

Journal of Integer Sequences, Vol. 8 (2005), Article 05.1.5

Bijective Proofs of Parity Theorems for Partition Statistics

Mark Shattuck Department of Mathematics University of Tennessee Knoxville, TN 37996-1300 USA shattuck@math.utk.edu

Abstract

We give bijective proofs of parity theorems for four related statistics on partitions of finite sets. A consequence of our results is a combinatorial proof of a congruence between Stirling numbers and binomial coefficients.

1 Introduction

The notational conventions of this paper are as follows: $\mathbb{N} := \{0, 1, 2, ...\}, \mathbb{P} := \{1, 2, ...\}, [0] := \emptyset$, and $[n] := \{1, ..., n\}$ for $n \in \mathbb{P}$. Empty sums take the value 0 and empty products the value 1, with $0^0 := 1$. The binomial coefficient $\binom{n}{k}$ is equal to zero if k is a negative integer or if $0 \leq n < k$.

Let $\Pi(n, k)$ denote the set of all partitions of [n] with k blocks and $\Pi(n)$ the set of all partitions of [n]. Associate to each $\pi \in \Pi(n, k)$ the ordered partition (E_1, \ldots, E_k) of [n]comprising the same blocks as π , arranged in increasing order of their smallest elements, and define statistics \tilde{w}, \hat{w}, w^* , and w by

$$\tilde{w}(\pi) := \sum_{i=1}^{k} (i-1)(|E_i| - 1), \tag{1.1}$$

$$\hat{w}(\pi) := \sum_{i=1}^{k} i(|E_i| - 1) = \tilde{w}(\pi) + n - k, \qquad (1.2)$$

$$w^*(\pi) := \sum_{i=1}^k i|E_i| = \tilde{w}(\pi) + n + \binom{k}{2},$$
(1.3)

and

$$w(\pi) := \sum_{i=1}^{k} (i-1)|E_i| = \tilde{w}(\pi) + \binom{k}{2}.$$
(1.4)

Consider the generating functions (see [1], [3], [5], and [6])

$$\tilde{S}_q(n,k) := \sum_{\pi \in \Pi(n,k)} q^{\tilde{w}(\pi)},\tag{1.5}$$

$$\hat{S}_q(n,k) := \sum_{\pi \in \Pi(n,k)} q^{\hat{w}(\pi)} = q^{n-k} \tilde{S}_q(n,k),$$
(1.6)

$$S_q^*(n,k) := \sum_{\pi \in \Pi(n,k)} q^{w^*(\pi)} = q^{\binom{k}{2} + n} \tilde{S}_q(n,k),$$
(1.7)

and

$$S_q(n,k) := \sum_{\pi \in \Pi(n,k)} q^{w(\pi)} = q^{\binom{k}{2}} \tilde{S}_q(n,k).$$
(1.8)

Summing the q-Stirling numbers $\tilde{S}_q(n,k)$, $\hat{S}_q(n,k)$, $S_q^*(n,k)$, and $S_q(n,k)$ over k yields the respective q-Bell numbers $\tilde{B}_q(n)$, $\hat{B}_q(n)$, $B_q^*(n)$, and $B_q(n)$. These polynomials reduce to the classical Stirling and Bell numbers when q = 1. Wagner [7] evaluates the foregoing polynomials when q = -1 using algebraic techniques and raises the question of finding bijective proofs.

We now describe a combinatorial method for evaluating these polynomials when q = -1. More generally, let Δ be a finite set of discrete structures and $I : \Delta \to \mathbb{N}$, with generating function

$$G(I,\Delta;q) := \sum_{\delta \in \Delta} q^{I(\delta)} = \sum_{k} |\{\delta \in \Delta : I(\delta) = k\}| q^{k}.$$
(1.9)

Of course, $G(I, \Delta; 1) = |\Delta|$. If $\Delta_i := \{\delta \in \Delta : I(\delta) \equiv i \pmod{2}\}$, then $G(I, \Delta; -1) = |\Delta_0| - |\Delta_1|$. Our strategy for finding $G(I, \Delta; -1)$ will be to identify a subset Δ^* of Δ contained completely within Δ_0 or Δ_1 and then to define an *I*-parity changing involution on $\Delta - \Delta^*$. The subset Δ^* thus captures both the sign and magnitude of $G(I, \Delta; -1)$. In the present setting, Δ will either be $\Pi(n)$ or $\Pi(n, k)$ and *I*, one of the aforementioned partition statistics.

