Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.7

On a Sequence Arising in Algebraic Geometry

I. P. Goulden
Department of Combinatorics and Optimization University of Waterloo
Waterloo, Ontario N2L 3G1
Canada
ipgoulde@uwaterloo.ca
S. Litsyn ${ }^{\text {® }}$
Department of Electrical Engineering Systems
Tel Aviv University
69978 Ramat Aviv
Israel
Litsyn@eng.tau.ac.in
V. Shevelev
Department of Mathematics
Ben Gurion University of the Negev
Beer Sheva
Israel
email

Abstract

We derive recurrence relations for the sequence of Maclaurin coefficients of the function $\chi=\chi(t)$ satisfying $(1+\chi) \ln (1+\chi)=2 \chi-t$.

[^0]
1 Introduction

Consider the function $\chi=\chi(t)$ satisfying

$$
\begin{equation*}
(1+\chi) \ln (1+\chi)=2 \chi-t \tag{1}
\end{equation*}
$$

The sequence of coefficients in the Maclaurin expansion of χ plays an important role in algebraic geometry. Namely, the n-th coefficient is equal to the dimension of the cohomology ring of the moduli space of n-pointed stable curves of genus 0 . These coefficients are also related to WDVV equations of physics. Exact definitions can be found in [6, 6, (2) and references therein.

It follows from (1) that

$$
\begin{equation*}
\chi^{\prime}:=\frac{d \chi}{d t}=\frac{1+\chi}{1+t-\chi}, \tag{2}
\end{equation*}
$$

and χ has the critical point $t=e-2$. Using this, Manin [7, Chap.4, p.194] provides for the coefficients in the Maclaurin expansion of χ,

$$
\begin{equation*}
\chi(t)=t+\sum_{n=2}^{\infty} m_{n} \frac{t^{n}}{n!}, \tag{3}
\end{equation*}
$$

the following expression:

$$
\begin{equation*}
m_{n} \sim \frac{1}{\sqrt{n}}\left(\frac{n}{e^{2}-2 e}\right)^{n-\frac{1}{2}} . \tag{4}
\end{equation*}
$$

Exact computation of the defined numbers is a challenging problem. Indeed, taking into account that

$$
2 \chi-(1+\chi) \ln (1+\chi)=\chi+\sum_{n=2}^{\infty} \frac{(-1)^{n-1}}{(n-1) n} \chi^{n}
$$

and differentiating n times the identity $t=t(\chi(t))$, we deduce from the Bruno formula 0 , p.36, (45a)] that

$$
\begin{equation*}
m_{n}=\sum \frac{n!(-1)^{j}(j-2)!}{j_{1}!\cdots j_{n-1}!}\left(\frac{m_{1}}{1!}\right)^{j_{1}}\left(\frac{m_{2}}{2!}\right)^{j_{2}} \cdots\left(\frac{m_{n}}{(n-1)!}\right)^{j_{n-1}}, \quad n \geq 2 \tag{5}
\end{equation*}
$$

where $m_{1}=1, j=j_{1}+j_{2}+\cdots+j_{n-1}$, and the sum is over all non-negative integral solutions to $j_{1}+2 j_{2}+\cdots+(n-1) j_{n-1}=n$. This allows recurrent computation of the numbers m_{n}. Indeed, by (5),

$$
\begin{aligned}
m_{2}=0!m_{1}^{2} & =1 \\
m_{3}=-1!m_{1}^{3}+0!\left(3 m_{1} m_{2}\right) & =2 \\
m_{4}=2!m_{1}^{4}-1!\left(6 m_{1}^{2} m_{2}\right)+0!\left(3 m_{2}^{2}+4 m_{1} m_{3}\right) & =7
\end{aligned}
$$

However, when n increases, (5) becomes intractable due to the fast growth of the number of partitions of n.

