Bijective Proofs of Parity Theorems for Partition Statistics

Mark Shattuck
Department of Mathematics
University of Tennessee
Knoxville, TN 37996-1300
USA
shattuck@math.utk.edu

Abstract

We give bijective proofs of parity theorems for four related statistics on partitions of finite sets. A consequence of our results is a combinatorial proof of a congruence between Stirling numbers and binomial coefficients.

1 Introduction

The notational conventions of this paper are as follows: $\mathbb{N}:=\{0,1,2, \ldots\}, \mathbb{P}:=\{1,2, \ldots\}$, $[0]:=\varnothing$, and $[n]:=\{1, \ldots, n\}$ for $n \in \mathbb{P}$. Empty sums take the value 0 and empty products the value 1 , with $0^{0}:=1$. The binomial coefficient $\binom{n}{k}$ is equal to zero if k is a negative integer or if $0 \leqslant n<k$.

Let $\Pi(n, k)$ denote the set of all partitions of $[n]$ with k blocks and $\Pi(n)$ the set of all partitions of $[n]$. Associate to each $\pi \in \Pi(n, k)$ the ordered partition $\left(E_{1}, \ldots, E_{k}\right)$ of [n] comprising the same blocks as π, arranged in increasing order of their smallest elements, and define statistics $\tilde{w}, \hat{w}, w^{*}$, and w by

$$
\begin{align*}
\tilde{w}(\pi) & :=\sum_{i=1}^{k}(i-1)\left(\left|E_{i}\right|-1\right) \tag{1.1}\\
\hat{w}(\pi) & :=\sum_{i=1}^{k} i\left(\left|E_{i}\right|-1\right)=\tilde{w}(\pi)+n-k \tag{1.2}\\
w^{*}(\pi) & :=\sum_{i=1}^{k} i\left|E_{i}\right|=\tilde{w}(\pi)+n+\binom{k}{2} \tag{1.3}
\end{align*}
$$

and

$$
\begin{equation*}
w(\pi):=\sum_{i=1}^{k}(i-1)\left|E_{i}\right|=\tilde{w}(\pi)+\binom{k}{2} . \tag{1.4}
\end{equation*}
$$

Consider the generating functions (see [1], [3], [6], and [6])

$$
\begin{align*}
& \tilde{S}_{q}(n, k):=\sum_{\pi \in \Pi(n, k)} q^{\tilde{w}(\pi)}, \tag{1.5}\\
& \hat{S}_{q}(n, k):=\sum_{\pi \in \Pi(n, k)} q^{\hat{\omega}(\pi)}=q^{n-k} \tilde{S}_{q}(n, k), \tag{1.6}\\
& S_{q}^{*}(n, k):=\sum_{\pi \in \Pi(n, k)} q^{w^{*}(\pi)}=q^{\binom{k}{2}+n} \tilde{S}_{q}(n, k), \tag{1.7}
\end{align*}
$$

and

$$
\begin{equation*}
S_{q}(n, k):=\sum_{\pi \in \Pi(n, k)} q^{w(\pi)}=q^{\binom{k}{2}} \tilde{S}_{q}(n, k) . \tag{1.8}
\end{equation*}
$$

Summing the q-Stirling numbers $\tilde{S}_{q}(n, k), \hat{S}_{q}(n, k), S_{q}^{*}(n, k)$, and $S_{q}(n, k)$ over k yields the respective q-Bell numbers $\tilde{B}_{q}(n), \hat{B}_{q}(n), B_{q}^{*}(n)$, and $B_{q}(n)$. These polynomials reduce to the classical Stirling and Bell numbers when $q=1$. Wagner $\|$ evaluates the foregoing polynomials when $q=-1$ using algebraic techniques and raises the question of finding bijective proofs.