In § 2, we give bijective proofs establishing $\tilde{B}_q(n)$ and $\hat{B}_q(n)$ as well as the four q-Stirling numbers when q = -1. In § 3, a bijection yielding $B^*_{-1}(n)$ and $B_{-1}(n)$ is given. A consequence of our results is a combinatorial proof requested by Stanley of the congruence [4, p. 46]

$$S(n,k) \equiv \binom{n - \lfloor k/2 \rfloor - 1}{n - k} \pmod{2}, \quad 0 \le k \le n, \tag{1.10}$$

where $S(n,k) = |\pi(n,k)|$ denotes the Stirling number of the second kind.

2 The First Bijection

Throughout, we'll represent $\pi \in \Pi(n)$ by $(E_1, E_2, ...)$, the unique ordered partition of [n] comprising the same blocks as π , arranged in increasing order of their smallest elements. Let $F_0 = F_1 = 1$, with $F_n = F_{n-1} + F_{n-2}$ if $n \ge 2$.

Theorem 2.1. For all $n \in \mathbb{N}$,

$$\tilde{B}_{-1}(n) := \sum_{k=0}^{n} \tilde{S}_{-1}(n,k) = F_n.$$
(2.1)

Proof. Let $\Pi_i(n) := \{\pi \in \Pi(n) : \tilde{w}(\pi) \equiv i \pmod{2}\}$ so that $B_{-1}(n) = |\Pi_0(n)| - |\Pi_1(n)|$. To prove (2.1), we'll identify a subset $\tilde{\Pi}(n)$ of $\Pi_0(n)$ such that $|\tilde{\Pi}(n)| = F_n$ along with a \tilde{w} -parity changing involution of $\Pi(n) - \tilde{\Pi}(n)$.

The set $\Pi(n)$ consists of those partitions $\pi = (E_1, E_2, ...)$ whose blocks satisfy the two conditions:

Now $|\Pi(n)| = F_n$, as $|\Pi(n)|$ is seen to satisfy the Fibonacci recurrence, upon considering whether or not $\{n\}$ is a block. For if $\{n\}$ is not a block and n-2 belongs to an odd-numbered (respectively, even-numbered) block of $\pi \in \Pi(n)$, then $\{n-1, n\}$ constitutes a proper subset of (respectively, all of) the last block of π .

Suppose now that $\pi = (E_1, E_2, ...)$ belongs to $\Pi(n) - \Pi(n)$ and that i_0 is the smallest of the integers *i* for which E_{2i-1} fails to satisfy (2.2a) or E_{2i} fails to satisfy (2.2b). Let *M* be the largest member of $E_{2i_0-1} \cup E_{2i_0}$. If *M* belongs to E_{2i_0-1} , move it to E_{2i_0} , while if *M* belongs to E_{2i_0} , move it to E_{2i_0-1} (note that if $|E_{2i_0}| = 1$, then necessarily $M \in E_{2i_0-1}$). The resulting map is a parity changing involution of $\Pi(n) - \Pi(n)$.

Below, we illustrate the fixed point set $\Pi(n)$ and the pairings of $\Pi(n) - \Pi(n)$ when n = 4, wherein the first two members of each row are paired.

$\Pi_0(n) - \tilde{\Pi}(n)$	$\Pi_1(n)$	$ ilde{\Pi}(n)$
$\{1, 2, 4\}, \{3\}$	$\{1,2\}, \{3,4\}$	$\{1, 2, 3, 4\}$
$\{1, 3, 4\}, \{2\}$	$\{1,3\}, \{2,4\}$	$\{1, 2, 3\}, \{4\}$
$\{1\}, \{2, 3, 4\}$	$\{1,4\}, \{2,3\}$	$\{1\}, \{2\}, \{3,4\}$
$\{1,3\}, \{2\}, \{4\}$	$\{1\}, \{2,3\}, \{4\}$	$\{1,2\}, \{3\}, \{4\}$
$\{1,4\}, \{2\}, \{3\}$	$\{1\}, \{2,4\}, \{3\}$	$\{1\}, \{2\}, \{3\}, \{4\}$

Note that the above bijection preserves the number of blocks of $\pi \in \Pi(n)$. We'll use its restriction to $\Pi(n,k)$ to prove

