Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.8

Kaprekar Triples

Douglas E. Iannucci and Bertrum Foster
University of the Virgin Islands
2 John Brewers Bay
St. Thomas, VI 00802
USA
diannuc@uvi.edu
bfosterk@yahoo.com

Abstract

We say that 45 is a Kaprekar triple because $45^{3}=91125$ and $9+11+25=45$. We find a necessary condition for the existence of Kaprekar triples which makes it quite easy to search for them. We also investigate some Kaprekar triples of special forms.

1 Introduction

Kaprekar triples (sequence A006887, Sloan (5) are numbers with a property which is easily demonstrated by example. Observe that

$$
\begin{aligned}
8^{3} & =512, & 5+1+2 & =8, \\
45^{3} & =91125, & 9+11+25 & =45, \\
297^{3} & =26198073, & 26+198+073 & =297, \\
4949^{3} & =121213882349, & 1212+1388+2349 & =4949, \\
44443^{3} & =87782935806307, & 8778+29358+06307 & =44443, \\
565137^{3} & =180493358291026353, & 180493+358291+026353 & =565137 .
\end{aligned}
$$

Therefore 8, 45, 297, 4949, 44443, and 565137 are all examples of Kaprekar triples. Kaprekar triples generalize the Kaprekar numbers (sequence A006886, Sloan [[]) , which were introduced by Kaprekar [17, discussed by Charosh [2], and completely characterized by Iannucci [3]. Kaprekar triples are mentioned in Wells's Dictionary of Curious and Interesting Numbers [6].

Formally, an n-Kaprekar triple k (where n is a natural number) satisfies the pair of equations

$$
\begin{aligned}
k^{3} & =p \cdot 10^{2 n}+q \cdot 10^{n}+r, \\
k & =p+q+r,
\end{aligned}
$$

where $0 \leq r<10^{n}, 0 \leq q<10^{n}$, and $p>0$ are integers. As the 3-Kaprekar triple 297 shows, p may have fewer than n digits, and so may q or r (note the leading zero in $r=073$). The stipulation that $p>0$ precludes many otherwise trivial examples such as

$$
\begin{aligned}
100^{3} & =0 \cdot 10^{8}+100 \cdot 10^{4}+0 \\
100 & =0+100+0
\end{aligned}
$$

i.e., 100 as a 4 -Kaprekar triple. Having $p>0$ also precludes 1 as a Kaprekar triple, in spite of its inclusion in sequence A006887 by Sloan [5].

2 The Set $\mathcal{K}(N)$

Let N be a natural number such that $N \not \equiv 1(\bmod 4)$. We define the set $\mathcal{K}(N)$ of positive integers as follows: We say $k \in \mathcal{K}(N)$ if there exist nonnegative integers $r<N, q<N$, and a positive integer p, such that

$$
\begin{equation*}
k^{3}=p N^{2}+q N+r \tag{1}
\end{equation*}
$$

and such that

$$
\begin{equation*}
k=p+q+r . \tag{2}
\end{equation*}
$$

Although N satisfies (1) and (2) (with $p=N, q=r=0$), we nonetheless disallow N as an element of $\mathcal{K}(N)$. Therefore, it follows that $k<N$ if $k \in \mathcal{K}(N)$. For, subtracting (2) from (1) yields

$$
\begin{equation*}
k(k-1)(k+1)=(N-1)(p(N+1)+q), \tag{3}
\end{equation*}
$$

so that $k>N$ implies

$$
k<p+\frac{q}{k+1} .
$$

Since $q /(k+1)<1$, we have $k \leq p$. Since $k<p$ contradicts (2), we have $k=p$, but this implies $q=r=0$ and hence $k=N$ by (1). Contradiction. Therefore $k<N$ if $k \in \mathcal{K}(N)$.