We now describe a combinatorial method for evaluating these polynomials when $q=-1$. More generally, let Δ be a finite set of discrete structures and $I: \Delta \rightarrow \mathbb{N}$, with generating function

$$
\begin{equation*}
G(I, \Delta ; q):=\sum_{\delta \in \Delta} q^{I(\delta)}=\sum_{k}|\{\delta \in \Delta: I(\delta)=k\}| q^{k} \tag{1.9}
\end{equation*}
$$

Of course, $G(I, \Delta ; 1)=|\Delta|$. If $\Delta_{i}:=\{\delta \in \Delta: I(\delta) \equiv i(\bmod 2)\}$, then $G(I, \Delta ;-1)=$ $\left|\Delta_{0}\right|-\left|\Delta_{1}\right|$. Our strategy for finding $G(I, \Delta ;-1)$ will be to identify a subset Δ^{*} of Δ contained completely within Δ_{0} or Δ_{1} and then to define an I-parity changing involution on $\Delta-\Delta^{*}$. The subset Δ^{*} thus captures both the sign and magnitude of $G(I, \Delta ;-1)$. In the present setting, Δ will either be $\Pi(n)$ or $\Pi(n, k)$ and I, one of the aforementioned partition statistics.

In § 2, we give bijective proofs establishing $\tilde{B}_{q}(n)$ and $\hat{B}_{q}(n)$ as well as the four q Stirling numbers when $q=-1$. In \S, a bijection yielding $B_{-1}^{*}(n)$ and $B_{-1}(n)$ is given. A consequence of our results is a combinatorial proof requested by Stanley of the congruence [7, p. 46]

$$
\begin{equation*}
S(n, k) \equiv\binom{n-\lfloor k / 2\rfloor-1}{n-k} \quad(\bmod 2), \quad 0 \leqslant k \leqslant n \tag{1.10}
\end{equation*}
$$

where $S(n, k)=|\pi(n, k)|$ denotes the Stirling number of the second kind.

2 The First Bijection

Throughout, we'll represent $\pi \in \Pi(n)$ by $\left(E_{1}, E_{2}, \ldots\right)$, the unique ordered partition of $[n]$ comprising the same blocks as π, arranged in increasing order of their smallest elements. Let $F_{0}=F_{1}=1$, with $F_{n}=F_{n-1}+F_{n-2}$ if $n \geqslant 2$.

Theorem 2.1. For all $n \in \mathbb{N}$,

$$
\begin{equation*}
\tilde{B}_{-1}(n):=\sum_{k=0}^{n} \tilde{S}_{-1}(n, k)=F_{n} \tag{2.1}
\end{equation*}
$$

Proof. Let $\Pi_{i}(n):=\{\pi \in \Pi(n): \tilde{w}(\pi) \equiv i(\bmod 2)\}$ so that $\tilde{B}_{-1}(n)=\left|\Pi_{0}(n)\right|-\left|\Pi_{1}(n)\right|$. To prove (2.1), we'll identify a subset $\tilde{\Pi}(n)$ of $\Pi_{0}(n)$ such that $|\tilde{\Pi}(n)|=F_{n}$ along with a \tilde{w}-parity changing involution of $\Pi(n)-\tilde{\Pi}(n)$.

The set $\tilde{\Pi}(n)$ consists of those partitions $\pi=\left(E_{1}, E_{2}, \ldots\right)$ whose blocks satisfy the two conditions:
each block of odd index comprises a set of consecutive integers;
each block of even index is a singleton.
Now $|\tilde{\Pi}(n)|=F_{n}$, as $|\tilde{\Pi}(n)|$ is seen to satisfy the Fibonacci recurrence, upon considering whether or not $\{n\}$ is a block. For if $\{n\}$ is not a block and $n-2$ belongs to an odd-numbered (respectively, even-numbered) block of $\pi \in \tilde{\Pi}(n)$, then $\{n-1, n\}$ constitutes a proper subset of (respectively, all of) the last block of π.

Suppose now that $\pi=\left(E_{1}, E_{2}, \ldots\right)$ belongs to $\Pi(n)-\tilde{\Pi}(n)$ and that i_{0} is the smallest of the integers i for which $E_{2 i-1}$ fails to satisfy (2.2a) or $E_{2 i}$ fails to satisfy (2.2b). Let M be the largest member of $E_{2 i_{0}-1} \cup E_{2 i_{0}}$. If M belongs to $E_{2 i_{0}-1}$, move it to $E_{2 i_{0}}$, while if M belongs to $E_{2 i_{0}}$, move it to $E_{2 i_{0}-1}$ (note that if $\left|E_{2 i_{0}}\right|=1$, then necessarily $M \in E_{2 i_{0}-1}$). The resulting map is a parity changing involution of $\Pi(n)-\tilde{\Pi}(n)$.