Koganov [5] used the Bürmann-Lagrange inversion formula and generalizations of the Stirling numbers of the second kind [2], to deduce an efficient 3-dimensional scheme for computation of m_{n} 's. Here the Stirling numbers of the second kind of first and second order ($S_{1}(n, k)$ and $S_{2}(n, k)$) are defined by the two-dimensional recurrences:

$$
\begin{gathered}
S_{1}(n+1, k)=k S_{1}(n, k)+S_{1}(n, k-1) \\
n \geq k \geq 1, S_{1}(n, 0)=\delta_{0, n}, S_{1}(n, 1)=1 \\
S_{2}(n+1, k)=k S_{2}(n, k)+n S_{2}(n-1, k-1) \\
n \geq k \geq 1, S_{2}(n, 0)=\delta_{1, n}, S_{2}(n, 1)=1
\end{gathered}
$$

Then, [5],

$$
\begin{gathered}
m_{n}=1+(n-1)!\sum_{k=1}^{\left\lfloor\frac{n-1}{2}\right\rfloor} n(n+1) \cdots(n+k-1) . \\
\sum_{q=0}^{n-1} \sum_{\ell=0}^{\min (k, q)} \frac{S_{1}(q+1, \ell+1)}{q!}(-2)^{k-\ell} \frac{S_{2}(n-1-q-(k-\ell), k-\ell)}{(n-1-q-(k-\ell))!} .
\end{gathered}
$$

This made possible [5] computing the first 10 numbers m_{n}.
In what follows we present a simple computational method for m_{n} based on a quadratic recurrence.

Theorem 1.1 The numbers m_{n} satisfy

$$
\begin{equation*}
m_{n}=\sum_{i=1}^{n-1}\binom{n-1}{i} m_{i} m_{n-i}-(n-2) m_{n-1}, \quad n \geq 2 \tag{6}
\end{equation*}
$$

with the initial condition $m_{1}=1$.
Proof Multiplying both sides of (2) by $1+t-\chi$ and rearranging, we obtain

$$
\chi^{\prime}=\chi \chi^{\prime}+\chi-t \chi^{\prime}+1
$$

Applying (3) to this equation, we get

$$
\begin{aligned}
& \sum_{n=1}^{\infty} m_{n} \frac{t^{n-1}}{(n-1)!}=\sum_{i=1}^{\infty} m_{i} \frac{t^{i}}{i!} \sum_{j=1}^{\infty} m_{j} \frac{t^{j-1}}{(j-1)!} \\
& \quad+\sum_{n=1}^{\infty} m_{n} \frac{t^{n}}{n!}-\sum_{n=1}^{\infty} m_{n} \frac{t^{n}}{(n-1)!}+1
\end{aligned}
$$

Equating the coefficients of $t^{n-1} /(n-1)$! in this equation we accomplish the proof.

2 A generalization

A natural generalization of the numbers m_{n} is related to configuration spaces [3] and was introduced in [7, §4.3]. For an integer $k, k \geq 1$, consider the function $\chi_{k}=\chi_{k}(t)$ defined by

$$
\begin{equation*}
k\left(1+\chi_{k}\right) \ln \left(1+\chi_{k}\right)=(k+1) \chi_{k}-t, \tag{7}
\end{equation*}
$$

for some fixed k. The previously considered χ thus coincides with χ_{1}. Evidently,

$$
\begin{equation*}
\frac{d}{d t} \chi_{k}=\frac{1+\chi_{k}(t)}{1+t-k \chi_{k}(t)} \tag{8}
\end{equation*}
$$

and expanding at $t=0$ we get,

$$
\begin{equation*}
\chi_{k}(t)=t+\sum_{n=2}^{\infty} m_{n}(k) \frac{t!}{n!} . \tag{9}
\end{equation*}
$$

In particular, $m_{1}(k)=1$. Using (因) analogously to the previous section we have the following generalization of Theorem 1.1.

Theorem 2.1 The numbers $m_{n}(k)$ are polynomials of degree $(n-1)$ in k, with integer coefficients defined by the recursion

$$
\begin{equation*}
m_{n}(k)=k \sum_{i=1}^{n-1}\binom{n-1}{i} m_{i}(k) m_{n-i}(k)-(n-2) m_{n-1}(k), \quad n \geq 2 \tag{10}
\end{equation*}
$$

with initial condition $m_{1}(k)=1$.

