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Abstract. Let L(n, k) = n
n−k

(

n−k
k

)

. We prove that all the zeros of the polynomial Ln(x) =
∑

k≥0

L(n, k)xk are real. The sequence L(n, k) is thus strictly log-concave, and hence unimodal

with at most two consecutive maxima. We determine those integers where the maximum is
reached. In the last section we prove that L(n, k) satisfies a central limit theorem as well as
a local limit theorem.

1. Introduction

A positive real sequence (ak)
n
k=0 is said to be unimodal if there exist integers k0, k1, 0 ≤

k0 ≤ k1 ≤ n such that

a0 ≤ a1 ≤ · · · ≤ ak0
= ak0+1 = · · · = ak1

≥ ak1+1 ≥ · · · ≥ an.

The integers l, k0 ≤ l ≤ k1 are called the modes of the sequence. If k0 < k1 then (ak)
n
k=0 is

said to have a plateau of k1 − k0 + 1 elements; if k0 = k1 then it is said to have a peak. A
real sequence is said to be logarithmically concave (log-concave for short) if

a2
k ≥ ak−1ak+1, 1 ≤ k ≤ n− 1 (1)

If the inequalities in (1) are strict, then (ak)
n
k=0 is said to be strictly log-concave (SLC for

short). A sequence is said to be have no internal zeros if i < j , ai 6= 0 and aj 6= 0, then
ak 6= 0 for i ≤ k ≤ j. A log-concave sequence with no internal zeros is obviously unimodal,
and if it is SLC, then it has at most two consecutive modes. The following result is sometimes
useful in proving log-concavity. For a proof of this theorem, see Hardy and Littlewood [5].

Theorem 1. (I. Newton) Let (ak)
n
k=0 be a real sequence. Assume that the polynomial P (x) =

n
∑

k=0

akx
k has only real zeros. Then

a2
k ≥

n− k + 1

n− k
· k + 1

k
ak+1ak−1, 1 ≤ k ≤ n− 1. (2)

1
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If the sequence (ak)
n
k=0 is positive and satisfies the hypothesis of the previous theorem,

then it is SLC. The two possible values of the modes are given by the next theorem.

Theorem 2. Let (ak)
n
k=0 be a real sequence satisfying the hypothesis of the previous theorem.

Then every mode of the sequence (ak)
n
k=0 satisfies













n
∑

k=1

kak

n
∑

k=0

ak













≤ k0 ≤













n
∑

k=0

kak

n
∑

k=0

ak













,

where bxc and dxe are respectively the floor and the ceiling of x.
For a proof of this theorem, see Benoumhani [2, 3].
Let g(n, k) =

(

n−k
k

)

. This sequence was been investigated by S. Tanny and M. Zuker [8];
they proved that it is SLC, and determined its modes. If rn is the smallest mode of g(n, k),
then

rn =

⌈

5n− 3−
√
5n2 + 10n+ 9

10

⌉

. (3)

They proved that there are infinitely many integers where a double maximum occurs. The
integers where this happen are given by: nj = F4j−1, where Fk is the kth Fibonacci number.
The smallest mode corresponding to nj is given by rj =

1
5
(L4j−1 − 4), where Lj is the j’th

Lucas number.
In this paper we consider the sequence L(n, k) = n

n−k
(

n−k
k

)

, 0 ≤ k ≤
⌊

n
2

⌋

, n ≥ 1. It is
known that L(n, k) counts the number of ways of choosing k points, no two consecutive,
from a collection of n points arranged in a circle; see Stanley [7, p. 73, Lemma 2.3.4] and
Sloane [6, A034807].
In Section 2, for the sake of completeness, we prove that all zeros of the polynomials

Pn(x) =
∑

k≥0

g(n, k)xk are real. The explicit formula for Pn(x) allows us to derive some

identities. Also it enables us to rediscover a result of S. Tanny and M. Zuker. In the third
section, we consider the polynomials Ln(x) =

∑

k≥0

L(n, k)xk.We prove that all zeros of Ln(x)

are real and negative. In this case, too, the explicit formula for Ln(x) gives some identities.
The SLC of the sequence L(n, k) is deduced from the fact that Ln(x) has real zeros. We
determine the modes, and the integers n where L(n, k) has a double maximum. In the last
section we prove that the sequence L(n, k) is asymptotically normal, and satisfies a local
limit theorem on R.

