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Abstract

We study sequences of definite integrals. Some of them provide closed forms in-
volving factorials and/or double factorials. Other examples are associated with either
sequences or pairs of sequences of rational numbers, for which summations are found.

1 Introduction.

The study of sequences of either definite or improper integrals has connections with various
fields, such as combinatorics (see [6], [2]), infinite series (see [4]), and others. In this paper, we
study sequences of integrals, depending mostly on one parameter, sometimes on two param-
eters. The method generally used is a telescopic method (see [5, p. 579]); when a recurrence
relation based on multiplication by a homographic function exists, the implementation of
the method is easy. Otherwise it can be very hard, sometimes impossible.
In Section 2, improper integrals depending either on one or two parameters (that are

non-negative integers) are considered, where the integrand involves a logarithm. In these
examples, various situations are described (different roles and influences of the parameters,
existence or non-existence of a closed expression for the general term of the sequence, etc.).
In Section 3, three sequences of integrals are studied; the main one is the sum of a

sequence of rational numbers and a sequence of rational multiples of
√
3. Then formulas for

related integrals are derived.
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2 Logarithmic integrals with a parameter.

For every natural number n, we define the improper integral

In =

∫ 1

0

x (lnx)n dx. (1)

As
lim
x→0+

xp (lnx)q = 0

holds for any two positive integers p and q, we can work with In as if it is a definite integral,
i.e., by writing “ordinary” expressions for the integrals and not writing limits for λ arbitrarily
close to 0 of

∫ 1

λ
x (lnx)n dx.

We take u(x) = (lnx)n and v(x) = x2/2 in order to perform an integration by parts; we
have

In =

[
1

2
x2 (lnx)n

]1

0

− n

2

∫ 1

0

x (lnx)n−1 dx,

thus,

In = −
n

2
In−1. (2)

By telescoping, we have

In = −
n

2
In−1 =

(

−n
2

)(

−n− 1
2

)

In−2 = · · · = (−1)n
n!

2n
I0.

A straightforward computation provides I0 = 1/2, and we have proved the following propo-
sition:

Proposition 2.1 For any natural number n,

∫ 1

0

x (lnx)n dx = (−1)n n!

2n+1
.

Note that the sequence whose general term is (−1)n 2n+1In provides an integral repre-
sentation of factorials.
Now consider the sequence of integrals defined by

In =

∫ 1

0

x (lnx)n+1/2 dx. (3)

The natural logarithm is a negative function over the interval (0, 1), thus the value of this
integral, if it exists, is a pure imaginary complex number. Actually, the square root function
is a multi-valued function with two branches. Each branch is analytic, thus an integral of
the form ∫ 1

ε

x (lnx)n+1/2 dx where ε 6= 0,
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is path-independent (in fact, as x is a positive real number, lnx < 0 and the involved path
can be a segment on the y−axis), when computed along a path which does not intersect the
standard branch cut (see [10]). Moreover, for any non-negative integer n, we have

lim
x→0+

x (lnx)n+1/2 = 0.

Therefore the given integral In is well-defined (we use a method as in [10, p. 362]).
In a manner similar to the method used above, we obtain the following recurrence relation:

In = −
1

2

(

n+
1

2

)

In−1 = −
2n+ 1

4
In−1. (4)

We need now to compute the first integral of the sequence:

I0 =

∫ 1

0

x (lnx)1/2 dx =
i
√
2π

8
.

We recall the definition of the double factorial of an odd number (see Sloane’s sequence
A001147 and [9]):

∀n ∈ N, (2n− 1)!! = 1 · 3 · 5 · · · · · (2n− 1),
and for an even number

∀n ∈ N, (2n)!! = 2 · 4 · 6 · · · · · (2n).

Therefore the following formula holds:

Proposition 2.2 For any natural number n:

∫ 1

0

x (ln x)n+1/2 dx =
(−1)n n!!
22n+3

i
√
2π.

