded as the determination of the Möbius function of Bn [6,
Exam. 3.8.3]. All our results can easily be formulated in terms of the incidence algebra of
Bn.

Note. The matrix Y arose from the theory of quasisymmetric functions in response to a
question from Louis Billera and Vic Reiner and was the original motivation for this paper, as
we now explain. See for example [7, §7.19] for an introduction to quasisymmetric functions.
We will not use quasisymmetric functions elsewhere in this paper.
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Let Comp(n) denote the set of all compositions α = (α1, . . . , αk) of n, i.e, αi ≥ 1 and
∑

αi = n. Let α = (α1, . . . , αk) ∈ Comp(n), and let Sα denote the subgroup of Sn

consisting of all permutations w = a1 · · · an such that {1, . . . , α1} = {a1, . . . , aα1}, {α1 +
1, . . . , α1 + α2} = {aα1+1, . . . , aα1+α2}, etc. Thus Sα

∼= Sα1 × · · · ×Sαk and #Sα = η(S),
where S = {α1, α1 + α2, . . . , α1 + · · · + αk−1}. If w ∈ Sn and D(w) = {i1, . . . , ik}<, then
define the descent composition co(w) by

co(w) = (i1, i2 − i1, . . . , ik − ik−1, n− ik) ∈ Comp(n).

Let Lα denote the fundamental quasisymmetric function indexed by α [7, (7.89)], and define

Rα =
∑

w∈Sα

Lco(w). (13)

Given α = (α1, . . . , αk) ∈ Comp(n), let Sα = {α1, α1 + α2, . . . , α1 + · · · + αk−1}. Note that
w ∈ Sα if and only if Sα ⊆ C(w). Hence equation (13) can be rewritten as

Rα =
∑

β

YSαSβLβ,

with YSαSβ as in (5). It follows from (5) that the transition matrix between the bases Lα

and Rα is lower unitriangular (with respect to a suitable ordering of the rows and columns).
Thus the set {Rα : α ∈ Comp(n)} is a Z-basis for the additive group of all homogeneous
quasisymmetric functions over Z of degree n. Moreover, the problem of expressing the Lβ’s
as linear combinations of the Rα’s is equivalent to inverting the matrix Y = (YST ).

The question of Billera and Reiner mentioned above is the following. Let P be a finite
poset, and define the quasisymmetric function

KP =
∑

f

xf ,

where f ranges over all order-preserving maps f : P → {1, 2, . . . } and xf =
∏

t∈P xf(t) (see
[7, (7.92)]). Billera and Reiner asked whether the quasisymmetric functions KP generate
(as a Z-algebra) or even span (as an additive abelian group) the space of all quasisymmetric
functions. Let m denote an m-element antichain. The ordinal sum P ⊕ Q of two posets
P,Q with disjoint elements is the poset on the union of their elements satisfying s ≤ t if
either (1) s, t ∈ P and s ≤ t in P , (2) s, t ∈ Q and s ≤ t in Q, or (3) s ∈ P and t ∈ Q. If
α = (α1, . . . , αk) ∈ Comp(n) then let Pα = α1⊕· · ·⊕αk. It is easy to see that KPα = Rα, so
the KPα ’s form a Z-basis for the homogeneous quasisymmetric functions of degree n, thereby
answering the question of Billera and Reiner.

2 Multisets and inversions.

In this section we consider two further aspects of the connectivity set: (1) an extension
to permutations of a multiset and (2) a q-analogue of Theorem 1.2 when the number of
inversions of w is taken into account.
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Let T = {i1, . . . , ik}< ⊆ [n− 1]. Define the multiset

NT = {1i1 , 2i2−i1 , . . . , (k + 1)n−ik}.

Let SNT
denote the set of all permutations of NT , so #SNT

= n!/η(T ); and let w =
a1a2 · · · an ∈ SNT

. In analogy with equation (1) define

C(w) = {i : aj < ak for all j ≤ i < k}.

(Note that we could have instead required only aj ≤ ak rather than aj < ak. We will not
consider this alternative definition here.)

Proposition 2.1. Let S, T ⊆ [n− 1]. Then

#{w ∈ SNT
: C(w) = S} = (XM)S T

=
∑

U :U⊇T

XSU

= #{w ∈ Sn : C(w) = S, D(w) ⊇ T}.