2. The polynomials Pn(x)

It is well known that the sequence g(n, k) =
(

n−k
k

)

, 0 ≤ k ≤
⌊

n
2

⌋

, is related to the Fibonacci

numbers by the relation
∑

k≥0

(

n−k
k

)

= Fn+1 . Recall that the sequence (Fn) is defined as follows:

Fn = Fn−1 + Fn−2, n ≥ 2,
with F0 = 0, F1 = 1. Also we have the explicit formula

Fn =
1√
5

((

1 +
√
5

2

)n

−
(

1−
√
5

2

)n)

.
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It is straightforward to see that Pn(x) satisfies the recursion

Pn(x) = Pn−1(x) + xPn−2(x), (4)

with initial conditions P0(x) = P1(x) = 1. Using the relation (4) we prove

Proposition 3. For all n ≥ 0, all zeros of the polynomials Pn(x) are real. More precisely,

we have Pn(x) =
1√

4x+1

(

(

1+
√

4x+1
2

)n+1

−
(

1−
√

4x+1
2

)n+1
)

. (5)

Proof. Write the relation (4) in matrix form, as follows:

(

Pn(x)
Pn−1(x)

)

=

(

1 x

1 0

)(

Pn−1(x)
Pn−2(x)

)

.

We deduce
(

Pn(x)
Pn−1(x)

)

=

(

1 x

1 0

)n−1(
P1(x)
P0(x)

)

=

(

1 x

1 0

)n−1(
1
1

)

.

The eigenvalues of the matrix A =

(

1 x

1 0

)

are

λ1 =
1 +

√
4x+ 1

2
, λ2 =

1−
√
4x+ 1

2
,

and two eigenvectors of A are V1 =

(

λ1

1

)

and V2 =

(

λ2

1

)

. Now the matrix A may be

written
(

1 x

1 0

)

=

(

λ1 λ2

1 1

)(

λ1 0
0 λ2

)(

λ1 λ2

1 1

)−1

.

From this, we obtain
(

1 x

1 0

)n−1

=
1

λ1 − λ2

(

λ1 λ2

1 1

)(

λn−1
1 0
0 λn−1

2

)(

1 −λ2

−1 λ1

)

=
1

λ1 − λ2

(

λn1 − λn2 −λn1λ2 + λ1λ
n
2

λn−1
1 − λn−1

2 −λn−1
1 λ2 + λ1λ

n−1
2

)

.

The vector

(

Pn(x)
Pn−1(x)

)

is now

(

Pn(x)
Pn−1(x)

)

=
1

λ1 − λ2

(

λn1 − λn2 −λn1λ2 + λ1λ
n
2

λn−1
1 − λn−1

2 −λn−1
1 λ2 + λ1λ

n−1
2

)(

1
1

)

.

So,

Pn(x) =
1

λ1 − λ2

(λn1 − λn2 − λn1λ2 + λ1λ
n
2 ) .

Since λ1 + λ2 = 1 and λ1 − λ2 =
√
4x+ 1, we finally obtain

Pn(x) =
1√
4x+ 1

(

(

1 +
√
4x+ 1

2

)n+1

−
(

1−
√
4x+ 1

2

)n+1
)

.

This is the desired result.
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For the roots of Pn(x), we have

Pn(x) = 0⇐⇒
(

1 +
√
4x+ 1

1−
√
4x+ 1

)n+1

= 1⇐⇒
(

1 +
√
4x+ 1

1−
√
4x+ 1

)

= εk, 1 ≤ k ≤
⌊n

2

⌋

where the εk are the (n+ 1)
th roots of unity. Thus,

Pn(x) = 0⇐⇒
√
4x+ 1 =

εk − 1
εk + 1

⇐⇒ 4x = −1 +
(

εk − 1
εk + 1

)2

.