Below, we illustrate the fixed point set $\tilde{\Pi}(n)$ and the pairings of $\Pi(n)-\tilde{\Pi}(n)$ when $n=4$, wherein the first two members of each row are paired.

$\Pi_{0}(n)-\tilde{\Pi}(n)$	$\Pi_{1}(n)$	$\tilde{\Pi}(n)$
$\{1,2,4\},\{3\}$	$\{1,2\},\{3,4\}$	$\{1,2,3,4\}$
$\{1,3,4\},\{2\}$	$\{1,3\},\{2,4\}$	$\{1,2,3\},\{4\}$
$\{1\},\{2,3,4\}$	$\{1,4\},\{2,3\}$	$\{1\},\{2\},\{3,4\}$
$\{1,3\},\{2\},\{4\}$	$\{1\},\{2,3\},\{4\}$	$\{1,2\},\{3\},\{4\}$
$\{1,4\},\{2\},\{3\}$	$\{1\},\{2,4\},\{3\}$	$\{1\},\{2\},\{3\},\{4\}$

Note that the above bijection preserves the number of blocks of $\pi \in \Pi(n)$. We'll use its restriction to $\Pi(n, k)$ to prove

Theorem 2.2. For all $n \in \mathbb{N}$,

$$
\begin{equation*}
\tilde{S}_{-1}(n, k)=\binom{n-\lfloor k / 2\rfloor-1}{n-k}, \quad 0 \leqslant k \leqslant n \tag{2.3}
\end{equation*}
$$

Proof. Let $\Pi_{i}(n, k):=\Pi_{i}(n) \cap \Pi(n, k)$ for $i=0,1, \tilde{\Pi}(n, k):=\tilde{\Pi}(n) \cap \Pi(n, k)$, and $\pi=$ $\left(E_{1}, \ldots, E_{k}\right) \in \tilde{\Pi}(n, k)$. If k is even, identify each pair of blocks $\left(E_{2 i-1}, E_{2 i}\right), 1 \leqslant i \leqslant k / 2$, with summands x_{i} in a composition $x_{1}+\cdots+x_{k / 2}=n$, where each $x_{i} \geqslant 2$. If k is odd, identify $\left(E_{1}, E_{2}\right), \ldots,\left(E_{k-2}, E_{k-1}\right),\left(E_{k}\right)$ with summands x_{i} in $x_{1}+\cdots+x_{(k+1) / 2}=n$ where $x_{i} \geqslant 2$ for $1 \leqslant i \leqslant \frac{k-1}{2}$ and $x_{(k+1) / 2} \geqslant 1$. The cardinality of $\tilde{\Pi}(n, k)$ is then given by the right hand side of (2.3), and the restriction of the prior bijection to $\Pi(n, k)-\tilde{\Pi}(n, k)$ is again an involution, and inherits the parity changing property, which proves (2.3).

From (2.3) along with ($\boxed{1.6}$), (1.7), and (1.8), we have

$$
\begin{array}{ll}
\hat{S}_{-1}(n, k)=(-1)^{n-k}\binom{n-\lfloor k / 2\rfloor-1}{n-k}, & 0 \leqslant k \leqslant n, \\
S_{-1}^{*}(n, k)=(-1)^{\binom{k}{2}+n}\binom{n-\lfloor k / 2\rfloor-1}{n-k}, & 0 \leqslant k \leqslant n, \tag{2.5}
\end{array}
$$

and

$$
\begin{equation*}
S_{-1}(n, k)=(-1)^{\binom{k}{2}}\binom{n-\lfloor k / 2\rfloor-1}{n-k}, \quad 0 \leqslant k \leqslant n . \tag{2.6}
\end{equation*}
$$

