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Abstract

We give bijective proofs of parity theorems for four related statistics on partitions

of finite sets. A consequence of our results is a combinatorial proof of a congruence

between Stirling numbers and binomial coefficients.

1 Introduction

The notational conventions of this paper are as follows: N := {0, 1, 2, . . . }, P := {1, 2, . . . },
[0] := ∅, and [n] := {1, . . . , n} for n ∈ P. Empty sums take the value 0 and empty products
the value 1, with 00 := 1. The binomial coefficient

(

n
k

)

is equal to zero if k is a negative
integer or if 0 6 n < k.
Let Π(n, k) denote the set of all partitions of [n] with k blocks and Π(n) the set of all

partitions of [n]. Associate to each π ∈ Π(n, k) the ordered partition (E1, . . . , Ek) of [n]
comprising the same blocks as π, arranged in increasing order of their smallest elements, and
define statistics w̃, ŵ, w∗, and w by

w̃(π) :=
k
∑

i=1

(i− 1)(|Ei| − 1), (1.1)

ŵ(π) :=
k
∑

i=1

i(|Ei| − 1) = w̃(π) + n− k, (1.2)

w∗(π) :=
k
∑

i=1

i|Ei| = w̃(π) + n+

(

k

2

)

, (1.3)
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and

w(π) :=
k
∑

i=1

(i− 1)|Ei| = w̃(π) +

(

k

2

)

. (1.4)

Consider the generating functions (see [1], [3], [5], and [6])

S̃q(n, k) :=
∑

π∈Π(n,k)

qw̃(π), (1.5)

Ŝq(n, k) :=
∑

π∈Π(n,k)

qŵ(π) = qn−kS̃q(n, k), (1.6)

S∗
q (n, k) :=

∑

π∈Π(n,k)

qw
∗(π) = q(

k

2)+nS̃q(n, k), (1.7)

and

Sq(n, k) :=
∑

π∈Π(n,k)

qw(π) = q(
k

2)S̃q(n, k). (1.8)

Summing the q-Stirling numbers S̃q(n, k), Ŝq(n, k), S
∗
q (n, k), and Sq(n, k) over k yields the

respective q-Bell numbers B̃q(n), B̂q(n), B
∗
q (n), and Bq(n). These polynomials reduce to

the classical Stirling and Bell numbers when q = 1. Wagner [7] evaluates the foregoing
polynomials when q = −1 using algebraic techniques and raises the question of finding
bijective proofs.
We now describe a combinatorial method for evaluating these polynomials when q = −1.

More generally, let ∆ be a finite set of discrete structures and I : ∆ → N, with generating
function

G(I,∆; q) :=
∑

δ∈∆

qI(δ) =
∑

k

|{δ ∈ ∆ : I(δ) = k}|qk. (1.9)

Of course, G(I,∆; 1) = |∆|. If ∆i := {δ ∈ ∆ : I(δ) ≡ i (mod 2)}, then G(I,∆;−1) =
|∆0| − |∆1|. Our strategy for finding G(I,∆;−1) will be to identify a subset ∆∗ of ∆
contained completely within ∆0 or ∆1 and then to define an I-parity changing involution on
∆ −∆∗. The subset ∆∗ thus captures both the sign and magnitude of G(I,∆;−1). In the
present setting, ∆ will either be Π(n) or Π(n, k) and I, one of the aforementioned partition
statistics.
In § 2, we give bijective proofs establishing B̃q(n) and B̂q(n) as well as the four q-

Stirling numbers when q = −1. In § 3, a bijection yielding B∗
−1(n) and B−1(n) is given. A

consequence of our results is a combinatorial proof requested by Stanley of the congruence
[4, p. 46]

S(n, k) ≡

(

n− bk/2c − 1

n− k

)

(mod 2), 0 6 k 6 n, (1.10)

where S(n, k) = |π(n, k)| denotes the Stirling number of the second kind.
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2 The First Bijection

Throughout, we’ll represent π ∈ Π(n) by (E1, E2, . . . ), the unique ordered partition of [n]
comprising the same blocks as π, arranged in increasing order of their smallest elements. Let
F0 = F1 = 1, with Fn = Fn−1 + Fn−2 if n > 2.