Furthermore, we obtain Pn(x) = 0⇐⇒ x = − 1
4

(

1 + tan2
(

kπ
n+1

))

, 1 ≤ k ≤
⌊

n
2

⌋

. This proves
that the roots of Pn(x) are real and negative. ¤

Remark. In the sequel, we need Lucas numbers. Let us recall their definition:

Ln = Ln−1 + Ln−2, L0 = 2, L1 = 1.

It is not hard to see that

Ln =

(

1 +
√
5

2

)n

+

(

1−
√
5

2

)n

and Ln = Fn + Fn−2,

holds.

Corollary 4. We have the following identities:

1.
∑

n≥0

Pn(x)z
n = 1

1−z−xz2 .

2.
∑

k≥0

(−1)k
(

n−k
k

)

=







0, if n = 6k + 2, 6k + 5;
1, if n = 6k, 6k + 1;
−1, if n = 6k + 3, 6k + 4.

3.
∑

k≥0

k
(

n−k
k

)

=
n−2
∑

k=0

FkFn−k−2 =
(n+1)Ln−2Fn

5
= (n−1)Fn+(n+1)Fn−2

5
.

4. (n+ 1)Ln − 2Fn = (n− 1)Fn + (n+ 1)Fn−2 ≡ 0 (mod 5).

5.
∑

k≥0

(−1)kk
(

n−k
k

)

=































2
3
n, if n = 6k;

n−1
3
, if n = 6k + 1;

−n+1
3
, if n = 6k + 2;

−2n
3
, if n = 6k + 3;

− (n−1)
3

, if n = 6k + 4;
n+1

3
, if n = 6k + 5.

Proof. The first is known and easy to establish using (4). For (2), put x = −1 in (5). For
the third, differentiate the generating function of Pn(x) with respect to x, and compare the
coefficients, and then put x = 1. Relation 4 is immediate from 3. For the last one, put x = −1
in the derivative of Pn(x). ¤
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According to Theorem 2, every mode rn of the sequence
(

n−k
k

)

satisfies the relation












n
∑

k=1

k
(

n−k
k

)

Fn













≤ rn ≤













n
∑

k=0

k
(

n−k
k

)

Fn













.

S. Tanny and M. Zuker gave an exact formula for rn, but this is somewhat opaque. So
they used another method to give a more explicit one; but it is less precise. Namely, they

proved that rn =
⌊

n
2

(

1−
√

5
5

)⌋

or rn =
⌈

n
2

(

1−
√

5
5

)⌉

. We give another proof of this result.

Proposition 5. (S. Tanny, M. Zuker [8])

The modes of the sequences
(

n−k
k

)

are given by rn =
⌊

n
2

(

1−
√

5
5

)⌋

or rn =
⌈

n
2

(

1−
√

5
5

)⌉

.

Proof. Since all zeros of the polynomial Pn(x) are real, it suffices to compute

n
∑

k=1

k(n−k
k )

=
n
∑

k=1

k(n−k
k )

Fn
. The last corollary gives

µn =

n
∑

k=1

k
(

n−k
k

)

Fn
=
(n+ 1)Ln − 2Fn

5Fn
=
(n+ 1)Ln

5Fn
− 2
5
.

Using the explicit formula for the Lucas and Fibonacci numbers; we obtain

µn =
(n+1)

2

(

1−
√

5
5

)

1+an

1−an+1 , a = −3−
√

5
2

.

Now consider the sequence

µn =
(n+1)

2

(

1−
√

5
5

)

1+an

1−an+1 − 2
5
= (n+1)

2

(

1−
√

5
5

)

An − 2
5
,

where

An =
1 + an

1− an+1
.

