A Self-Indexed Sequence

Emmanuel Preissmann
11 rue Vinet
1004 Lausanne
Switzerland
emmanuel.preissmann@1th.epfl.ch

Abstract

We investigate the integer sequence $\left(t_{n}\right)_{n \in \mathbb{Z}}$ defined by $t_{n}=0$ if $n \leq 0, t_{1}=1$, and $t_{n}=\sum_{i=1}^{n-1} t_{n-t_{i}}$ for $n \geq 2$. This sequence has the following properties: if we consider $f_{n}(X):=-1+\sum_{i=1}^{n} X^{t_{i}}$ and take x_{n} to be the real positive number such that $f_{n}\left(x_{n}\right)=0$, then $$
\lim _{n \rightarrow \infty} \frac{t_{n}}{t_{n+1}}=\lim _{n \rightarrow \infty} x_{n}=0.410098516 \cdots
$$

Moreover, if u is the real positive number such that $1=\sum_{i=1}^{\infty} u^{-t_{i}}$, then there is a positive constant M such that $t_{n} \sim M u^{n}$.

1 Definitions and main results

If we look in the Online Encyclopedia of Integer Sequences of N. J. A. Sloane [1], we find a remarkable sequence by $\left(t_{n}\right)_{n \in \mathbb{Z}}$ defined by $t_{n}=0$ if $n \leq 0, t_{1}=1$ and

$$
\begin{equation*}
t_{n}=\sum_{i=1}^{n-1} t_{n-t_{i}} \tag{1.1}
\end{equation*}
$$

for $n \geq 2$. This sequence is due to Robert Lozyniak (A052109 in Sloane) and is a cousin of the Hofstadter-Conway $\$ 10,000$ challenge sequence (A004001 in Sloane).

We find $t_{2}=1, t_{3}=2, t_{4}=5, t_{5}=12, t_{6}=30, t_{7}=73, \ldots$ Observe that if $n \geq 2$, $t_{n+1}=2 t_{n}+\cdots \geq 2 t_{n}$. Since $t_{4}=4+1$, we have

$$
\begin{equation*}
t_{n} \geq n+1 \quad(n \geq 4) \tag{1.2}
\end{equation*}
$$

The serie $\sum_{i=1}^{\infty} X^{t_{i}}=2 X+X^{2}+\cdots$ converges for $|X|<1$. Let u be the real positive number such that

$$
\begin{equation*}
\sum_{i=1}^{\infty} u^{-t_{i}}=1 \tag{1.3}
\end{equation*}
$$

We easily see that $2<u<3$. Indeed we have $\sum_{i=1}^{\infty}\left(\frac{1}{2}\right)^{t_{i}}=\frac{1}{2}+\frac{1}{2}+\cdots>1$ and $\sum_{i=1}^{\infty}\left(\frac{1}{3}\right)^{t_{i}}<$ $\frac{2}{3}+\frac{1}{9} \sum_{i=0}^{\infty}\left(\frac{1}{3}\right)^{i}=\frac{5}{6}$.
Theorem 1.1. There exists a positive constant M such that

$$
\lim _{n \rightarrow \infty} \frac{t_{n}}{u^{n}}=M
$$

Corollary 1.1. Let $n \geq 2$ be an integer. Let $f_{n}(X)=-1+\sum_{i=1}^{n} X^{t_{i}}$ and take x_{n} the real positive number such that $f_{n}\left(x_{n}\right)=0$. Then

$$
\lim _{n \rightarrow \infty} \frac{t_{n}}{t_{n+1}}=\frac{1}{u}=\lim _{n \rightarrow \infty} x_{n}=0.410098516 \cdots
$$

Proof. By the theorem, $t_{n} \sim M u^{n}$, therefore $\lim _{n \rightarrow \infty} \frac{t_{n}}{t_{n+1}}=\frac{1}{u}$.
In addition, the sequence $\left(x_{n}\right)_{n=1}^{\infty}$ is strictly decreasing. Indeed,

$$
\sum_{i=1}^{n} x_{n}^{t_{i}}=1=\sum_{i=1}^{n+1} x_{n+1}^{t_{i}}
$$

so that

$$
\sum_{i=1}^{n}\left(x_{n+1}^{t_{i}}-x_{n}^{t_{i}}\right)=-x_{n+1}^{t_{n+1}}<0
$$

This proves that $x_{n+1}<x_{n}$ for every n. Moreover, this sequence is bounded, so it converges to an element, say v. The function $f_{\infty}(x)=-1+\sum_{i=1}^{\infty} x^{t_{i}}$ is continuous. Let $\epsilon>0$. We have

$$
0<f_{\infty}\left(x_{n}\right)=\sum_{i=n+1}^{\infty} x_{n}^{t_{i}}<\epsilon
$$

if n is big enough. Finally,

$$
f_{\infty}(v)=\lim _{n \rightarrow \infty} f_{\infty}\left(x_{n}\right)=0
$$

That is, $v=\frac{1}{u}$, because $\frac{1}{u}$ is the only positive zero of f_{∞}.

