

Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.8

Kaprekar Triples

Douglas E. Iannucci and Bertrum Foster University of the Virgin Islands 2 John Brewers Bay St. Thomas, VI 00802 USA diannuc@uvi.edu bfosterk@yahoo.com

Abstract

We say that 45 is a Kaprekar triple because $45^3 = 91125$ and 9 + 11 + 25 = 45. We find a necessary condition for the existence of Kaprekar triples which makes it quite easy to search for them. We also investigate some Kaprekar triples of special forms.

1 Introduction

Kaprekar triples (sequence A006887, Sloan [5]) are numbers with a property which is easily demonstrated by example. Observe that

$8^3 = 512,$	5 + 1 + 2 = 8,
$45^3 = 91125,$	9 + 11 + 25 = 45,
$297^3 = 26198073,$	26 + 198 + 073 = 297,
$4949^3 = 121213882349,$	1212 + 1388 + 2349 = 4949,
$44443^3 = 87782935806307,$	8778 + 29358 + 06307 = 44443,
$565137^3 = 180493358291026353,$	180493 + 358291 + 026353 = 565137.

Therefore 8, 45, 297, 4949, 44443, and 565137 are all examples of Kaprekar triples. Kaprekar triples generalize the Kaprekar numbers (sequence A006886, Sloan [5]), which were introduced by Kaprekar [4], discussed by Charosh[2], and completely characterized by Iannucci [3]. Kaprekar triples are mentioned in Wells's *Dictionary of Curious and Interesting Numbers* [6].

Formally, an *n*-Kaprekar triple k (where n is a natural number) satisfies the pair of equations

$$k^{3} = p \cdot 10^{2n} + q \cdot 10^{n} + r ,$$

$$k = p + q + r ,$$

where $0 \le r < 10^n$, $0 \le q < 10^n$, and p > 0 are integers. As the 3-Kaprekar triple 297 shows, p may have fewer than n digits, and so may q or r (note the leading zero in r = 073). The stipulation that p > 0 precludes many otherwise trivial examples such as

$$100^3 = 0 \cdot 10^8 + 100 \cdot 10^4 + 0,$$

$$100 = 0 + 100 + 0,$$

i.e., 100 as a 4-Kaprekar triple. Having p > 0 also precludes 1 as a Kaprekar triple, in spite of its inclusion in sequence A006887 by Sloan [5].

2 The Set $\mathcal{K}(N)$

Let N be a natural number such that $N \not\equiv 1 \pmod{4}$. We define the set $\mathcal{K}(N)$ of positive integers as follows: We say $k \in \mathcal{K}(N)$ if there exist nonnegative integers r < N, q < N, and a positive integer p, such that

$$k^3 = pN^2 + qN + r \tag{1}$$

and such that

$$k = p + q + r \,. \tag{2}$$

Although N satisfies (1) and (2) (with p = N, q = r = 0), we nonetheless disallow N as an element of $\mathcal{K}(N)$. Therefore, it follows that k < N if $k \in \mathcal{K}(N)$. For, subtracting (2) from (1) yields

$$k(k-1)(k+1) = (N-1)(p(N+1)+q), \qquad (3)$$

so that k > N implies

k

Since q/(k+1) < 1, we have $k \le p$. Since k < p contradicts (2), we have k = p, but this implies q = r = 0 and hence k = N by (1). Contradiction. Therefore k < N if $k \in \mathcal{K}(N)$.

Suppose $k \in \mathcal{K}(N)$. Then (3) implies $N - 1 \mid k(k - 1)(k + 1)$. Because $N \not\equiv 1 \pmod{4}$, there exist pairwise relatively prime integers d, d_1 , and d_2 such that

$$N - 1 = dd_1d_2, \qquad d \mid k, \qquad d_1 \mid k - 1, \qquad d_2 \mid k + 1.$$
(4)

Since $d \mid k$ we write

$$k = dm$$

for a positive integer m. Then $d_1 \mid dm - 1$ and $d_2 \mid dm + 1$ and so we have

$$dm \equiv 1 \pmod{d_1}, \qquad dm \equiv -1 \pmod{d_2}.$$
 (5)

Let

$$\xi_1 \equiv d^{-1} \pmod{d_1}, \qquad \xi_2 \equiv d^{-1} \pmod{d_2}, \mu_1 \equiv d_1^{-1} \pmod{d_2}, \qquad \mu_2 \equiv d_2^{-1} \pmod{d_1}.$$

Then we have

$$m \equiv \xi_1 \pmod{d_1}, \qquad m \equiv -\xi_2 \pmod{d_2},$$

so that by the Chinese remainder theorem we have

$$m \equiv \xi_1 \mu_2 d_2 - \xi_2 \mu_1 d_1 \pmod{d_1 d_2}.$$
 (6)

Moreover, m is the least positive residue such that (6) is satisfied; this is because $dm = k < N = dd_1d_2 + 1$ and thus $m \leq d_1d_2$.