Also, observe that for every n we have

A2n+1 < 1 < A2n.

So
µ2n =

2n+1
2

(

1−
√

5
5

)

A2n − 2
5
≥ 2n+1

2

(

1−
√

5
5

)

− 2
5
,

and
µ2n+1 =

2n+2
2

(

1−
√

5
5

)

A2n+1 − 2
5
≤ 2n+2

2

(

1−
√

5
5

)

− 2
5
.

Thus
2n+1

2

(

1−
√

5
5

)

− 2
5
≤ µ2n ≤ µ2n+1 ≤ 2n+2

2

(

1−
√

5
5

)

− 2
5
.

We deduce that for every n ≥ 2,
n
2

(

1−
√

5
5

)

− 2
5
≤ µn ≤ n+2

2

(

1−
√

5
5

)

− 2
5
.

Since the difference between the two bounds is
(

1−
√

5
5

)

< 1; there is a unique integer rn

in the interval
(

n
2

(

1−
√

5
5

)

− 2
5
, n+2

2

(

1−
√

5
5

)

− 2
5

)

and of course rn =
⌊

n
2

(

1−
√

5
5

)⌋

or

rn =
⌈

n
2

(

1−
√

5
5

)⌉

. ¤
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3. The polynomials Ln(x)

In this section, we consider the sequence L(n, k) = n
n−k
(

n−k
k

)

. We prove that all zeros of

the polynomials Ln(x) =
∑

k≥0

L(n, k)xk are real.

Proposition 6. For all n ≥ 2, all zeros of the polynomials Ln(x) are real. We have

Ln(x) =
(

1+
√

4x+1
2

)n

+
(

1−
√

4x+1
2

)n

. (6).

Proof. Since the polynomials satisfy the recursion

Ln(x) = Ln−1(x) + xLn−2(x);

with L0 = 2, L1 = 1, the proof is exactly the same as for Pn(x) .

Corollary 7. We have the following identities:
1.
∑

n≥0

Ln(x)z
n = 2−z

1−z−xz2 .

2.
∑

k≥0

n
n−k
(

n−k
k

)

= Ln.

3.
∑

k≥0

(−1)k n
n−k
(

n−k
k

)

=















1, if n = 6k + 1 or 6k + 5;
−1, if n = 6k + 2 or 6k + 4;
2, if n = 6k ;
−2, if n = 6k + 3.

4.
n−1
∑

k=0

LkFn−k−1 = nFn.

Proof. Relation (1) is immediate, for the second one, it suffices to put x = 1 in (6). For the
third one, put x = −1 again in (6). The last one is obtained by differentiating the generating
function of Ln(x) with respect to x and then equating the coefficients of z

n in both sides. ¤

Since all zeros of the polynomials Ln(x) are real, it follows that the sequence L(n, k) is
SLC. We follow S. Tanny and M. Zuker to give the modes.

Theorem 8. The smallest mode of the sequence L(n, k) is given by

kn =

⌈

5n− 4−
√
5n2 − 4

10

⌉

.

Proof. The integer kn satisfies
{

L(n, kn − 1) < L(n, kn) (a)
L(n, kn) ≥ L(n, kn + 1) (b)

Let
f(x) = 5x2 − (5n+ 6)x+ n2 + 3n+ 2,

and
g(x) = 5x2 − (5n− 4)x+ n2 + 2n+ 1.

We have

(a) ⇐⇒ f(kn) > 0;

(b) ⇐⇒ g(kn) ≤ 0.
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The roots of the first equation are 5n+6±
√

5n2−4
10

, and those of the second one are 5n−4±
√

5n2−4
10

.

The desired integer satisfies

5n− 4−
√
5n2 − 4

10
≤ kn <

5n+ 6−
√
5n2 − 4

10
.

Which is what we wanted. ¤

The previous formula for kn is not as explicit as expected. We give a more explicit one.