Theorem 2.2. For all $n \in \mathbb{N}$,

$$\tilde{S}_{-1}(n,k) = \binom{n - \lfloor k/2 \rfloor - 1}{n - k}, \qquad 0 \le k \le n.$$
(2.3)

Proof. Let $\Pi_i(n,k) := \Pi_i(n) \cap \Pi(n,k)$ for i = 0, 1, $\Pi(n,k) := \Pi(n) \cap \Pi(n,k)$, and $\pi = (E_1, \ldots, E_k) \in \tilde{\Pi}(n,k)$. If k is even, identify each pair of blocks $(E_{2i-1}, E_{2i}), 1 \leq i \leq k/2$, with summands x_i in a composition $x_1 + \cdots + x_{k/2} = n$, where each $x_i \geq 2$. If k is odd, identify $(E_1, E_2), \ldots, (E_{k-2}, E_{k-1}), (E_k)$ with summands x_i in $x_1 + \cdots + x_{(k+1)/2} = n$ where $x_i \geq 2$ for $1 \leq i \leq \frac{k-1}{2}$ and $x_{(k+1)/2} \geq 1$. The cardinality of $\Pi(n,k)$ is then given by the right hand side of (2.3), and the restriction of the prior bijection to $\Pi(n,k) - \Pi(n,k)$ is again an involution, and inherits the parity changing property, which proves (2.3).

From (2.3) along with (1.6), (1.7), and (1.8), we have

$$\hat{S}_{-1}(n,k) = (-1)^{n-k} \binom{n - \lfloor k/2 \rfloor - 1}{n-k}, \qquad 0 \le k \le n,$$
(2.4)

$$S_{-1}^{*}(n,k) = (-1)^{\binom{k}{2}+n} \binom{n-\lfloor k/2 \rfloor - 1}{n-k}, \qquad 0 \le k \le n,$$
(2.5)

and

$$S_{-1}(n,k) = (-1)^{\binom{k}{2}} \binom{n - \lfloor k/2 \rfloor - 1}{n - k}, \qquad 0 \le k \le n.$$
(2.6)

The bijection establishing (2.3) clearly applies to (2.4)–(2.6) as well.

Let $S(n,k) = |\Pi(n,k)|$ denote the Stirling number of the second kind. The bijection of Theorem 2.2 also proves combinatorially that

$$S(n,k) \equiv \binom{n - \lfloor k/2 \rfloor - 1}{n - k} \pmod{2}, \qquad 0 \le k \le n, \tag{2.7}$$

since off of a set of cardinality $\binom{n-\lfloor k/2 \rfloor - 1}{n-k}$, each partition $\pi \in \Pi(n,k)$ is paired with another of opposite \tilde{w} -parity. This furnishes an answer to a question raised by Stanley [4, p. 46].

Let $F_{-3} = -1$, $F_{-2} = 1$, and $F_{-1} = 0$. We conclude this section by proving

Theorem 2.3. For all $n \in \mathbb{N}$,

$$\hat{B}_{-1}(n) := \sum_{k=0}^{n} \hat{S}_{-1}(n,k) = (-1)^{n-1} F_{n-3}.$$
(2.8)

Proof. Let $n \ge 3$, $\Pi(n)$ be as in the proof of Theorem 2.1, and $\Pi(n) \subseteq \Pi(n)$ consist of those partitions with an odd number of blocks and whose last block is a singleton. First, $|\hat{\Pi}(n)| = |\tilde{\Pi}(n-3)| = F_{n-3}$ as the removal of n-2, n-1, and n from $\pi \in \hat{\Pi}(n)$ is seen to be a bijection between $\hat{\Pi}(n)$ and $\Pi(n-3)$. Since $\hat{w}(\pi) = \tilde{w}(\pi) + n - k$ and since every $\pi \in \hat{\Pi}(n)$ has an even $\tilde{w}(\pi)$ value and an odd number of blocks, the \hat{w} -parity of each $\pi \in \hat{\Pi}(n)$ is opposite the parity of n. Thus, $\hat{\Pi}(n)$ agrees with the right hand side of (2.8) in both sign and magnitude.

