Let
n>2 be a positive integer and let
![$\phi$](img1.gif)
denote Euler's totient function. Define
![$\phi^1(n)=\phi(n)$](img2.gif)
and
![$\phi^k(n)=\phi(\phi^{k-1}(n))$](img3.gif)
for all integers
![$k\ge2$](img4.gif)
.
Define the arithmetic function
S by
![$S(n)=\phi(n)+\phi^2(n)+\cdots+\phi^c(n)+1$](img5.gif)
,
where
![$\phi^c(n)=2$](img6.gif)
.
We say
n is a perfect totient number if
S(
n)=
n.
We give a list of known perfect totient numbers,
and we give sufficient conditions for the existence of
further perfect totient numbers.