Suppose $k \in \mathcal{K}(N)$. Then (3) implies $N-1 \mid k(k-1)(k+1)$. Because $N \not \equiv 1(\bmod 4)$, there exist pairwise relatively prime integers d, d_{1}, and d_{2} such that

$$
\begin{equation*}
N-1=d d_{1} d_{2}, \quad d\left|k, \quad d_{1}\right| k-1, \quad d_{2} \mid k+1 . \tag{4}
\end{equation*}
$$

Since $d \mid k$ we write

$$
k=d m
$$

for a positive integer m. Then $d_{1} \mid d m-1$ and $d_{2} \mid d m+1$ and so we have

$$
\begin{equation*}
d m \equiv 1 \quad\left(\bmod d_{1}\right), \quad d m \equiv-1 \quad\left(\bmod d_{2}\right) . \tag{5}
\end{equation*}
$$

Let

$$
\left.\begin{array}{rlrl}
\xi_{1} & \equiv d^{-1} & \left(\bmod d_{1}\right), & \xi_{2}
\end{array} \equiv^{-1} \quad\left(\bmod d_{2}\right), ~ 子 d_{1}\right) ~\left(\bmod d_{2}\right), \quad \mu_{2} \equiv d_{2}^{-1} \quad\left(\bmod d_{1}\right) .
$$

Then we have

$$
m \equiv \xi_{1} \quad\left(\bmod d_{1}\right), \quad m \equiv-\xi_{2} \quad\left(\bmod d_{2}\right)
$$

so that by the Chinese remainder theorem we have

$$
\begin{equation*}
m \equiv \xi_{1} \mu_{2} d_{2}-\xi_{2} \mu_{1} d_{1} \quad\left(\bmod d_{1} d_{2}\right) \tag{6}
\end{equation*}
$$

Moreover, m is the least positive residue such that (6) is satisfied; this is because $d m=k<$ $N=d d_{1} d_{2}+1$ and thus $m \leq d_{1} d_{2}$.

For a positive integer n, we call d a unitary divisor of n if $d \mid n$ and $\left(d, \frac{n}{d}\right)=1$. In this case we write $d \| n$. We have shown

Theorem 1 If $N \not \equiv 1(\bmod 4)$, then every element $k \in \mathcal{K}(N)$ is divisible by a unitary divisor d of $N-1$. If we write $k=d m$, then m satisfies (4) for some pair d_{1}, d_{2}, of unitary divisors of $N-1$ such that $d_{1} d_{2}=(N-1) / d$.

If $N \not \equiv 1(\bmod 4)$, then Theorem 1 gives a necessary condition for finding elements k of $\mathcal{K}(N)$, and hence it may be applied to find an upper bound for $|\mathcal{K}(N)|$, the number of elements in $\mathcal{K}(N)$. For, if $N-1$ has the unique prime factorization given by $N-1=\prod_{i=1}^{t} p_{i}^{a_{i}}$, then we call the prime powers $p_{i}^{a_{i}}$ the components of $N-1$. Then $d \| N-1$ if and only if d is a product of components of $N-1$ (including the empty product 1). We refer to t, the number of components of $N-1$, as $\omega(N-1)$. Thus by Theorem 1 , if $N \not \equiv 1(\bmod 4)$ then

$$
\begin{equation*}
|\mathcal{K}(N)| \leq 3^{\omega(N-1)} . \tag{7}
\end{equation*}
$$

It is possible to define $\mathcal{K}(N)$ when $N \equiv 1(\bmod 4)$. In this case, the factors d, d_{1}, and d_{2} in (4) will be pairwise relatively prime if and only if d is even. If this is so, we may proceed exactly as above, so that (7) is still true.