For a positive integer n, we call d a unitary divisor of n if $d \mid n$ and $(d, \frac{n}{d}) = 1$. In this case we write $d \mid n$. We have shown

Theorem 1 If $N \not\equiv 1 \pmod{4}$, then every element $k \in \mathcal{K}(N)$ is divisible by a unitary divisor d of N-1. If we write k = dm, then m satisfies (4) for some pair d_1 , d_2 , of unitary divisors of N-1 such that $d_1d_2 = (N-1)/d$.

If $N \not\equiv 1 \pmod{4}$, then Theorem 1 gives a necessary condition for finding elements k of $\mathcal{K}(N)$, and hence it may be applied to find an upper bound for $|\mathcal{K}(N)|$, the number of elements in $\mathcal{K}(N)$. For, if N-1 has the unique prime factorization given by $N-1 = \prod_{i=1}^{t} p_i^{a_i}$, then we call the prime powers $p_i^{a_i}$ the *components* of N-1. Then d||N-1 if and only if d is a product of components of N-1 (including the empty product 1). We refer to t, the number of components of N-1, as $\omega(N-1)$. Thus by Theorem 1, if $N \not\equiv 1 \pmod{4}$ then

$$|\mathcal{K}(N)| \le 3^{\omega(N-1)} \,. \tag{7}$$

It is possible to define $\mathcal{K}(N)$ when $N \equiv 1 \pmod{4}$. In this case, the factors d, d_1 , and d_2 in (4) will be pairwise relatively prime if and only if d is even. If this is so, we may proceed exactly as above, so that (7) is still true.

Otherwise d is odd. Since $2^{\nu} || N - 1$ for some $\nu \geq 2$, we have either $2 || d_1, 2^{\nu-1} || d_2$, or, $2^{\nu-1} || d_1, 2 || d_2$. Note that these two cases are identical when $2^2 || N - 1$. In either case, the equations (5) still hold, and since $(d, d_1) = (d, d_2) = 1$, we see that m may be determined uniquely modulo $[d_1, d_2]$. Here, d || N - 1, and d_1 and d_2 are each some power of 2 multiplied by an odd unitary divisor of N - 1. Thus (7) still holds in the case when $N \equiv 1 \pmod{4}$.

3 Kaprekar Triples

In the notation of the previous section, we refer to the set $\bigcup_{n=1}^{\infty} \mathcal{K}(10^n)$ as the set of Kaprekar triples. If we prefer, we may refer to the set $\mathcal{K}(10^n)$, for fixed n, as the set of n-Kaprekar triples. To illustrate Theorem 1, consider the set of 6-Kaprekar triples, and note the factorization

$$10^6 - 1 = 3^3 \cdot 7 \cdot 11 \cdot 13 \cdot 37.$$

We may take d = 27, $d_1 = 259$, and $d_2 = 143$. Then

 $\xi_1 = 48$, $\xi_2 = 53$, $\mu_1 = 90$, $\mu_2 = 96$,

giving

$$m \equiv 143 \cdot 96 \cdot 48 - 259 \cdot 90 \cdot 53 \equiv 20931 \pmod{37037}$$
.

Therefore

$$m = 20931$$
, $d = 27$, $k = 20931 \cdot 27 = 565137$.

Since

$$565137^3 = 180493358291026353,$$

$$565137 = 180493 + 358291 + 026353,$$

we have $565137 \in \mathcal{K}(10^6)$. To show that the conditions in Theorem 1 are not sufficient, consider d = 297, $d_1 = 37$, and $d_2 = 91$. Here,

 $\xi_1 = 1$, $\xi_2 = 19$, $\mu_1 = 32$, $\mu_2 = 24$,

giving

 $m \equiv 3257$, d = 297, k = 967329.