2 Proof of the Theorem

We begin with a lemma:
Lemma 2.1. If $0 \leq v_{n}<1$ for every integer $n>0$, then the following inequalities are equivalent

$$
\begin{align*}
\sum_{n=1}^{\infty} v_{n} & <\infty \tag{2.1}\\
\prod_{n=1}^{\infty}\left(1-v_{n}\right) & >0 \tag{2.2}
\end{align*}
$$

Proof. Without loss of generality, we can suppose that $v_{n} \leq \frac{1}{2}$. If an infinite number of $v_{n}>\frac{1}{2}$, the claims 2.1 and 2.2 are both wrong, otherwise we can take out the finite number of $v_{n}>\frac{1}{2}$. By Taylor expansion, we have for $0 \leq x \leq \frac{1}{2}$

$$
-\log (1-x)=x+\frac{1}{2} \frac{x^{2}}{(1-\theta x)^{2}}, \quad 0 \leq \theta \leq 1
$$

hence $x \leq-\log (1-x) \leq 2 x$ for $0 \leq x \leq \frac{1}{2}$. It follows that for every integer $N>0$ we have

$$
\sum_{n=1}^{N} v_{n} \leq-\log \prod_{n=1}^{N}\left(1-v_{n}\right) \leq 2 \sum_{n=1}^{N} v_{n}
$$

So the lemma is proved.
Lemma 2.2. There exists a constant d such that

$$
0<d \leq \frac{t_{n}}{u^{n}} \quad \text { for every integer } n>0
$$

Proof. Suppose that $n \geq 4$ and d_{n} is such that $0<d_{n} \leq \frac{t_{k}}{u^{k}}$ for $1 \leq k \leq n$. Then we have

$$
t_{n+1}=\sum_{i=1}^{n} t_{n+1-t_{i}} \geq \sum_{\substack{i=1 \\ n+1-t_{i}>0}}^{n} d_{n} u^{n+1-t_{i}}
$$

By Eq. (1.2), $n+1-t_{n} \leq 0$. Hence

$$
t_{n+1} \geq d_{n} u^{n+1} \sum_{\substack{i=1 \\ n+1-t_{i}>0}}^{n} u^{-t_{i}}=d_{n} u^{n+1} \sum_{\substack{i=1 \\ n+1-t_{i}>0}}^{\infty} u^{-t_{i}}=d_{n} u^{n+1}\left(1-v_{n}\right)
$$

where $v_{n}=\sum_{i=1, t_{i} \geq n+1}^{\infty} u^{-t_{i}}$ by definition of u. So we have

$$
\begin{equation*}
d_{n}\left(1-v_{n}\right) \leq \frac{t_{k}}{u^{k}} \quad \text { for } 1 \leq k \leq n+1 \tag{2.3}
\end{equation*}
$$

The series

$$
\sum_{n=4}^{\infty} v_{n}=\sum_{n=4}^{\infty} \sum_{\substack{i=1 \\ t_{i} \geq n+1}}^{\infty} u^{-t_{i}}=\sum_{i=1}^{\infty} u^{-t_{i}} \sum_{4 \leq n<t_{i}}^{\infty} 1=\sum_{i=4}^{\infty} u^{-t_{i}}\left(t_{i}-4\right)
$$

is convergent; just compare this sum with $\frac{1}{(X-1)^{2}}=\sum_{i=1}^{\infty} i X^{i-1}$ for $|X|<1$. Set $d_{4}=$ $\min _{1 \leq k \leq 4} \frac{t_{k}}{u^{k}}$. By Lemma 2.1 and (2.3), $d=d_{4} \prod_{n=4}^{\infty}\left(1-v_{n}\right)$ is such that $0<d \leq \frac{t_{n}}{u^{n}}$ for every positive integer n.