Otherwise d is odd. Since $2^{\nu} \| N-1$ for some $\nu \geq 2$, we have either $2\left\|d_{1}, 2^{\nu-1}\right\| d_{2}$, or, $2^{\nu-1}\left\|d_{1}, 2\right\| d_{2}$. Note that these two cases are identical when $2^{2} \| N-1$. In either case, the equations (5) still hold, and since $\left(d, d_{1}\right)=\left(d, d_{2}\right)=1$, we see that m may be determined uniquely modulo $\left[d_{1}, d_{2}\right.$]. Here, $d \| N-1$, and d_{1} and d_{2} are each some power of 2 multiplied by an odd unitary divisor of $N-1$. Thus (7) still holds in the case when $N \equiv 1(\bmod 4)$.

3 Kaprekar Triples

In the notation of the previous section, we refer to the set $\cup_{n=1}^{\infty} \mathcal{K}\left(10^{n}\right)$ as the set of Kaprekar triples. If we prefer, we may refer to the set $\mathcal{K}\left(10^{n}\right)$, for fixed n, as the set of n-Kaprekar triples. To illustrate Theorem 1, consider the set of 6-Kaprekar triples, and note the factorization

$$
10^{6}-1=3^{3} \cdot 7 \cdot 11 \cdot 13 \cdot 37
$$

We may take $d=27, d_{1}=259$, and $d_{2}=143$. Then

$$
\xi_{1}=48, \quad \xi_{2}=53, \quad \mu_{1}=90, \quad \mu_{2}=96
$$

giving

$$
m \equiv 143 \cdot 96 \cdot 48-259 \cdot 90 \cdot 53 \equiv 20931 \quad(\bmod 37037)
$$

Therefore

$$
m=20931, \quad d=27, \quad k=20931 \cdot 27=565137 .
$$

Since

$$
\begin{aligned}
565137^{3} & =180493358291026353 \\
565137 & =180493+358291+026353
\end{aligned}
$$

we have $565137 \in \mathcal{K}\left(10^{6}\right)$. To show that the conditions in Theorem 1 are not sufficient, consider $d=297, d_{1}=37$, and $d_{2}=91$. Here,

$$
\xi_{1}=1, \quad \xi_{2}=19, \quad \mu_{1}=32, \quad \mu_{2}=24
$$

giving

$$
m \equiv 3257, \quad d=297, \quad k=967329
$$

However,

$$
967329^{3}=905154309885752289
$$

but

$$
905154+309885+752289=1967328
$$

and so $967329 \notin \mathcal{K}\left(10^{6}\right)$. Note that $1967328=967329+\left(10^{6}-1\right)$. Experimentally, we have seen that roughly one fourth of the $3^{\omega(N-1)}$ possible triples $\left(d, d_{1}, d_{2}\right)$ of unitary divisors of $N-1$ produce an element $k \in \mathcal{K}(N)$ when Theorem 1 is applied. The other three fourths produce k such that when p, q, and r in (1) are obtained we get

$$
p+q+r=k+(N-1)
$$

instead of (2). Generally, the larger the value of $\omega(N-1)$, the closer to $1: 3$ the ratio of elements of $\mathcal{K}(N)$ to non-elements becomes.

We provide some data for $N=10^{n}$, for various values of n, where "ratio" refers to the ratio $\left|\mathcal{K}\left(10^{n}-1\right)\right| / 3^{\omega\left(10^{n}-1\right)}$:

n	$3^{\omega\left(10^{n}-1\right)}$	$\left\|\mathcal{K}\left(10^{n}\right)\right\|$	ratio
5	27	5	0.185185
6	243	37	0.152263
7	27	8	0.296296
10	243	64	0.263374
12	2187	527	0.240969
15	729	195	0.267490
19	9	1	0.111111
20	6561	1649	0.251334
21	2187	538	0.245999
23	9	1	0.111111
24	59049	14702	0.248980
30	1594323	398838	0.250161
42	4782969	1196902	0.250242
64	43046721	10759839	0.249957
80	14348907	3587901	0.250047

4 Applications

It is a simple matter to search for Kaprekar triples by applying Theorem 1. To do so, one only needs the factorizations of $10^{n}-1$ for $n \geq 1$, which are easily available (for example see Brillhart et al. [1]).