Now let p and q be non-negative integers. We define

Ip,q =

∫ 1

0

xp (lnx)q dx. (5)

We take u(x) = (lnx)q and v(x) = xp+1/(p+ 1) in order to perform an integration by parts
and get

Ip,q =

[
1

p+ 1
xp+1 (lnx)q

]1

0
︸ ︷︷ ︸

=0

− q

p+ 1

∫ 1

0

1

x
· xp+1 (ln x)q−1 dx,

i.e.,

Ip,q = −
q

p+ 1
Ip,q−1. (6)
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Now we have

Ip,q = −
q

p+ 1
Ip,q−1

=

(

− q

p+ 1

) (

− q − 1
p+ 1

)

Ip,q−2

=

(

− q

p+ 1

) (

− q − 1
p+ 1

) (

− q − 2
p+ 1

)

Ip,q−3

= . . .

As Ip,0 = 1/(p+ 1), we have finally

Proposition 2.3 For any pair (p, q) of natural numbers,

∫ 1

0

xp (lnx)q dx =
(−1)q q!
(p+ 1)q+1

.

This example of a parametric integral depending on two parameters that are non-negative
integers, together with another integral described in [3], shows the great difference between
the influences of the parameters: the whole computation is concentrated on one parameter
only, and the other one is “passive”. Nevertheless, the final result is depends on both
parameters.

Remark 2.1 Equation (2.3) is equivalent to

q! = (−1)q (p+ 1)q+1

∫ 1

0

xp (lnx)q dx.

This integral form for a factorial is surprising, as it contains a parameter without influence.

In the examples studied above, the reason for the computation of a closed form to be so
easy lies in the fact that, when performing the integration by parts, the integrated part of
the result is equal to 0. This provides a recurrence relation for the sequence (In) of the form

In = f(n) In−1, (7)

where f is a homographic function of n with integer coefficients. Other examples of this
kind have been studied in [4, 1, 3]. When this situation does not occur, computations can
be more complicated, as the next example shows.
For every natural number n, we define the integral

In =

∫ e

1

x (lnx)n dx. (8)

We have

I0 =

∫ e

1

x dx =

[
1

2
x2

]e

1

=
1

2
(e2 − 1).
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Choosing as above u(x) = (lnx)n and v(x) = x2/2, an integration by parts yields

In =

[
1

2
x2 (lnx)n

]e

1

− n

2

∫ e

1

x (lnx)n−1 dx

and leads to the following recurrence relation:

In =
1

2
e2 − n

2
In−1. (9)

The presence of a non-zero integrated term makes the work harder than in previous
examples. We have

In =
1

2
e2 − n

2

(
1

2
e2 − n− 1

2
In−2

)

=
1

2
e2

(

1− n

2

)

+
n(n− 1)
4

In−2

=
1

2
e2

(

1− n

2

)

+
n(n− 1)
4

(
1

2
e2 − n− 2

2
In−3

)

=
1

2
e2

(

1− n

2
+
n(n− 1)
4

)

− n(n− 1)(n− 2)
8

In−3

= . . .

=
1

2
e2

(

1− n

2
+
n(n− 1)
4

+ · · ·+ (−1)n−1 n!

2n−1

)

+
(−1)n n!
2n

I0

=
1

2
e2

(

1− n

2
+
n(n− 1)
22

− n(n− 1)(n− 2)
23

+ · · ·+ (−1)n−1 n!

2n−1
+ (−1)n n!

2n

)

+ (−1)n+1 n!

2n+1
.

Recall that for any two non-negative integers n and k such that 0 ≤ k ≤ n,

Ak
n =

n!

(n− k)!

(Ak
n is the number of arrangements without repetition of n elements by k). Hence, the

following holds:

Proposition 2.4

∫ e

1

x (lnx)n dx =
1

2
e2

n∑

k=0

(−1)k Ak
n

2k
+ (−1)n+1 n!