The bijection establishing (2.3) clearly applies to (2.4)-(2.6) as well.
Let $S(n, k)=|\Pi(n, k)|$ denote the Stirling number of the second kind. The bijection of Theorem 2.2 also proves combinatorially that

$$
\begin{equation*}
S(n, k) \equiv\binom{n-\lfloor k / 2\rfloor-1}{n-k} \quad(\bmod 2), \quad 0 \leqslant k \leqslant n \tag{2.7}
\end{equation*}
$$

since off of a set of cardinality $\binom{n-\lfloor k / 2\rfloor-1}{n-k}$, each partition $\pi \in \Pi(n, k)$ is paired with another of opposite \tilde{w}-parity. This furnishes an answer to a question raised by Stanley [⿴囗 p. 46].

Let $F_{-3}=-1, F_{-2}=1$, and $F_{-1}=0$. We conclude this section by proving
Theorem 2.3. For all $n \in \mathbb{N}$,

$$
\begin{equation*}
\hat{B}_{-1}(n):=\sum_{k=0}^{n} \hat{S}_{-1}(n, k)=(-1)^{n-1} F_{n-3} . \tag{2.8}
\end{equation*}
$$

Proof. Let $n \geqslant 3, \tilde{\Pi}(n)$ be as in the proof of Theorem 2.1, and $\hat{\Pi}(n) \subseteq \tilde{\Pi}(n)$ consist of those partitions with an odd number of blocks and whose last block is a singleton. First, $|\hat{\Pi}(n)|=|\tilde{\Pi}(n-3)|=F_{n-3}$ as the removal of $n-2, n-1$, and n from $\pi \in \hat{\Pi}(n)$ is seen to be a bijection between $\hat{\Pi}(n)$ and $\tilde{\Pi}(n-3)$. Since $\hat{w}(\pi)=\tilde{w}(\pi)+n-k$ and since every $\pi \in \hat{\Pi}(n)$ has an even $\tilde{w}(\pi)$ value and an odd number of blocks, the \hat{w}-parity of each $\pi \in \hat{\Pi}(n)$ is opposite the parity of n. Thus, $\hat{\Pi}(n)$ agrees with the right hand side of (2.8) in both sign and magnitude.

The \tilde{w}-parity changing involution of Theorem 2.1 defined on $\Pi(n)-\tilde{\Pi}(n)$ also changes the \hat{w}-parity. We now extend this involution to $\Pi(n)-\hat{\Pi}(n)$ as follows: if the last block of $\pi \in \tilde{\Pi}(n)-\hat{\Pi}(n)$ is $\{n\}$, merge it with the penultimate block; if the last block is not a singleton, take n from this block and form the singleton $\{n\}$. The resulting extension is a \hat{w}-parity changing involution of $\Pi(n)-\hat{\Pi}(n)$.

3 A Second Bijection

The Bell numbers $B_{-1}^{*}(n)$ are quite different from the numbers $\tilde{B}_{-1}(n)$ and $\hat{B}_{-1}(n)$, as demonstrated by the following theorem.

Theorem 3.1. For all $n \in \mathbb{N}$,

$$
B_{-1}^{*}(n):=\sum_{k=0}^{n} S_{-1}^{*}(n, k)=\left\{\begin{array}{lll}
1, & \text { if } n \equiv 0 & (\bmod 3) \tag{3.1}\\
-1, & \text { if } n \equiv 1 & (\bmod 3) \\
0, & \text { if } n \equiv 2 & (\bmod 3)
\end{array}\right.
$$

Proof. Let $\Pi_{i}(n):=\left\{\pi \in \Pi(n): w^{*}(\pi) \equiv i(\bmod 2)\right\}$ and $\Pi^{*}(n)$ consist of those partitions $\pi=\left(E_{1}, E_{2}, \ldots\right)$ whose blocks satisfy

$$
\begin{equation*}
E_{2 i-1}=\{3 i-2,3 i-1\}, \quad E_{2 i}=\{3 i\} \quad \text { for } 1 \leqslant i \leqslant\lfloor n / 3\rfloor . \tag{3.2}
\end{equation*}
$$

Then $\Pi^{*}(n)$ is a singleton contained in $\Pi_{0}(n)$ if $n \equiv 0(\bmod 3)$ or contained in $\Pi_{1}(n)$ if $n \equiv 1$ $(\bmod 3)$. If $n \equiv 2(\bmod 3), \Pi^{*}(n)$ is a doubleton containing two partitions of opposite w^{*} parity, which we pair.