2.1 Coefficients of $m_{n}(k)$

Set

$$
\begin{equation*}
m_{n}(k)=\mu_{1}(n) k^{n-1}+\mu_{2}(n) k^{n-2}+\cdots+\mu_{n-1}(n) k+\mu_{n}(n) . \tag{11}
\end{equation*}
$$

Computation of the coefficients $\mu_{n}(n), \mu_{n-1}(n), \mu_{n-2}(n), \ldots$ is enabled by the following theorem.

Theorem 2.2 For $n \geq 2$ and $\ell=1, \ldots, n$, the following recurrence holds:

$$
\begin{equation*}
\mu_{\ell}(n)=\sum_{j=1}^{\ell} \sum_{i=1}^{n-1}\binom{n-1}{i} \mu_{j}(i) \mu_{\ell+1-j}(n-i)-(n-2) \mu_{\ell-1}(n-1) . \tag{12}
\end{equation*}
$$

Proof The relation (12) is obtained by equating coefficients of $k^{n-\ell}$ in equation (10).

Using (12) for $\ell=n, n-1, \ldots$ we calculate recursively

$$
\begin{array}{rcc}
\mu_{n}(n)= & \delta_{n, 1} & n \geq 1, \\
\mu_{n-1}(n)= & (-1)^{n}(n-2)! & n \geq 2, \\
\mu_{n-2}(n)= & (-1)^{n-1}(n-2)!\left(n-2+2 \sum_{i=1}^{n-2} \frac{1}{i}\right) & n \geq 3, \\
\mu_{n-3}(n)= & (-1)^{n}(n-2)!. & \\
& \cdot\left(\frac{1}{2}(n-3)(n+4)+(2 n-7) \sum_{i=2}^{n-2} \frac{1}{i}+6 \sum_{i=2}^{n-2} \frac{1}{i} \sum_{j=1}^{i-1} \frac{1}{j}\right) & n \geq 4,
\end{array}
$$

Let us now describe a recurrence for computation of the initial coefficients $\mu_{1}(n), \mu_{2}(n), \ldots$. Set

$$
\begin{equation*}
M_{\ell}(x)=\sum_{n=1}^{\infty} \mu_{\ell}(n) \frac{x^{n}}{n!} \tag{13}
\end{equation*}
$$

Theorem 2.3 Let $M_{n} \equiv M_{n}\left(\frac{1}{2}\left(1-t^{2}\right)\right), \quad t \geq 0$. Then for $n \geq 2$ the following recursion holds:

$$
\begin{equation*}
\frac{d}{d t}\left(t M_{n}\right)=\sum_{i=2}^{n-1}\left(\frac{d}{d t} M_{i}\right) M_{n+1-i}-t M_{n-1}-\frac{1}{2}\left(1-t^{2}\right) \frac{d}{d t} M_{n-1} \tag{14}
\end{equation*}
$$

with initial conditions

$$
\begin{equation*}
M_{1}=1-t,\left.\quad M_{n}\right|_{t=1}=0 \tag{15}
\end{equation*}
$$

Proof Multiply on both sides of (12) by $x^{n-1} /(n-1)$!, and sum over $n \geq 1$, to obtain the following system of equations for $M_{\ell}(x)$:

$$
\begin{gather*}
M_{1}^{\prime}(x)=M_{1}(x) M_{1}^{\prime}(x)+1, \quad M_{1}(0)=0 \tag{16}\\
M_{\ell}^{\prime}(x)=\sum_{i=2}^{\ell-1} M_{i}^{\prime}(x) M_{\ell-i+1}(x)+M_{\ell-1}(x)-x M_{\ell-1}^{\prime}(x), M_{\ell}(0)=0, \ell \geq 2 . \tag{17}
\end{gather*}
$$

From (16) we find

$$
M_{1}(x)=\frac{1}{2} M_{1}^{2}(x)+x,
$$

and

$$
\begin{equation*}
M_{1}(x)=1-\sqrt{1-2 x}=1-t \tag{18}
\end{equation*}
$$

with $t=(1-2 x)^{\frac{1}{2}}$. Finally, changing variables in (I7) from x to t, and using

$$
M_{1}^{\prime}(x)=t^{-1}, \quad x=\frac{1}{2}\left(1-t^{2}\right), \quad \frac{d}{d x}=\frac{d t}{d x} \frac{d}{d t}=-t^{-1} \frac{d}{d t},
$$

we obtain (after multiplication by -1), for $n \geq 2$, the formula ((4)).