2n+1
.
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3 Three related parametric rational integrals

For n a positive integer, we define the integrals

In =

∫ 1

0

1

(x2 + x+ 1)n
dx, (10)

Jn =

∫ 1

0

x

(x2 + x+ 1)n
dx, (11)

Kn =

∫ 1

0

x2

(x2 + x+ 1)n
dx. (12)

3.1 First integral: complete computations

As in the previous examples, we wish to find a recurrence relation for the sequence (In), then
a closed form for the general term, if possible. We perform an integration by parts; let

u(x) =
1

(x2 + x+ 1)n
and v(x) = x,

whence

u′(x) =
−n(2x+ 1)

(x2 + x+ 1)n+1
and v′(x) = 1.

It follows that

In =

[
x

(x2 + x+ 1)n

]1

0

+ n

∫ 1

0

x(2x+ 1)

(x2 + x+ 1)n+1
dx

=
1

3n
+ n

∫ 1

0

x(2x+ 1)

(x2 + x+ 1)n+1
dx

︸ ︷︷ ︸

=Tn

.

In order to compute Kn, we decompose the integrand into partial fractions:

∀x ∈ R,
x(2x+ 1)

(x2 + x+ 1)n+1
= − x

(x2 + x+ 1)n+1
− 2

(x2 + x+ 1)n+1
+

2

(x2 + x+ 1)n

= −1
2
· 2x+ 1

(x2 + x+ 1)n+1
− 3
2
· 1

(x2 + x+ 1)n+1
+

2

(x2 + x+ 1)n
.

Thus,

Tn = −
1

2

[

− 1
n
· 1

(x2 + x+ 1)n

]1

0

− 3
2
In+1 + 2 In

=
1

2n

(
1

3n
− 1

)

− 3
2
In+1 + 2In.

By re-arranging the terms, we obtain the following relation of recurrence:

In+1 =
1

3n

(
1

3n−1
− 1

)

+
2(2n− 1)
3n

In. (13)
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We first compute the integral I1:

I1 =

∫ 1

0

1

x2 + x+ 1
dx =

∫ 1

0

1
(
x+ 1

2

)2
+ 3

4

dx =

∫ 1

0

1

3

4

[
4

3

(
x+ 1

2

)2
+ 1

] dx.

Using the substitution t = (2/
√
3)(x+ 1/2), we obtain:

I1 =
2√
3

∫ √
3

1/
√

3

1

t2 + 1
dt =

2√
3

(

arctan
√
3− arctan 1√

3

)

=
π
√
3

9
. (14)

From Equations (13) and (14) follows that In is given by a relation of the form

In = an + bnπ
√
3 (15)

where an and bn are rational numbers. We study separately the sequences (an) and (bn).
Consider bn first:

bn+1 =
2(2n− 1)
3n

bn =
2

3
· 2n− 1

n
bn

=

(
2

3

)2

· 2n− 1
n

· 2n− 3
n− 1 bn−1

=

(
2

3

)3

· 2n− 1
n

· 2n− 3
n− 1 · 2n− 5

n− 2 bn−2

= . . .

=

(
2

3

)n

· (2n− 1)(2n− 3)(2n− 5) . . . 3 · 1
n(n− 1)(n− 2) . . . 2 · 1 b1.

Inserting suitable factors into the numerator, and dividing out by the same factors, we obtain
a closed factorial form for bn+1:

bn+1 =

(
2

3

)n

· (2n)!

2n · (n!)2 b1 =
1

3n
· (2n)!
(n!)2

b1 =
1

3n+2
· (2n)!
(n!)2

. (16)

Note that
(2n)!

(n!)2
=

(
2n
n

)

.