Lemma 2.3. For every integer n, one has $t_{n} \leq u^{n-1}$.

Proof. If $n \leq 1$, this is evident. Suppose that $n \geq 1$ and by induction that $t_{i} \leq u^{i-1}$ when $i \leq n$. Then by (1.1) and (1.3), we have

$$
t_{n+1}=\sum_{i=1}^{n} t_{n+1-t_{i}} \leq \sum_{i=1}^{n} u^{n-t_{i}} \leq \sum_{i=1}^{\infty} u^{n-t_{i}}=u^{n}
$$

Remark 2.1. Let $N \geq 1$. Set $C_{N}=\sup _{n \geq N}\left(\frac{t_{n}}{u^{n}}\right)$ and $D_{N}=\inf _{n \geq N}\left(\frac{t_{n}}{u^{n}}\right)$. Lemmas 2.8 and 2.3 prove that $C=\lim _{N \rightarrow \infty} C_{N}$ and $D=\lim _{N \rightarrow \infty} D_{N}$ with $0<D \leq C$ are meaningful. Define $\left(t_{n}^{\prime}\right)_{n \in \mathbb{Z}}$ by $t_{i}^{\prime}=0$ when $i \leq 1, t_{2}^{\prime}=1$ and for $n \geq 3$ define

$$
\begin{equation*}
t_{n}^{\prime}=\sum_{i=1}^{\infty} t_{n-t_{i}}^{\prime} \tag{2.4}
\end{equation*}
$$

Define also $\left(a_{n}\right)_{n \in \mathbb{Z}}$ by $a_{n}=0$ when $n \leq 0, a_{1}=1$ and for $n \geq 2$:

$$
\begin{equation*}
a_{n}=1+\sum_{i=1}^{\infty} a_{n-t_{i}} . \tag{2.5}
\end{equation*}
$$

Lemma 2.4. Let n, N, k be positive integers such that $n>N \geq 1$. Then we have

$$
t_{n+k} \leq t_{k+2}^{\prime} t_{n}+u^{n+k} C_{N}\left(1-\frac{t_{k+2}^{\prime}}{u^{k}}\right)+a_{k} u^{N}
$$

Proof. By induction on k. For $k=0$, the claim is true. Suppose that $l \geq 1$ and that the lemma is true for $k=0,1, \ldots,(l-1)$. By Eq. (I.1),

$$
t_{n+l}=\sum_{i=1}^{n+l-1} t_{n+l-t_{i}} \leq \sum_{i=1}^{\infty} t_{n+l-t_{i}}=\Sigma_{1}+\Sigma_{2}+\Sigma_{3}
$$

where

$$
\begin{aligned}
\Sigma_{1} & =\sum_{\substack{i=1 \\
n+l-t i_{i} \geq n}}^{\infty} t_{n+l-t_{i}} \\
\Sigma_{2} & =\sum_{\substack{i=1 \\
N \leq n+l-t_{i}<n}}^{\infty} t_{n+l-t_{i}} \\
\Sigma_{3} & =\sum_{\substack{i=1 \\
n+l-t_{i}<N}}^{\infty} t_{n+l-t_{i}} .
\end{aligned}
$$

By induction we have

$$
\Sigma_{1} \leq \sum_{\substack{i=1 \\ l-t_{i} \geq 0}}^{\infty}\left(t_{l-t_{i}+2}^{\prime} t_{n}+u^{n+l-t_{i}} C_{N}\left(1-\frac{t_{l-t_{i}+2}^{\prime}}{u^{l-t_{i}}}\right)+a_{l-t_{i}} u^{N}\right)
$$

By the definition of C_{N}

$$
\Sigma_{2} \leq \sum_{\substack{i=1 \\ N \leq n+l-t_{i}<n}}^{\infty} C_{N} u^{n+l-t_{i}}
$$

By Lemma 2.3 and the fact that $u>2$,

$$
\Sigma_{3} \leq \sum_{i=1}^{N} t_{i} \leq \sum_{i=0}^{N-1} u^{i}=\frac{u^{N}-1}{u-1}<u^{N}
$$

Finally

$$
t_{n+l} \leq t_{n} \sum_{\substack{i \geq 1 \\ l-t_{i} \geq 0}} t_{l-t_{i}+2}^{\prime}+C_{N} \sum_{\substack{i \geq 1 \\ n+l-t_{i} \geq N}} u^{n+l-t_{i}}-C_{N} \sum_{\substack{i \geq 1 \\ l-t_{i} \geq 0}} u^{n} t_{l-t_{i}+2}^{\prime}+\sum_{\substack{i \geq 1 \\ l-t_{i} \geq 0}} a_{l-t_{i}} u^{N}+u^{N} .
$$