Theorem 2.1. For all n ∈ N,

B̃−1(n) :=
n
∑

k=0

S̃−1(n, k) = Fn. (2.1)

Proof. Let Πi(n) := {π ∈ Π(n) : w̃(π) ≡ i (mod 2)} so that B̃−1(n) = |Π0(n)| − |Π1(n)|.
To prove (2.1), we’ll identify a subset Π̃(n) of Π0(n) such that |Π̃(n)| = Fn along with a
w̃-parity changing involution of Π(n)− Π̃(n).
The set Π̃(n) consists of those partitions π = (E1, E2, . . . ) whose blocks satisfy the two

conditions:

each block of odd index comprises a set of consecutive integers; (2.2a)

each block of even index is a singleton. (2.2b)

Now |Π̃(n)| = Fn, as |Π̃(n)| is seen to satisfy the Fibonacci recurrence, upon considering
whether or not {n} is a block. For if {n} is not a block and n−2 belongs to an odd-numbered
(respectively, even-numbered) block of π ∈ Π̃(n), then {n−1, n} constitutes a proper subset
of (respectively, all of) the last block of π.
Suppose now that π = (E1, E2, . . . ) belongs to Π(n) − Π̃(n) and that i0 is the smallest

of the integers i for which E2i−1 fails to satisfy (2.2a) or E2i fails to satisfy (2.2b). Let M
be the largest member of E2i0−1 ∪ E2i0 . If M belongs to E2i0−1, move it to E2i0 , while if M
belongs to E2i0 , move it to E2i0−1 (note that if |E2i0 | = 1, then necessarily M ∈ E2i0−1). The
resulting map is a parity changing involution of Π(n)− Π̃(n).

Below, we illustrate the fixed point set Π̃(n) and the pairings of Π(n)− Π̃(n) when n = 4,
wherein the first two members of each row are paired.

Π0(n)− Π̃(n) Π1(n) Π̃(n)

{1, 2, 4}, {3} {1, 2}, {3, 4} {1, 2, 3, 4}

{1, 3, 4}, {2} {1, 3}, {2, 4} {1, 2, 3}, {4}

{1}, {2, 3, 4} {1, 4}, {2, 3} {1}, {2}, {3, 4}

{1, 3}, {2}, {4} {1}, {2, 3}, {4} {1, 2}, {3}, {4}

{1, 4}, {2}, {3} {1}, {2, 4}, {3} {1}, {2}, {3}, {4}

Note that the above bijection preserves the number of blocks of π ∈ Π(n). We’ll use its
restriction to Π(n, k) to prove

Theorem 2.2. For all n ∈ N,

S̃−1(n, k) =

(

n− bk/2c − 1

n− k

)

, 0 6 k 6 n. (2.3)
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Proof. Let Πi(n, k) := Πi(n) ∩ Π(n, k) for i = 0, 1, Π̃(n, k) := Π̃(n) ∩ Π(n, k), and π =
(E1, . . . , Ek) ∈ Π̃(n, k). If k is even, identify each pair of blocks (E2i−1, E2i), 1 6 i 6 k/2,
with summands xi in a composition x1 + · · · + xk/2 = n, where each xi > 2. If k is odd,
identify (E1, E2), . . . , (Ek−2, Ek−1), (Ek) with summands xi in x1 + · · · + x(k+1)/2 = n where

xi > 2 for 1 6 i 6 k−1
2
and x(k+1)/2 > 1. The cardinality of Π̃(n, k) is then given by the right

hand side of (2.3), and the restriction of the prior bijection to Π(n, k)− Π̃(n, k) is again an
involution, and inherits the parity changing property, which proves (2.3).