Notice that from Theorem 2.3 it follows by induction that for $n \geq 2, M_{n}$ is a polynomial in t and t^{-1} of the form:

$$
\begin{equation*}
M_{n}=\sum_{i=-(2 n-3)}^{n} a_{i}(n) t^{i} \tag{19}
\end{equation*}
$$

Thus Theorem 2.3 recursively yields

$$
\begin{aligned}
M_{1}= & -t+1 \\
M_{2}= & \frac{1}{6} t^{2}-\frac{1}{2} t+\frac{1}{2}-\frac{1}{6} t^{-1}, \\
M_{3}= & \frac{1}{72} t^{3}-\frac{1}{8} t+\frac{2}{9}-\frac{1}{8} t^{-1}+\frac{1}{72} t^{-3}, \\
M_{4}= & \frac{1}{270} t^{4}-\frac{1}{144} t^{3}-\frac{1}{72} t+\frac{1}{18}-\frac{1}{20} t^{-1}+\frac{1}{72} t^{-3}-\frac{1}{432} t^{-5}, \\
M_{5}= & \frac{23}{17280} t^{5}-\frac{1}{270} t^{4}+\frac{1}{576} t^{3}+\frac{1}{405} t^{2}-\frac{5}{1152} t+\frac{1}{90}-\frac{59}{4320} t^{-1} \\
& +\frac{43}{5760} t^{-3}-\frac{5}{1728} t^{-5}+\frac{5}{10368} t^{-7},
\end{aligned}
$$

Setting $(-1)!!=1$, this easily implies

$$
\begin{aligned}
& \mu_{1}(n)=(2 n-3)!!, \quad n \geq 1 \\
& \mu_{2}(n)=-\frac{n-2}{3}(2 n-3)!!, \quad n \geq 2 \\
& \mu_{3}(n)=\frac{(n-1)(n-2)(n-3)}{3^{2}}(2 n-5)!!, \quad n \geq 2 \\
& \mu_{4}(n)=-\frac{(n-3)(n-4)\left(5(n-1)^{2}+1\right)}{3^{4} \cdot 5}(2 n-5)!!, \quad n \geq 3, \\
& \mu_{5}(n)=\frac{(n-3)(n-4)(n-5)\left(5(n-1)^{3}+4 n-1\right)}{2 \cdot 3^{5} \cdot 5}(2 n-7)!!, \quad n \geq 3 .
\end{aligned}
$$

Finally, we will state a conjecture we have not been able to verify.
Conjecture 1 The expressions for M_{n} do not contain monomials corresponding to the integral negative degrees of $(1-2 x)$.

This conjecture is confirmed by our calculations for $n \leq 5$.

2.2 Yet another property of $m_{n}(k)$

In this section we consider another combinatorial property of the polynomials $m_{n}(k)$.

Theorem 2.4

$$
\begin{equation*}
m_{n}(-1)=(1-n)^{n-1} \tag{20}
\end{equation*}
$$

Proof Substitute $k=-1$ into (8), to obtain

$$
\begin{equation*}
\chi_{-1}^{\prime}=-\chi_{-1} \chi_{-1}^{\prime}+\chi_{-1}-t \chi_{-1}^{\prime}+1 \tag{21}
\end{equation*}
$$

Now let

$$
f(t)=\sum_{n=1}^{\infty}(1-n)^{n-1} \frac{t^{n}}{n!},
$$

and note that, from Lagrange's Theorem as stated in [1, §1.2] we obtain

$$
f(t)=-\frac{t}{T}-1
$$

where $T=-t e^{T}$. Differentiating the functional equation for T with respect to t, we obtain

$$
\frac{d T}{d t}=\frac{-e^{T}}{1+t e^{T}}=\frac{T}{t(1-T)}
$$

so that

$$
\frac{d f}{d t}=-\frac{T-t T^{\prime}}{T^{2}}=\frac{1}{1-T},
$$

and it is now routine to check that f is a solution to (21). We conclude from the initial condition $f(0)=0$ that $\chi_{-1}(t)$ coincides with $f(t)$.

