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Abstract

Numbers of the form (6m+1)(12m+1)(18m+1) where all three factors are simultaneously

prime are the best known examples of Carmichael numbers. In this paper we tabulate the

counts of such numbers up to 10n for each n ≤ 42. We also derive a function for estimating

these counts that is remarkably accurate.

1 Introduction

Fermat’s “Little Theorem” says that if a is any integer prime to N , and if N is prime, then

aN−1
≡ 1 (mod N).

However, this is not a sufficient condition for a number to be prime since there are composite

numbers known as Carmichael numbers which satisfy this congruence. Carmichael numbers

meet the following criterion,

Korselt’s criterion (1899). A composite odd number N is a Carmichael number if and

only if N is squarefree and p− 1 divides N − 1 for every prime p dividing N.
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Considerable progress has been made investigating Carmichael numbers in the past

several years. Alford, Granville and Pomerance showed that there are infinitely many

Carmichael numbers [1]. Löw and Niebuhr constructed Carmichael numbers with millions of

components [6]. Balasubramanian and Nagaraj established an upper bound for the number

of 3-component Carmichael numbers up to x that is a little more than x1/3 [2]. Granville and

Pomerance have developed several conjectures which seem to resolve some serious inconsis-

tencies concerning the total number of Carmichael numbers [4]. These various conjectures are

supported by counts of Carmichael numbers mostly done by Richard Pinch [8, 9]. However,

in many cases the data is too limited to fully support some of the conjectures.

The main purpose of this paper is to supply accurate extended counts of an important

family of 3-component Carmichael numbers. Chernick in 1939 [3] derived one-parameter

expressions for Carmichael numbers which he called “Universal Forms,” the most prominent

of these being

U3(m) = (6m + 1)(12m + 1)(18m + 1). (1)

U3(m) is a Carmichael number when the quantities in parentheses are simultaneously prime.

There are indications that this family represents about 2.2% of the 3-component Carmichael

numbers, more than any such family.

2 Search Method

The method used to search for and count numbers of the form (1) depends almost entirely

on sieving. An array of 32,000,000 bits represents values of q = 6m + 1 from m = m0 to

m = m0 + 31, 999, 999. For each “small” prime from 5 to an appropriate maximum, each q

is marked as composite when divisible by a small prime (i.e., the bit is turned on). With a

slight program addition it can be determined if r = 12m+1 or s = 18m+1 has a factor, and

if it does then q is also marked as composite even though q itself might actually be prime.

Typically, in the vicinity of U3 = 1041, about 18,000 numbers survive this sieving process

which takes about 27 seconds on an Athlon/1.2 GHz computer. No additional tests are

required since all three components of (1) must be prime and therefore the survivors are

Carmichael numbers of the required form. The only additional processing needed is to

determine the sizes of all the survivors and to do appropriate bookkeeping which takes

about 1 second.

This process is repeated for the next block of 32,000,000 m’s. It is easy to use multiple

computers to get complete counts since the results for each block is independent of all other

blocks. To extend the count from 1041 to 1042 took about 30 computer-days (Athlon/1.2

GHz). Compute time for each decade takes about 2.2 times as long as the previous decade.

Thus, extending the count an additional decade takes about the same time as it took for all
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the previous counts.

3 Theoretical Count

It is interesting and important to try to estimate the the number of Carmichael numbers of

the form U3(m) that are less than a given X. The famous Hardy-Littlewood conjectures [5]

will be used as a model. We follow the theory as described in detail in Riesel’s book [10, p.

60].

Consider a number of the form (1),

u = q · r · s, where q = 6m + 1, r = 12m + 1, s = 18m + 1. (2)

If q were chosen at random, by the Prime Number Theorem the probability of q being

prime would be 1/ log q asymptotically. However in our case q can never be divisible by 2

or 3. When a number cannot be divided by a prime, p, the probability of the number being

prime increases by the factor p/(p − 1). Thus the probability of q being prime is increased

by the factor (2/1)(3/2) = 3 and becomes

Pq =
3

log(6m + 1)
. (3)

As with q, r cannot have 2 or 3 as a factor, but its primality is also affected if q is prime.