Corollary 9. The integer kn satisfies the following

kn =
⌊

n
2

(

1−
√

5
5

)⌋

or kn =
⌈

n
2

(

1−
√

5
5

)⌉

.

Proof. The proof is the same as for rn . ¤

In the next result, the integers n, such that the sequence L(n, k) has a double maximum
will be determined. Before determining these integers, we need the following lemmas:

Lemma 10. For every n ≥ 0, 5F 2
n + 4(−1)n = L2

n.

Proof. This is known, and straightforward using the explicit formulas of Fn and Ln . ¤

Lemma 11. For every n ≥ 0, 5F4n+1 − L4n+1 − 4 ≡ 0 (mod 10).
Proof. Again, the explicit formulas of Fn and Ln give easily the wanted result. ¤

Theorem 12. The sequence L(n, k) has a double maximum if and only if n = F4j+1, and in
this case the smallest mode is given by kn = F 2

2j.

Proof. If l is the smallest mode of L(n, k) then it satisfies

L(n, l) = L(n, l + 1),

which is equivalent to

f(n, l) = 5l2 − (5n− 4)l + n2 − 2n+ 1 = 0 . (7)

Equation (7) has two roots in l

l1, 2 =
5n− 4±

√
5n2 − 4

10
.

The solution greater than n
2
is rejected, since the modes of L(n, k) are less than n

2
. The

smallest one remains, i.e.,

l =
5n− 4−

√
5n2 − 4

10
. (8)

So, we are looking for all pairs of integers (nj, kj), 0 ≤ kj ≤ nj

2
, satisfying (7) (or (8)).

We may transform (8) to an equation related to Pell’s equation as in Tanny and Zuker
[8], and then use some classical facts about units (invertible elements) in quadratic fields
(see Cohn [4] for details). But we proceed differently: by Lemma 10, 5F 2

2j+1 − 4 = L2
2n+1,

and by Lemma 11, 5F4j+1 − 4 −
√

5F 2
4j+1 − 4 ≡ 5F4j+1 − 4 − L4j+1 ≡ 0 (mod 10), that

is, kj =
55F4j+1−4±

√
5F 2

4j+1−4

10
=

5F4j+1−4−L4j+1

10
= F 2

2j ≤
F4j+1

2
. So, some of the Fibonacci

numbers are certainly among the nj. Now let (n0, k0) = (1, 0), (n1, k1) = (5, 1), (n2, k2) =
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(34, 9), (n3, k3) = (233, 64), ...,with nj = F4j+1, kj = F 2
2j. The following recursions are easily

derived:
{

nj+1 = 7nj − nj−1;
kj+1 = 7kj − kj−1 + 2 .

(9)

Now, we prove that all solutions of (7) are in fact (nj = F4j+1, kj = F 2
2j)j≥0. We will show

that if (nj, kj) is a solution of (7), then

(nj+1, kj+1) = (7nj − nj−1, 7kj − kj−1 + 2)

is another one. Indeed

f(nj+1, kj+1) = 5k2
j+1 − (5nj+1 − 4)kj+1 + n2

j+1 − 2nj+1 + 1

= 5(7kj − kj−1 + 2)
2 − (5(7nj − nj−1)− 4)(7kj − kj−1 + 2)

+(7nj − nj−1)
2 − 2(7nj − nj−1) + 1

= 0

since f(ni, ki) = 5k
2
i − (5ni − 4)ki + n2

i − 2ni + 1 = 0 for 0 ≤ i ≤ j. Suppose that (n, k)
is another one, 0 ≤ k ≤ n

2
; different from those (nj, kj). There is a unique (ni, ki) such

that ni < n < ni+1. We verify easily that f(7n − ni−1, 7k − ki−1 + 2) = 0. This means that
(n, k) = (ni, ki), and proves that all the solutions of (7) are given by the recursions (9).This
ends the proof. ¤

Remarks. 1. There is a relation between the modes of the sequence g(n, k) and those
of L(n, k). Let (mj, rj) be the sequence of integers such that g(mj, rj) = g(mj, rj + 1).
Since mj = F4j − 1,and rj = 1

5
(L4j−1 − 4), it is easy to establish (by direct calculations, or

generating functions of rj ), that
{

nj = rj+1 − rj;
kj = mj − 2rj − 1.