This means by (2.4), (2.5) and ((1.3) that

$$
t_{n+l} \leq t_{l+2}^{\prime} t_{n}+u^{n+l} C_{N}\left(1-\frac{t_{l+2}^{\prime}}{u^{l}}\right)+a_{l} u^{N} .
$$

Lemma 2.5. There exists $d^{\prime}>0$ such that $d^{\prime} \leq \frac{t_{n}^{\prime}}{u^{n}}$ for every $n \geq 2$.
Proof. Suppose that $d_{n}^{\prime} \leq \frac{t_{k}^{\prime}}{u^{k}}$ for every $2 \leq k \leq n$. Then

$$
t_{n+1}^{\prime}=\sum_{i=1}^{\infty} t_{n+1-t_{i}}^{\prime} \geq \sum_{i=1, n+1-t_{i}>1}^{\infty} d_{n}^{\prime} u^{n+1-t_{i}}
$$

So we proved $\frac{t_{n+1}^{\prime}}{u^{n+1}} \geq d_{n}^{\prime}\left(1-\sum_{i=1, t_{i} \geq n}^{\infty} u^{-t_{i}}\right)=d_{n}^{\prime}\left(1-v_{n-1}\right)$, with v_{n} defined as in Lemma 2.2. Hence, $0<d^{\prime}=\frac{1}{u^{2}} \prod_{n \geq 1}\left(1-v_{n}\right)$ is such that $d^{\prime} \leq \frac{t_{n}^{\prime}}{u^{n}}$ for every $n \geq 2$.

Lemma 2.6. We have $a_{m} \leq u^{m}-1$ for every integer $m>0$.
Proof. For $m=1$, this is true. if $m \geq 2$, we see by induction that

$$
a_{m}=1+\sum_{i=1, m>t_{i}}^{\infty} a_{m-t_{i}} \leq 1+\sum_{i=1, m>t_{i}}^{\infty}\left(u^{m-t_{i}}-1\right)
$$

Since $\sum_{i=1, m>t_{i}} 1 \geq 2$ and by (1.3),

$$
a_{m} \leq 1-\sum_{i=1, m>t_{i}}^{\infty} 1+u^{m} \sum_{i=1, m>t_{i}}^{\infty} u^{-t_{i}}<u^{m}-1
$$

Proof of the Theorem. According to Lemmas (2.4), (2.5), (2.6) and the definition of C_{N}, we have, for $1 \leq N<n$ and $k \geq 0$:

$$
t_{n+k} \leq C_{N} u^{n+k}-t_{k+2}^{\prime}\left(C_{N} u^{n}-t_{n}\right)+a_{k} u^{N} \leq C_{N} u^{n+k}-d^{\prime} u^{k+2}\left(C_{N} u^{n}-t_{n}\right)+u^{N+k}
$$

Let $\epsilon>0$. There exists N such that $C \leq C_{N}<C+\epsilon$, and $n>N$ such that $u^{N-n}<\epsilon$ and $\frac{t_{n}}{u^{n}}<D+\epsilon$. In these conditions, we have

$$
\frac{t_{n+k}}{u^{n+k}}<C+\epsilon-d^{\prime} u^{2}(C-D-\epsilon)+\epsilon .
$$

There exists k such that $\frac{t_{n+k}}{u^{n+k}}>C-\epsilon$. Then $C-\epsilon<C+\epsilon-d^{\prime} u^{2}(C-D-\epsilon)+\epsilon$. Letting ϵ tend to 0 gives $C \leq C-d^{\prime} u^{2}(C-D)$. Hence $d^{\prime} u^{2}(C-D) \leq 0$. This implies $C \leq D$ and thus $C=D$.

3 Acknowledgments

I am grateful to M. Mischler for valuable help and many fruitful discussions during the course of this work.

References

[1] N. J. A. Sloane, Online Encyclopedia of Integer Sequences, http://www.research.att.com/ njas/sequences/

2000 Mathematics Subject Classification: Primary 11Y55.
Keywords: integer sequences.
(Concerned with sequence 1052109 .)

Received May 16 2005; revised version received July 28 2005. Published in Journal of Integer Sequences, August 22005.

Return to Journal of Integer Sequences home page.