3 Numerical Calculation

The derived result allows extending sequence A074059 of Sloane's on-line Encyclopedia of Integer Sequences which previously contained only 5 terms. We give here the first 19 terms of the sequence:

$$
\begin{aligned}
& m=\{1,1,2,7,34,213,1630,14747,153946,1821473, \\
& 24087590,352080111,5636451794,98081813581, \\
& 1843315388078,37209072076483,802906142007946, \\
&18443166021077145,449326835001457846, \ldots\}
\end{aligned}
$$

The first 10 polynomials $m_{n}(k)$ for $n=1, \ldots, 10$, are given in the following table:

$$
\begin{array}{ll}
n & m_{n}(k) \\
1 & 1 \\
2 & k \\
3 & 3 k^{2}-k \\
4 & 15 k^{3}-10 k^{2}+2 k \\
5 & 105 k^{4}-105 k^{3}+40 k^{2}-6 k \\
6 & 945 k^{5}-1260 k^{4}+700 k^{3}-196 k^{2}+24 k \\
7 & 10395 k^{6}-17325 k^{5}+12600 k^{4}-5068 k^{3}+1148 k^{2}-120 k \\
8 & 135135 k^{7}-270270 k^{6}+242550 k^{5}-126280 k^{4}+40740 k^{3}- \\
& -7848 k^{2}+720 k \\
9 & 2027025 k^{8}-4729725 k^{7}+5045040 k^{6}-3213210 k^{5}+ \\
& +1332100 k^{4}-363660 k^{3}+61416 k^{2}-5040 k \\
10 & 34459425 k^{9}-91891800 k^{8}+113513400 k^{7}-85345260 k^{6}+ \\
& +43022980 k^{5}-15020720 k^{4}+3584856 k^{3}-541728 k^{2}+40320 k
\end{array}
$$

Acknowledgement

The third author is grateful to L. M. Koganov for introducing the problem.

References

[1] I. P. Goulden, and D. M. Jackson, Combinatorial Enumeration, Wiley, 1983 (Dover reprint, 2004).
[2] L. Comtet, Analyse Combinatoire, vol. II, Presse Universitaire, Paris, 1970.
[3] W. Fulton, and R. MacPherson, A compactification of configuration spaces, Ann. of Math. 139 (1994), 183-225.
[4] S. Keel, Intersection theory of moduli space of stable n-pointed curves of genus zero, Trans. Amer. Math. Soc. 330 (1992), 545-574.
[5] L. M. Koganov, Inversion of a power series and a result of S. K. Lando, in Proc. VIth Int. Conf. on Discr. Models in Control Systems Theory, Moscow, MSU, 2004, pp. 170-172.
[6] M. Kontsevich, and Yu. Manin, Quantum cohomology of a product (with Appendix by R. Kaufmann), Inv. Math. 124 (1996), 313-339.
[7] Yu. I. Manin, Frobenius Manifolds, Quantum Cohomology, and Moduli Spaces, AMS Colloquium Publications, 47, American Mathematical Society, Providence, Rhode Island, 1999.
[8] M. A. Readdy, The pre-WDVV ring of physics and its topology, preprint, 2002. Available at http://www.ms.uky.edu/readdy/Papers/pre_WDVV.pdf.
[9] J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1967.

2000 Mathematics Subject Classification: Primary 11Y55.
Keywords: cohomology rings of the moduli space, exponential generating functions, recurrences.
(Concerned with sequence A074059.)

Received July 15 2005; revised version received October 12 2005. Published in Journal of Integer Sequences, October 122005.

Return to Journal of Integer Sequences home page.

[^0]: ${ }^{1}$ Supported by a Discovery Grant from NSERC
 ${ }^{2}$ Partly supported by ISF Grant 533-03
 ${ }^{3}$ Supported by a grant from the Gil'adi Foundation of the Israeli Ministry of Absorption