Proof. The equality of the three expressions on the right-hand side is clear, so we need
only show that

#{w ∈ SNT
: C(w) = S} = #{w ∈ Sn : C(w) = S, D(w) ⊇ T}. (14)

Let T = {i1, . . . , ik}< ⊆ [n − 1]. Given w ∈ Sn with C(w) = S and D(w) ⊇ T , in w−1

replace 1, 2, . . . , i1 with 1’s, replace i1 + 1, . . . , i2 with 2’s, etc. It is easy to check that this
yields a bijection between the sets appearing on the two sides of (14). 2

Let us now consider q-analogues Z(q), Y (q), X(q) of the matrices Z, Y,X. The q-analogue
will keep track of the number inv(w) of inversions of w = a1 · · · an ∈ Sn, where we define

inv(w) = #{(i, j) : i < j, ai > aj}.

Thus define
X(q)ST =

∑

w∈Sn
C(w)=S, D(w)=T

qinv(w),

and similarly for Z(q)ST and Y (q)ST . We will obtain q-analogues of Theorems 1.1 and 1.2
with completely analogous proofs.

Write (j) = 1 + q + · · · + qj−1 and (j)! = (1)(2) · · · (j), the standard q-analogues of j
and j!. Let S = {i1, . . . , ik}< ⊆ [n− 1], and define

η(S, q) = i1! (i2 − i1)! · · · (ik − ik−1)! (n− ik)!.

Let T ⊆ [n− 1], and let T = {i1, . . . , ik}<. Define

z(T ) =

(

i1
2

)

+

(

i2 − i1
2

)

+ · · ·+

(

n− ik
2

)

.

Note that z(T ) is the least number of inversions of a permutation w ∈ Sn with T ⊆ D(w).
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Theorem 2.1. We have

Z(q)ST =

{

qz(T )η(S, q)/η(T , q), if S ∩ T = ∅;
0, otherwise.

Proof. Preserve the notation from the proof of Theorem 1.1. If (s, t) is an inversion
of w (i.e., s < t and as > at) then for some 0 ≤ h ≤ j we have ch + 1 ≤ s < t ≤ ch+1.
It is a standard fact of enumerative combinatorics (e.g., [5, (21)][6, Prop. 1.3.17]) that if
U = {u1, . . . , ur}< ⊆ [m− 1] then

∑

v∈Sm
D(v)⊆U

qinv(v) =
(

m
u1, u2 − u1, . . . ,m− ur

)

:=
(m)!

(u1)! (u2 − u1)! · · · (m− ur)!
,

a q-multinomial coefficient. From this it follows easily that if U = {y1, . . . , ys}< then

∑

v∈Sm
D(v)⊇U

qinv(v) = qz(T )
(

m
y1, y2 − y1, . . . ,m− ys

)

.

Hence we can parallel the proof of Theorem 1.1, except instead of merely counting the
number of choices for the sequence u = (ach , ach + 1, . . . , ach+1

) we can weight this choice by
qinv(u). Then

∑

u

qinv(u) = q(
i2−i1

2 )+···+(ik−ik−1
2 )

(

ch+1 − ch

i2 − i1, i3 − i2, . . . , ik − ik−1

)

,

summed over all choices u = (ach , ach + 1, . . . , ach+1
). Taking the product over all 0 ≤ h ≤ j

yields qz(T )η(S, q)/η(T , q). 2

Theorem 2.2. The matrices Z(q), Y (q), X(q) have the following inverses:

Z(q)−1
ST = (−1)#S+#TZ(1/q)ST

Y (q)−1
ST = (−1)#S+#T

∑

w∈Sn
S=C(w), T⊆D(w)

q−inv(w)

X(q)−1
ST = (−1)#S+#TX(1/q)ST .

Proof. Let D(q) = (D(q)ST ) be the diagonal matrix with D(q)SS = η(S, q). Let Q(q)
be the diagonal matrix with Q(q)SS = qz(S). Exactly as for (3), (4) and (6) we obtain

Z(q) = D(q)MD(q)−1Q(q)

MX(q)M = Z(q)

Y (q) = MX(q) = Z(q)M−1.

The proof now is identical to that of Theorem 1.2. 2

Let us note that Proposition 2.1 also has a straightforward q-analogue; we omit the
details.
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