From (2.3) along with (1.6), (1.7), and (1.8), we have

Ŝ−1(n, k) = (−1)
n−k

(

n− bk/2c − 1

n− k

)

, 0 6 k 6 n, (2.4)

S∗
−1(n, k) = (−1)

(k2)+n
(

n− bk/2c − 1

n− k

)

, 0 6 k 6 n, (2.5)

and

S−1(n, k) = (−1)
(k2)
(

n− bk/2c − 1

n− k

)

, 0 6 k 6 n. (2.6)

The bijection establishing (2.3) clearly applies to (2.4)–(2.6) as well.
Let S(n, k) = |Π(n, k)| denote the Stirling number of the second kind. The bijection of

Theorem 2.2 also proves combinatorially that

S(n, k) ≡

(

n− bk/2c − 1

n− k

)

(mod 2), 0 6 k 6 n, (2.7)

since off of a set of cardinality
(

n−bk/2c−1
n−k

)

, each partition π ∈ Π(n, k) is paired with another
of opposite w̃-parity. This furnishes an answer to a question raised by Stanley [4, p. 46].
Let F−3 = −1, F−2 = 1, and F−1 = 0. We conclude this section by proving

Theorem 2.3. For all n ∈ N,

B̂−1(n) :=
n
∑

k=0

Ŝ−1(n, k) = (−1)
n−1Fn−3. (2.8)

Proof. Let n > 3, Π̃(n) be as in the proof of Theorem 2.1, and Π̂(n) ⊆ Π̃(n) consist of
those partitions with an odd number of blocks and whose last block is a singleton. First,
|Π̂(n)| = |Π̃(n− 3)| = Fn−3 as the removal of n− 2, n− 1, and n from π ∈ Π̂(n) is seen to be
a bijection between Π̂(n) and Π̃(n−3). Since ŵ(π) = w̃(π)+n−k and since every π ∈ Π̂(n)
has an even w̃(π) value and an odd number of blocks, the ŵ-parity of each π ∈ Π̂(n) is
opposite the parity of n. Thus, Π̂(n) agrees with the right hand side of (2.8) in both sign
and magnitude.
The w̃-parity changing involution of Theorem 2.1 defined on Π(n) − Π̃(n) also changes

the ŵ-parity. We now extend this involution to Π(n) − Π̂(n) as follows: if the last block
of π ∈ Π̃(n) − Π̂(n) is {n}, merge it with the penultimate block; if the last block is not a
singleton, take n from this block and form the singleton {n}. The resulting extension is a
ŵ-parity changing involution of Π(n)− Π̂(n).
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3 A Second Bijection

The Bell numbers B∗
−1(n) are quite different from the numbers B̃−1(n) and B̂−1(n), as

demonstrated by the following theorem.

Theorem 3.1. For all n ∈ N,

B∗
−1(n) :=

n
∑

k=0

S∗
−1(n, k) =











1, if n ≡ 0 (mod 3);

−1, if n ≡ 1 (mod 3);

0, if n ≡ 2 (mod 3).

(3.1)

Proof. Let Πi(n) := {π ∈ Π(n) : w
∗(π) ≡ i (mod 2)} and Π∗(n) consist of those partitions

π = (E1, E2, . . . ) whose blocks satisfy

E2i−1 = {3i− 2, 3i− 1}, E2i = {3i} for 1 6 i 6 bn/3c. (3.2)

Then Π∗(n) is a singleton contained in Π0(n) if n ≡ 0 (mod 3) or contained in Π1(n) if n ≡ 1
(mod 3). If n ≡ 2 (mod 3), Π∗(n) is a doubleton containing two partitions of opposite w∗-
parity, which we pair.
Suppose now that π = (E1, E2, . . . ) ∈ Π(n)−Π