2. Note that our relation for kj was derived by S. Tanny and M. Zuker [9, p. 301]. There,
the initial conditions for the Fibonacci numbers are: F0 = F1 = 1.
3. Using the recursions (9), we obtain the generating functions:

g(x) =
∞
∑

j=0

njx
j =

1− 2x
1− 7x+ x2

and h(x) =
∞
∑

j=1

kjx
j =

x+ x2

(1− x)(1− 7x+ x2)
.

4. A central and a local theorem for L(n, k)

A positive real sequence a(n, k)nk=0, with An =
n
∑

k=0

a(n, k) 6= 0, is said to satisfy a central
limit theorem (or is asymptotically normal) with mean µn and variance σ

2
n if

lim
n−→+∞

sup
x∈R

∣

∣

∣

∣

∣

∣

∑

0≤k≤µn+xσn

a(n, k)

An

− (2π)−1/2

x
∫

−∞

e−
t2

2 dt

∣

∣

∣

∣

∣

∣

= 0.

The sequence satisfies a local limit theorem on B ⊆ R ; with mean µn and variance σ
2
n if

lim
n−→+∞

sup
x∈B

∣

∣

∣

∣

σna(n, µn + xσn)

An

− (2π)−1/2e−
x2

2

∣

∣

∣

∣

= 0.
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Recall the following result (see Bender [1]).

Theorem 13. Let (Pn)n≥1 be a sequence of real polynomials; with only real negative zeros.
The sequence of the coefficients of the (Pn)n≥1 satisfies a central limit theorem; with µn =

P ”
n(1)

Pn(1)
and σ2

n =

(

P ”
n(1)

Pn(1)
+ P

′

n(1)
Pn(1)

−
(

P
′

n(1)
Pn(1)

)2
)

provided that lim
n−→+∞

σ2
n = +∞. If, in addition,

the sequence of the coefficients of each Pn is with no internal zeros; then the sequence of the
coefficients satisfies a local limit theorem on R.

The fact that the zeros of the sequence Ln(x) are real implies the following result.

Theorem 14. The sequence (L(n, k))k≥0 satisfies a central limit and a local limit theorem

on R with µn =
L”

n(1)
Ln(1)

∼
n
2

(

1−
√

5
5

)

and σ2
n =

L”
n(1)

Ln(1)
+ L

′

n(1)
Ln(1)

−
(

L
′

n(1)
Ln(1)

)

∼ 5−
3
4n

Proof. We have

σ2
n =

L”
n(1)

Ln(1)
+
L
′

n(1)

Ln(1)
−
(

L
′

n(1)

Ln(1)

)2

=
n2Ln−2Ln − 5n2Fn−1

5L2
n

+
3nFn−1 − nLn−2

5Ln

.

Let α = 1+
√

5
2

, β = 1−
√

5
2

. Using the explicit formulas of Ln and Fn, we obtain

σ2
n =

(−1)nn2

α2n + β2n + 2(−1)n +
αn−2

(

3
√

5α
5
− 1
)

n− βn−2
(

3
√

5β
5
+ 1
)

n

5 (αn + βn)
∼ 5−

3
4n.

So, lim
n−→+∞

σn = +∞. The local limit theorem is then easily seen to be satisfied; since L(n, k) 6=
0, for 0 ≤ k ≤

⌊

n
2

⌋

. ¤

As a consequence of the local limit theorem, we have

Corollary 15. Let L = max{L(n, k), 0 ≤ k ≤ n
2
}. Then

L ∼

5
3
4

(

1+
√

5
2

)n

√
2πn

.

Acknowledgments: My sincere thanks to Andreas Dress and Jean-Louis Nicolas for their
valuable corrections and comments.
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