In this section we will discuss Kaprekar triples of certain forms. For example, consider the set $\mathcal{K}\left(64 M^{2}\right)$ for some positive integer M. Since

$$
64 M^{2}-1=(8 M-1)(8 M+1)
$$

and since $8 M-1$ and $8 M+1$ are relatively prime, we can apply Theorem 1 by choosing d, d_{1}, and d_{2} from among the unitary divisors $8 M \pm 1$ and 1 of $64 M^{2}-1$. If we let $d_{2}=1$, there are at least two ways to do this, one of which is to let $d=8 M-1$ and $d_{1}=8 M+1$. In this case we have $\xi_{1}=4 M$ and $\xi_{2}=\mu_{1}=\mu_{2}=1$, and thus

$$
m=d_{2} \mu_{2} \xi_{1}-d_{1} \mu_{1} \xi_{2}=-4 M-1 \equiv 4 M \quad(\bmod 8 M+1)
$$

taking the least positive residue modulo $8 M+1$. This gives $k=d m=4 M(8 M-1)$. Similarly, taking $d=8 M+1$ and $d_{1}=8 M-1$ gives $k=4 M(8 M+1)$.

Thus it is possible that $4 M(8 M \pm 1)$ are both elements of $\mathcal{K}\left(64 M^{2}\right)$. Indeed they are, for

$$
\begin{aligned}
k^{3} & =64 M^{3}(8 M \pm 1)^{3} \\
& =4096 M^{4}\left(8 M^{2} \pm 3 M\right)+64 M^{2}\left(24 M^{2} \pm M\right)
\end{aligned}
$$

and,

$$
\left(8 M^{2} \pm 3 M\right)+\left(24 M^{2} \pm M\right)=32 M^{2} \pm 4 M=k
$$

Note that if $n \geq 3$ then $10^{2 n}$ is of the form $64 M^{2}$ with $M=5^{3} \cdot 10^{n-3}$. We have
Theorem 2 For $n \geq 3$, the integers $5 \cdot 10^{n-1}\left(10^{n} \pm 1\right)$ are $2 n$-Kaprekar triples.

For example, 499500 and 500500 are both 6-Kaprekar triples, 49995000 and 50005000 are both 8-Kaprekar triples, and so forth.

For positive integers $r>1$ and $n \geq 1$, we refer to an element of $\mathcal{K}\left(r^{n}\right)$ as a base- r Kaprekar triple. Note that if $p \geq 3$ then $2^{2 p}$ has the form $64 M^{2}$ where $M=2^{p-3}$. Hence $2^{p-1}\left(2^{p} \pm 1\right)$ are binary (or base-2) Kaprekar triples. Since every even perfect number has the form $2^{p-1}\left(2^{p}-1\right)$ where $2^{p}-1$ is prime (a fact first proved by Euler), we have

Theorem 3 Every even perfect number is a binary Kaprekar triple.
As examples, we see that

$$
\begin{aligned}
28^{3} & =5 \cdot 64^{2}+23 \cdot 64, & 5+23 & =28 ; \\
496^{3} & =116 \cdot 1024^{2}+380 \cdot 1024, & 116+380 & =496 \\
8128^{3} & =2000 \cdot 16384^{2}+6128 \cdot 16384, & 2000+6128 & =8128
\end{aligned}
$$

We can also consider the set $\mathcal{K}\left(4096 M^{4}\right)$ for some positive integer M. Similarly as we did above, we can show that $256 M^{3}+4 M$ belongs to this set. Letting $M=5^{3} \cdot 10^{n-3}$ for $n \geq 3$ gives us

Theorem 4 If $n \geq 3$ then $5 \cdot 10^{3 n-1}+5 \cdot 10^{n-1}$ is a $4 n$-Kaprekar triple.
Hence 500000500 is a 12 -Kaprekar triple:

$$
\begin{aligned}
500000500^{3} & =1250003750003750001250000000 \\
125+000375000375+000125000000 & =500000500
\end{aligned}
$$

Also, 500000005000 is a 16 -Kaprekar triple, 500000000050000 is a 20 -Kaprekar triple, and so forth.