∗(n) and that i0 is the smallest index for
which condition (3.2) fails to hold. Let n1 = 3i0− 2, n2 = 3i0− 1, n3 = 3i0 and V1 = E2i0−1,
V2 = E2i0 , V3 = E2i0+1 (the latter two if they occur). Consider the following four disjoint
cases concerning the relative positions of the ni within the Vi:

(I) n2 ∈ V2, n3 ∈ V3, and |V2 ∪ V3| > 3;

(II) Either (a) or (b) holds where (a) V2 = {n2} and V3 = {n3},
(b) n2, n3 ∈ V1;

(III) n2 ∈ V2 and n3 ∈ V1 ∪ V2;

(IV) n2 ∈ V1, n3 ∈ V2, and |V1 ∪ V2| > 4.

Within each case, we pair partitions of opposite parity as shown below, leaving the other
blocks undisturbed:

(i) V2 = {n2, . . . ,M}, V3 = {n3, . . . } ↔ V2 = {n2, . . . }, V3 = {n3, . . . ,M}, where
M is the largest member of V2 ∪ V3;

(ii) V1 = {n1, . . . }, V2 = {n2}, V3 = {n3} ↔ V1 = {n1, n2, n3, . . . };

(iii) V1 = {n1, n3, . . . }, V2 = {n2, . . . } ↔ V1 = {n1, . . . }, V2 = {n2, n3, . . . };

(iv) V1 = {n1, n2, . . . , N}, V2 = {n3, . . . } ↔ V1 = {n1, n2, . . . }, V2 = {n3, . . . , N},
where N is the largest member of V1 ∪ V2.

The resulting map is a parity changing involution of Π(n)−Π∗(n), which implies (3.1).

Below, we illustrate the fixed point set Π∗(n) along with the pairings of Π(n) − Π∗(n)
when n = 4.

Π0(n) Π1(n)− Π
∗(n) Π∗(n)
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{1, 2, 3, 4} {1, 4}, {2}, {3} {1, 2}, {3}, {4}

{1, 2}, {3, 4} {1, 2, 4}, {3}

{1, 3}, {2, 4} {1}, {2, 3, 4}

{1, 4}, {2, 3} {1, 3, 4}, {2}

{1}, {2, 3}, {4} {1, 3}, {2}, {4}

{1}, {2, 4}, {3} {1}, {2}, {3, 4}

{1}, {2}, {3}, {4} {1, 2, 3}, {4}

Note that the bijection above, like the one used for Theorem 2.3, does not always preserve
the number of blocks and hence has no meaningful restriction to Π(n, k), unlike the bijection
of Theorem 2.1.

Remark. In [2], Ehrlich evaluates σ(n) := −
∑

π∈Π(n)(−1)
α(π), where α(π) :=

∑

i odd |Ei| for

π = (E1, E2, . . . ) ∈ Π(n). The bijection of Theorem 3.1 establishing B
∗
−1(n) also provides

an alternative to Ehrlich’s iterative argument establishing his σ(n) since

σ(n) = −
∑

π=(E1,E2,... )∈Π(n)

(−1)|E1|+|E3|+|E5|+···

= −
∑

π=(E1,E2,... )∈Π(n)

(−1)|E1|+2|E2|+3|E3|+···

= −B∗
−1(n).

Since Sq(n, k) = q−nS∗
q (n, k),

B−1(n) :=
n
∑

k=0

S−1(n, k) = (−1)
nB∗

−1(n),

and so by (3.1),

B−1(n) =











(−1)n, if n ≡ 0 (mod 3);

(−1)n+1, if n ≡ 1 (mod 3);

0, if n ≡ 2 (mod 3),

(3.3)

with the above bijection clearly showing this. The preceding also supplies a combinatorial
proof that B(n), the nth Bell number, is even if and only if n ≡ 2 (mod 3) since every
partition of [n] is paired with another of opposite w∗-parity when n ≡ 2 (mod 3) and since
all partitions are so paired except for one otherwise (cf. Ehrlich [2, p. 512]).
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