Suppose now that $\pi=\left(E_{1}, E_{2}, \ldots\right) \in \Pi(n)-\Pi^{*}(n)$ and that i_{0} is the smallest index for which condition (3.2) fails to hold. Let $n_{1}=3 i_{0}-2, n_{2}=3 i_{0}-1, n_{3}=3 i_{0}$ and $V_{1}=E_{2 i_{0}-1}$, $V_{2}=E_{2 i_{0}}, V_{3}=E_{2 i_{0}+1}$ (the latter two if they occur). Consider the following four disjoint cases concerning the relative positions of the n_{i} within the V_{i} :
(I) $n_{2} \in V_{2}, n_{3} \in V_{3}$, and $\left|V_{2} \cup V_{3}\right| \geqslant 3$;
(II) Either (a) or (b) holds where (a) $V_{2}=\left\{n_{2}\right\}$ and $V_{3}=\left\{n_{3}\right\}$,
(b) $n_{2}, n_{3} \in V_{1}$;
(III) $n_{2} \in V_{2}$ and $n_{3} \in V_{1} \cup V_{2}$;
(IV) $n_{2} \in V_{1}, n_{3} \in V_{2}$, and $\left|V_{1} \cup V_{2}\right| \geqslant 4$.

Within each case, we pair partitions of opposite parity as shown below, leaving the other blocks undisturbed:
(i) $V_{2}=\left\{n_{2}, \ldots, M\right\}, V_{3}=\left\{n_{3}, \ldots\right\} \leftrightarrow V_{2}=\left\{n_{2}, \ldots\right\}, V_{3}=\left\{n_{3}, \ldots, M\right\}$, where M is the largest member of $V_{2} \cup V_{3}$;
(ii) $V_{1}=\left\{n_{1}, \ldots\right\}, V_{2}=\left\{n_{2}\right\}, V_{3}=\left\{n_{3}\right\} \leftrightarrow V_{1}=\left\{n_{1}, n_{2}, n_{3}, \ldots\right\}$;
(iii) $V_{1}=\left\{n_{1}, n_{3}, \ldots\right\}, V_{2}=\left\{n_{2}, \ldots\right\} \leftrightarrow V_{1}=\left\{n_{1}, \ldots\right\}, V_{2}=\left\{n_{2}, n_{3}, \ldots\right\}$;
(iv) $V_{1}=\left\{n_{1}, n_{2}, \ldots, N\right\}, V_{2}=\left\{n_{3}, \ldots\right\} \leftrightarrow V_{1}=\left\{n_{1}, n_{2}, \ldots\right\}, V_{2}=\left\{n_{3}, \ldots, N\right\}$, where N is the largest member of $V_{1} \cup V_{2}$.
The resulting map is a parity changing involution of $\Pi(n)-\Pi^{*}(n)$, which implies (3.1).
Below, we illustrate the fixed point set $\Pi^{*}(n)$ along with the pairings of $\Pi(n)-\Pi^{*}(n)$ when $n=4$.

$$
\Pi_{0}(n) \quad \Pi_{1}(n)-\Pi^{*}(n) \quad \Pi^{*}(n)
$$

$$
\begin{array}{lll}
\{1,2,3,4\} & \{1,4\},\{2\},\{3\} & \{1,2\},\{3\},\{4\} \\
\{1,2\},\{3,4\} & \{1,2,4\},\{3\} & \\
\{1,3\},\{2,4\} & \{1\},\{2,3,4\} \\
\{1,4\},\{2,3\} & \{1,3,4\},\{2\} \\
\{1\},\{2,3\},\{4\} & \{1,3\},\{2\},\{4\} \\
\{1\},\{2,4\},\{3\} & \{1\},\{2\},\{3,4\} \\
\{1\},\{2\},\{3\},\{4\} & \{1,2,3\},\{4\}
\end{array}
$$