The \tilde{w} -parity changing involution of Theorem 2.1 defined on $\Pi(n) - \Pi(n)$ also changes the \hat{w} -parity. We now extend this involution to $\Pi(n) - \Pi(n)$ as follows: if the last block of $\pi \in \Pi(n) - \Pi(n)$ is $\{n\}$, merge it with the penultimate block; if the last block is not a singleton, take n from this block and form the singleton $\{n\}$. The resulting extension is a \hat{w} -parity changing involution of $\Pi(n) - \Pi(n)$.

3 A Second Bijection

The Bell numbers $B_{-1}^*(n)$ are quite different from the numbers $\dot{B}_{-1}(n)$ and $\dot{B}_{-1}(n)$, as demonstrated by the following theorem.

Theorem 3.1. For all $n \in \mathbb{N}$,

$$B_{-1}^{*}(n) := \sum_{k=0}^{n} S_{-1}^{*}(n,k) = \begin{cases} 1, & \text{if } n \equiv 0 \pmod{3}; \\ -1, & \text{if } n \equiv 1 \pmod{3}; \\ 0, & \text{if } n \equiv 2 \pmod{3}. \end{cases}$$
(3.1)

Proof. Let $\Pi_i(n) := \{\pi \in \Pi(n) : w^*(\pi) \equiv i \pmod{2}\}$ and $\Pi^*(n)$ consist of those partitions $\pi = (E_1, E_2, \ldots)$ whose blocks satisfy

$$E_{2i-1} = \{3i - 2, 3i - 1\}, \quad E_{2i} = \{3i\} \text{ for } 1 \le i \le \lfloor n/3 \rfloor.$$
(3.2)

Then $\Pi^*(n)$ is a singleton contained in $\Pi_0(n)$ if $n \equiv 0 \pmod{3}$ or contained in $\Pi_1(n)$ if $n \equiv 1 \pmod{3}$. If $n \equiv 2 \pmod{3}$, $\Pi^*(n)$ is a doubleton containing two partitions of opposite w^* -parity, which we pair.

Suppose now that $\pi = (E_1, E_2, ...) \in \Pi(n) - \Pi^*(n)$ and that i_0 is the smallest index for which condition (3.2) fails to hold. Let $n_1 = 3i_0 - 2$, $n_2 = 3i_0 - 1$, $n_3 = 3i_0$ and $V_1 = E_{2i_0-1}$, $V_2 = E_{2i_0}$, $V_3 = E_{2i_0+1}$ (the latter two if they occur). Consider the following four disjoint cases concerning the relative positions of the n_i within the V_i :

- (I) $n_2 \in V_2, n_3 \in V_3$, and $|V_2 \cup V_3| \ge 3$;
- (II) Either (a) or (b) holds where (a) $V_2 = \{n_2\}$ and $V_3 = \{n_3\}$, (b) $n_2, n_3 \in V_1$;
- (III) $n_2 \in V_2$ and $n_3 \in V_1 \cup V_2$;
- (IV) $n_2 \in V_1, n_3 \in V_2$, and $|V_1 \cup V_2| \ge 4$.

Within each case, we pair partitions of opposite parity as shown below, leaving the other blocks undisturbed:

(i) $V_2 = \{n_2, \dots, M\}, V_3 = \{n_3, \dots\} \leftrightarrow V_2 = \{n_2, \dots\}, V_3 = \{n_3, \dots, M\}$, where M is the largest member of $V_2 \cup V_3$;

(ii)
$$V_1 = \{n_1, \dots\}, V_2 = \{n_2\}, V_3 = \{n_3\} \leftrightarrow V_1 = \{n_1, n_2, n_3, \dots\};$$

- (iii) $V_1 = \{n_1, n_3, \dots\}, V_2 = \{n_2, \dots\} \leftrightarrow V_1 = \{n_1, \dots\}, V_2 = \{n_2, n_3, \dots\};$
- (iv) $V_1 = \{n_1, n_2, \dots, N\}, V_2 = \{n_3, \dots\} \leftrightarrow V_1 = \{n_1, n_2, \dots\}, V_2 = \{n_3, \dots, N\},$ where N is the largest member of $V_1 \cup V_2$.

The resulting map is a parity changing involution of $\Pi(n) - \Pi^*(n)$, which implies (3.1).

Below, we illustrate the fixed point set $\Pi^*(n)$ along with the pairings of $\Pi(n) - \Pi^*(n)$ when n = 4.