However,

$$967329^3 = 905154309885752289 \,,$$

but

$$905154 + 309885 + 752289 = 1967328$$

and so $967329 \notin \mathcal{K}(10^6)$. Note that $1967328 = 967329 + (10^6 - 1)$. Experimentally, we have seen that roughly one fourth of the $3^{\omega(N-1)}$ possible triples (d, d_1, d_2) of unitary divisors of N-1 produce an element $k \in \mathcal{K}(N)$ when Theorem 1 is applied. The other three fourths produce k such that when p, q, and r in (1) are obtained we get

$$p + q + r = k + (N - 1)$$

instead of (2). Generally, the larger the value of $\omega(N-1)$, the closer to 1:3 the ratio of elements of $\mathcal{K}(N)$ to non-elements becomes.

We provide some data for $N = 10^n$, for various values of n, where "ratio" refers to the ratio $|\mathcal{K}(10^n - 1)|/3^{\omega(10^n - 1)}$:

n	$3^{\omega(10^n-1)}$	$ \mathcal{K}(10^n) $	ratio
5	27	5	0.185185
6	243	37	0.152263
7	27	8	0.296296
10	243	64	0.263374
12	2187	527	0.240969
15	729	195	0.267490
19	9	1	0.111111
20	6561	1649	0.251334
21	2187	538	0.245999
23	9	1	0.111111
24	59049	14702	0.248980
30	1594323	398838	0.250161
42	4782969	1196902	0.250242
64	43046721	10759839	0.249957
80	14348907	3587901	0.250047

4 Applications

It is a simple matter to search for Kaprekar triples by applying Theorem 1. To do so, one only needs the factorizations of $10^n - 1$ for $n \ge 1$, which are easily available (for example see Brillhart et al. [1]).

In this section we will discuss Kaprekar triples of certain forms. For example, consider the set $\mathcal{K}(64M^2)$ for some positive integer M. Since

$$64M^2 - 1 = (8M - 1)(8M + 1),$$

and since 8M - 1 and 8M + 1 are relatively prime, we can apply Theorem 1 by choosing d, d_1 , and d_2 from among the unitary divisors $8M \pm 1$ and 1 of $64M^2 - 1$. If we let $d_2 = 1$, there are at least two ways to do this, one of which is to let d = 8M - 1 and $d_1 = 8M + 1$. In this case we have $\xi_1 = 4M$ and $\xi_2 = \mu_1 = \mu_2 = 1$, and thus

$$m = d_2 \mu_2 \xi_1 - d_1 \mu_1 \xi_2 = -4M - 1 \equiv 4M \pmod{8M + 1}$$

taking the least positive residue modulo 8M + 1. This gives k = dm = 4M(8M - 1). Similarly, taking d = 8M + 1 and $d_1 = 8M - 1$ gives k = 4M(8M + 1).

Thus it is possible that $4M(8M \pm 1)$ are both elements of $\mathcal{K}(64M^2)$. Indeed they are, for

$$k^{3} = 64M^{3}(8M \pm 1)^{3}$$

= 4096M⁴(8M² ± 3M) + 64M²(24M² ± M),

and,

$$(8M^2 \pm 3M) + (24M^2 \pm M) = 32M^2 \pm 4M = k.$$

Note that if $n \ge 3$ then 10^{2n} is of the form $64M^2$ with $M = 5^3 \cdot 10^{n-3}$. We have

Theorem 2 For $n \ge 3$, the integers $5 \cdot 10^{n-1}(10^n \pm 1)$ are 2n-Kaprekar triples.

For example, 499500 and 500500 are both 6-Kaprekar triples, 49995000 and 50005000 are both 8-Kaprekar triples, and so forth.

For positive integers r > 1 and $n \ge 1$, we refer to an element of $\mathcal{K}(r^n)$ as a base-r Kaprekar triple. Note that if $p \ge 3$ then 2^{2p} has the form $64M^2$ where $M = 2^{p-3}$. Hence $2^{p-1}(2^p \pm 1)$ are binary (or base-2) Kaprekar triples. Since every even perfect number has the form $2^{p-1}(2^p - 1)$ where $2^p - 1$ is prime (a fact first proved by Euler), we have

Theorem 3 Every even perfect number is a binary Kaprekar triple.