Note that the bijection above, like the one used for Theorem 2.3, does not always preserve the number of blocks and hence has no meaningful restriction to $\Pi(n, k)$, unlike the bijection of Theorem 2.1.
Remark. In [2], Ehrlich evaluates $\sigma(n):=-\sum_{\pi \in \Pi(n)}(-1)^{\alpha(\pi)}$, where $\alpha(\pi):=\sum_{i \text { odd }}\left|E_{i}\right|$ for $\pi=\left(E_{1}, E_{2}, \ldots\right) \in \Pi(n)$. The bijection of Theorem 5.1 establishing $B_{-1}^{*}(n)$ also provides an alternative to Ehrlich's iterative argument establishing his $\sigma(n)$ since

$$
\begin{aligned}
\sigma(n) & =-\sum_{\pi=\left(E_{1}, E_{2}, \ldots\right) \in \Pi(n)}(-1)^{\left|E_{1}\right|+\left|E_{3}\right|+\left|E_{5}\right|+\cdots} \\
& =-\sum_{\pi=\left(E_{1}, E_{2}, \ldots\right) \in \Pi(n)}(-1)^{\left|E_{1}\right|+2\left|E_{2}\right|+3\left|E_{3}\right|+\cdots} \\
& =-B_{-1}^{*}(n)
\end{aligned}
$$

Since $S_{q}(n, k)=q^{-n} S_{q}^{*}(n, k)$,

$$
B_{-1}(n):=\sum_{k=0}^{n} S_{-1}(n, k)=(-1)^{n} B_{-1}^{*}(n)
$$

and so by (3.1),

$$
B_{-1}(n)=\left\{\begin{array}{lll}
(-1)^{n}, & \text { if } n \equiv 0 \quad(\bmod 3) \tag{3.3}\\
(-1)^{n+1}, & \text { if } n \equiv 1 \quad(\bmod 3) ; \\
0, & \text { if } n \equiv 2 \quad(\bmod 3),
\end{array}\right.
$$

with the above bijection clearly showing this. The preceding also supplies a combinatorial proof that $B(n)$, the $n^{\text {th }}$ Bell number, is even if and only if $n \equiv 2(\bmod 3)$ since every partition of $[n]$ is paired with another of opposite w^{*}-parity when $n \equiv 2(\bmod 3)$ and since all partitions are so paired except for one otherwise (cf. Ehrlich [2, p. 512]).

4 Acknowledgments

The author would like to thank Professor Donald Knuth for calling Ehrlich's paper to his attention.

References

[1] L. Carlitz, Generalized Stirling numbers, Combinatorial Analysis Notes, Duke University (1968), 8-15.
[2] G. Ehrlich, Loopless algorithms for generating permutations, combinations, and other combinatorial configurations, J. ACM 20 (1973), 500-513.
[3] S. Milne, A q-analogue of restricted growth functions, Dobinski's equality, and Charlier polynomials, Trans. Amer. Math. Soc. 245 (1978), 89-118.
[4] R. Stanley, Enumerative Combinatorics, Vol. I, Wadsworth and Brooks/Cole, 1986.
[5] M. Wachs and D. White, p, q-Stirling numbers and partition statistics, J. Combin. Theory A 56 (1991), 27-46.
[6] C. Wagner, Generalized Stirling and Lah numbers, Discrete Math. 160 (1996), 199-218.
[7] C. Wagner, Partition statistics and q-Bell numbers ($q=-1$), J. Integer Seq. 7 (2004), Art. 4.1.1.

2000 Mathematics Subject Classification: Primary 11B73; Secondary 11B39.
Keywords: partition statistics, q-Stirling numbers, q-Bell numbers, Fibonacci numbers.
(Concerned with sequence A000045.)

Received May 6 2004; revised version received January 17 2005. Published in Journal of Integer Sequences, January 172005.

Return to Journal of Integer Sequences home page.