The interested reader will find concrete occurences of these numbers (special paths in graphs,
etc.) in Sloane’s encylopedia, sequence A000984.
Another representation can be given for the sequence (bn), using the double factorial (see

Sloane’s encyclopedia, A001147 and [9]). We have

∀n ∈ N, bn =
2n−1

3n+1
· (2n− 3)!!
(n− 1)! . (17)
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A closed form for an is harder to derive. From Equation (13), we derive the following
recurrence relation for an:

an+1 =
1

3n

(
1

3n−1
− 1

)

+
2(2n− 1)
3n

an. (18)

By Equation (14), a1 = 0, whence the sequence (an) is well defined by the above relation.
Let’s now use a telescopic process:

an+1 =
1

3n

(
1

3n−1
− 1

)

+
2(2n− 1)
3n

an

=
1

3n

(
1

3n−1
− 1

)

+
2(2n− 1)
3n

[
1

3(n− 1)

(
1

3n−2
− 1

)

+
2(2n− 3)
3(n− 1) an−1

]

=
1

3n

(
1

3n−1
− 1

)

+
2

32
(2n− 1)
n(n− 1)

(
1

3n−2
− 1

)

+

(
2

3

)2
(2n− 1)(2n− 3)

n(n− 1) an−1

=
1

3n

(
1

3n−1
− 1

)

+
2

32
(2n− 1)
n(n− 1)

(
1

3n−2
− 1

)

+

(
2

3

)2
(2n− 1)(2n− 3)

n(n− 1)

[
1

3(n− 2)

(
1

3n−3
− 1

)

+
2(2n− 5)
3(n− 2) an−2

]

= . . . .

Iterations are needed until a2 is reached, because a2 = a1 = 0. Finally, the following formula
is derived:

an+1 =
1

3n

(
1

3n−1
− 1

)

+
n−2∑

k=2

2k−1 (3−n − 3−k) (2n− 1)(2n− 3) . . . (2n− 2k + 3)
n(n− 1)(n− 2) . . . (n− k + 1)

.

The rational fraction on the right can be turned into a closed factorial formula. Shifting the
index n+ 1 to n, we obtain

an =
1

3(n− 1)

(
1

3n−2
− 1

)

+
1

2

n−3∑

k=2

(3−n+1 − 3−k) (2(n− 1))!
(2n− 2k − 1)!

(
(n− k − 1)!
(n− 1)!

)2

. (19)

A formula involving double factorials looks a little more compact (see Sloane’s sequence
A001147 and [9]):

an =
1

3(n− 1)

(
1

3n−2
− 1

)

+
1

2

n−3∑

k=2

2k (3−n+1 − 3−k) (2n− 3)!! (n− k − 1)!
(2n− 2k − 1)!! (n− 1)! . (20)

In conclusion, we have

Proposition 3.1 For any non-negative integer n,

∫ 1

0

dx

(x2 + x+ 1)n
= an + bn π

√
3,

8

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A001147


with

an =
1

3(n− 1)

(
1

3n−2
− 1

)

+
1

2

n−3∑

k=2

2k (3−n+1 − 3−k) (2n− 3)!! (n− k − 1)!
(2n− 2k − 1)!! (n− 1)!

and

bn =
2n−1

3n+ 1
· (2n− 3)!!
(n− 1)! .

3.2 Extensions

From the results above, the two related parametric integrals Jn and Kn can be computed:
We have

In + 2Jn =

∫ 1

0

1 + 2x

(x2 + x+ 1)n
dx

=
1

1− n

[
1

(x2 + x+ 1)n+1

]1

0

=
1

1− n

(
1

3n−1
− 1

)

,

i.e.,

Jn =
1

2(1− n)

(
1

3n−1
− 1

)

− 1
2
In. (21)

An expression of Jn as a function of n is obtained by substitution.
A closed form for Kn is obtained by substitution, according to the following remark:

In + Jn +Kn =

∫ 1

0

1 + x+ x2

(x2 + x+ 1)n
dx =

∫ 1

0

1

(x2 + x+ 1)n−1
dx = In−1. (22)
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