5 Concluding Remarks

Theorem 2 shows that there always exists an n-Kaprekar triple when $n \geq 6$ is even. What about odd n ? By (7), there are fewer such triples when $\omega\left(10^{n}-1\right)$ is small. In fact, $\omega\left(10^{n}-1\right)=2$ when $n=19,23$, and 317 (see Brillhart et. al. [1]), although it is not known how long this list may be extended. The table following section 3 shows that an n-Kaprekar exists when $n=19$ or 23 . However, a simple computer search reveals that no 317 -Kaprekar triples exist; thus there do not exist n-Kaprekar triples for every n.

A more general question is, are there certain forms of N for which $\mathcal{K}(N)$ is empty? For example, we can show $\mathcal{K}(N)=\emptyset$ whenever $N>8$ is of the form $p^{\alpha}+1$ for odd prime p and $\alpha \geq 1$; note that $\mathcal{K}(8)$ consists of the perfect number 6 by Theorem 3. Indeed, since $N-1=p^{\alpha}$, if $k \in \mathcal{K}(N)$ then by (4) one of three cases occur: (i) $p^{\alpha} \mid k$; (ii) $p^{\alpha} \mid k-1$; (iii) $p^{\alpha} \mid k+1$.

In case (i), as $k<N$ we must have $k=p^{\alpha}$. But here,

$$
\begin{aligned}
k^{3} & =(N-3) N^{2}+2 N+(N-1), \\
(N-3)+2+(N-1) & =k+(N-1) \neq k
\end{aligned}
$$

In case (ii) we have $k \equiv 1\left(\bmod p^{\alpha}\right)$ by (6).
In case (iii), $k \equiv-1\left(\bmod p^{\alpha}\right)$ by (6), which implies $k=p^{\alpha}-1$. But

$$
\begin{aligned}
k^{3} & =(N-6) N^{2}+11 N+(N-8), \\
(N-6)+11+(N-8) & =k+(N-1) \neq k
\end{aligned}
$$

All three cases lead to contradiction (case (ii) contradicts $1<k<N$).
On the other hand, there are forms of N for which $\mathcal{K}(N) \neq \emptyset$ (as we've already seen when $\left.N=10^{2 n}\right)$. For example, it is straightforward to check that when $N=2^{n}+1, n \geq 2$, we have $k=2^{n-1}-1 \in \mathcal{K}(N)$.

References

[1] J. Brillhart, D. Lehmer, J. Selfridge, B. Tuckerman, and S. Wagstaff Factorizations of $b^{n} \pm 1, b=2,3,5,6,7,10,11,12$ Up to High Powers (3rd Ed.), Contemporary Mathematics 22, 2001.
[2] M. Charosh, Some Applications of Casting Out 999...'s J.Recreational Math. 13 (1980), 111-118.
[3] D. Iannucci, The Kaprekar Numbers, J. Integer Seq. 3 (2000), article 00.1.2.
[4] D. Kaprekar, On Kaprekar Numbers J. Recreational Math. 13 (1980), 81-82.
[5] N. Sloane, The On-Line Encyclopedia of Integer Sequences.
[6] D. Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, New York, 1986.

2000 Mathematics Subject Classification: Primary 11A63; Secondary 11Y55 .
Keywords: Kaprekar triples, division algorithm, Chinese remainder theorem, components, perfect numbers.
(Concerned with sequences A006886 and A006887.)

Received August 30 2004; revised version received October 7 2005. Published in Journal of Integer Sequences, October 202005.

Return to Journal of Integer Sequences home pagd.