As examples, we see that

 $28^{3} = 5 \cdot 64^{2} + 23 \cdot 64, \qquad 5 + 23 = 28;$ $496^{3} = 116 \cdot 1024^{2} + 380 \cdot 1024, \qquad 116 + 380 = 496;$ $8128^{3} = 2000 \cdot 16384^{2} + 6128 \cdot 16384, \qquad 2000 + 6128 = 8128.$

We can also consider the set $\mathcal{K}(4096M^4)$ for some positive integer M. Similarly as we did above, we can show that $256M^3 + 4M$ belongs to this set. Letting $M = 5^3 \cdot 10^{n-3}$ for $n \geq 3$ gives us

Theorem 4 If $n \ge 3$ then $5 \cdot 10^{3n-1} + 5 \cdot 10^{n-1}$ is a 4n-Kaprekar triple.

Hence 500000500 is a 12-Kaprekar triple:

 $50000500^3 = 1250003750003750001250000000,$ 125 + 000375000375 + 000125000000 = 500000500.

Also, 500000005000 is a 16-Kaprekar triple, 50000000050000 is a 20-Kaprekar triple, and so forth.

5 Concluding Remarks

Theorem 2 shows that there always exists an *n*-Kaprekar triple when $n \ge 6$ is even. What about odd *n*? By (7), there are fewer such triples when $\omega(10^n - 1)$ is small. In fact, $\omega(10^n - 1) = 2$ when n = 19, 23, and 317 (see Brillhart et. al. [1]), although it is not known how long this list may be extended. The table following section 3 shows that an *n*-Kaprekar exists when n = 19 or 23. However, a simple computer search reveals that no 317-Kaprekar triples exist; thus there do not exist *n*-Kaprekar triples for every *n*.

A more general question is, are there certain forms of N for which $\mathcal{K}(N)$ is empty? For example, we can show $\mathcal{K}(N) = \emptyset$ whenever N > 8 is of the form $p^{\alpha} + 1$ for odd prime pand $\alpha \ge 1$; note that $\mathcal{K}(8)$ consists of the perfect number 6 by Theorem 3. Indeed, since $N-1=p^{\alpha}$, if $k \in \mathcal{K}(N)$ then by (4) one of three cases occur: (i) $p^{\alpha} \mid k$; (ii) $p^{\alpha} \mid k-1$; (iii) $p^{\alpha} \mid k+1$.

In case (i), as k < N we must have $k = p^{\alpha}$. But here,

$$k^{3} = (N-3)N^{2} + 2N + (N-1),$$

(N-3) + 2 + (N-1) = k + (N-1) \ne k.

In case *(ii)* we have $k \equiv 1 \pmod{p^{\alpha}}$ by (6). In case *(iii)*, $k \equiv -1 \pmod{p^{\alpha}}$ by (6), which implies $k = p^{\alpha} - 1$. But

$$k^{3} = (N-6)N^{2} + 11N + (N-8)$$
$$(N-6) + 11 + (N-8) = k + (N-1) \neq k.$$

All three cases lead to contradiction (case *(ii)* contradicts 1 < k < N).

On the other hand, there are forms of N for which $\mathcal{K}(N) \neq \emptyset$ (as we've already seen when $N = 10^{2n}$). For example, it is straightforward to check that when $N = 2^n + 1$, $n \geq 2$, we have $k = 2^{n-1} - 1 \in \mathcal{K}(N)$.

References

- [1] J. Brillhart, D. Lehmer, J. Selfridge, B. Tuckerman, and S. Wagstaff Factorizations of $b^n \pm 1$, b = 2, 3, 5, 6, 7, 10, 11, 12 Up to High Powers (3rd Ed.), Contemporary Mathematics **22**, 2001.
- M. Charosh, Some Applications of Casting Out 999...'s J.Recreational Math. 13 (1980), 111–118.
- [3] D. Iannucci, The Kaprekar Numbers, J. Integer Seq. 3 (2000), article 00.1.2.
- [4] D. Kaprekar, On Kaprekar Numbers J. Recreational Math. 13 (1980), 81–82.
- [5] N. Sloane, The On-Line Encyclopedia of Integer Sequences.
- [6] D. Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, New York, 1986.

2000 Mathematics Subject Classification: Primary 11A63; Secondary 11Y55 . Keywords: Kaprekar triples, division algorithm, Chinese remainder theorem, components, perfect numbers.

(Concerned with sequences $\underline{A006886}$ and $\underline{A006887}$.)

Received August 30 2004; revised version received October 7 2005. Published in *Journal of Integer Sequences*, October 20 2005.

Return to Journal of Integer Sequences home page.