 $\Pi_0(n) \qquad \qquad \Pi_1(n) - \Pi^*(n) \qquad \qquad \Pi^*(n)$

$\{1, 2, 3, 4\}$	$\{1,4\}, \{2\}, \{3\}$	$\{1,2\}, \{3\}, \{4\}$
$\{1,2\}, \{3,4\}$	$\{1, 2, 4\}, \{3\}$	
$\{1,3\}, \{2,4\}$	$\{1\}, \{2, 3, 4\}$	
$\{1,4\}, \{2,3\}$	$\{1,3,4\}, \{2\}$	
$\{1\}, \{2,3\}, \{4\}$	$\{1,3\}, \{2\}, \{4\}$	
$\{1\}, \{2,4\}, \{3\}$	$\{1\}, \{2\}, \{3,4\}$	
$\{1\}, \{2\}, \{3\}, \{4\}$	$\{1, 2, 3\}, \{4\}$	

Note that the bijection above, like the one used for Theorem 2.3, does not always preserve the number of blocks and hence has no meaningful restriction to $\Pi(n, k)$, unlike the bijection of Theorem 2.1.

Remark. In [2], Ehrlich evaluates $\sigma(n) := -\sum_{\pi \in \Pi(n)} (-1)^{\alpha(\pi)}$, where $\alpha(\pi) := \sum_{i \text{ odd}} |E_i|$ for $\pi = (E_1, E_2, \ldots) \in \Pi(n)$. The bijection of Theorem 3.1 establishing $B^*_{-1}(n)$ also provides an alternative to Ehrlich's iterative argument establishing his $\sigma(n)$ since

$$\sigma(n) = -\sum_{\pi = (E_1, E_2, \dots) \in \Pi(n)} (-1)^{|E_1| + |E_3| + |E_5| + \dots}$$
$$= -\sum_{\pi = (E_1, E_2, \dots) \in \Pi(n)} (-1)^{|E_1| + 2|E_2| + 3|E_3| + \dots}$$
$$= -B^*_{1}(n).$$

Since $S_q(n,k) = q^{-n} S_q^*(n,k),$

$$B_{-1}(n) := \sum_{k=0}^{n} S_{-1}(n,k) = (-1)^{n} B_{-1}^{*}(n),$$

and so by (3.1),

$$B_{-1}(n) = \begin{cases} (-1)^n, & \text{if } n \equiv 0 \pmod{3}; \\ (-1)^{n+1}, & \text{if } n \equiv 1 \pmod{3}; \\ 0, & \text{if } n \equiv 2 \pmod{3}, \end{cases}$$
(3.3)

with the above bijection clearly showing this. The preceding also supplies a combinatorial proof that B(n), the n^{th} Bell number, is even if and only if $n \equiv 2 \pmod{3}$ since every partition of [n] is paired with another of opposite w^* -parity when $n \equiv 2 \pmod{3}$ and since all partitions are so paired except for one otherwise (cf. Ehrlich [2, p. 512]).

4 Acknowledgments

The author would like to thank Professor Donald Knuth for calling Ehrlich's paper to his attention.

References

- L. Carlitz, Generalized Stirling numbers, Combinatorial Analysis Notes, Duke University (1968), 8–15.
- [2] G. Ehrlich, Loopless algorithms for generating permutations, combinations, and other combinatorial configurations, J. ACM 20 (1973), 500–513.
- [3] S. Milne, A q-analogue of restricted growth functions, Dobinski's equality, and Charlier polynomials, *Trans. Amer. Math. Soc.* **245** (1978), 89–118.
- [4] R. Stanley, Enumerative Combinatorics, Vol. I, Wadsworth and Brooks/Cole, 1986.
- [5] M. Wachs and D. White, p, q-Stirling numbers and partition statistics, J. Combin. Theory A 56 (1991), 27–46.
- [6] C. Wagner, Generalized Stirling and Lah numbers, Discrete Math. 160 (1996), 199–218.
- [7] C. Wagner, Partition statistics and q-Bell numbers (q = -1), J. Integer Seq. 7 (2004), Art. 4.1.1.

2000 Mathematics Subject Classification: Primary 11B73; Secondary 11B39. Keywords: partition statistics, q-Stirling numbers, q-Bell numbers, Fibonacci numbers.

(Concerned with sequence A000045.)

Received May 6 2004; revised version received January 17 2005. Published in *Journal of Integer Sequences*, January 17 2005.

Return to Journal of Integer Sequences home page.