Normally the chance that a prime p will not divide r is (p − 1)/p because (q mod p) has

(p − 1) values which are not zero. However, since r = q + 6m it is easy to show that if

q is prime then (r mod p) has only (p − 2) values which are not zero—thus dropping the

probability that r is prime by the factor (p− 2)/(p− 1). The correction factor, Cr(p), for p

is,

Cr(p) =
p

(p− 1)
·
(p− 2)

(p− 1)
=

p(p− 2)

(p− 1)(p− 1)

The full correction factor is the product of these for p = 5, 7, 11, 13, · · ·∞,

Cr =
∞
∏

5

p(p− 2)

(p− 1)(p− 1)
.
= .880216

and the probability of r being prime becomes,

Pr = 3 · Cr ·
1

log(12m + 1)
=

2.640648

log(12m + 1)
. (4)

Similarly, the full correction factor for s is

Cs =
∞
∏

5

p(p− 3)

(p− 1)(p− 2)
= .721604

3



and the probability of s being prime becomes,

Ps = 3 · Cs ·
1

log(18m + 1)
=

2.164812

log(18m + 1)
. (5)

For a given m the probability of q, r and s being prime simultaneously is,

Pqrs = Pq · Pr · Ps =
17.14952

log(6m + 1) log(12m + 1) log(18m + 1)
. (6)

Summing this probability over all appropriate m gives an estimate for the number of such

Carmichael numbers less than a given X. To facilitate the computation we replace the

summation by integration, and replace the Carmichael number components with,

log(6m + 1) log(12m + 1) log(18m + 1) = log3(axm),

where ax is determined by evaluating the above expression at m = M = (X/1296)1/3, the

maximum value of m corresponding to a given X.

The estimate now becomes,

E(X) = 17.14952
M
∑

m=1

1

log3(axm)
≈ 17.14952

∫ M

1

dm

log3(axm)
. (7)

To numerically evaluate E(X), integrate by parts twice giving,

E(X) ≈
17.14952

2ax

[
∫ axM dx

log(x)
−

axM

log(axM)
−

axM

log2(axM)

]

. (8)

The above integral term is the well-known logarithmic integral function, Li(x), which is

easy to accurately evaluate numerically. Lower limits are omitted since they have negligible

effect on the totals.

4 Results

Table 1 shows the actual counts of (6m + 1)(12m + 1)(18m + 1) Carmichael numbers and

the estimated counts from Eq. (8). The errors and percentage errors are also shown. The

estimates are remarkably close to the actual counts.

Although we do not know the exact probability distribution of the counts, we can make

the reasonable assumption that they can be approximated by a Poisson distribution since

this is true for almost all distributions of rare phenomena. We can then present the error

as the number of standard deviations, which effectively normalizes the error. If N(X) is the

actual number of Carmichael numbers found up to X, and E(X) is the estimated number

then

error in standard deviations =
N(X)− E(X)

√

E(X)
.
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This is the last column in Table 1. Almost all these normalized errors are within one

standard deviation, excellent results which support the accuracy of the theoretical estimating

function over a wide range of of values.

% error in
X actual calculated error error stand. dev

1010 10 14 -4 -40.00000 -1.07
1011 16 21 -5 -31.25000 -1.09
1012 25 34 -9 -36.00000 -1.57
1013 50 54 -4 -8.00000 -0.54
1014 86 89 -3 -3.48837 -0.32
1015 150 149 1 0.66667 0.08
1016 256 256 0 0.00000 0.00
1017 436 447 -11 -2.52294 -0.52
1018 783 793 -10 -1.27714 -0.36
1019 1435 1422 13 0.90592 0.34
1020 2631 2581 50 1.90042 0.98
1021 4765 4729 36 0.75551 0.52
1022 8766 8743 23 0.26238 0.25
1023 16320 16290 30 0.18382 0.24
1024 30601 30563 38 0.12418 0.22
1025 57719 57706 13 0.02252 0.05
1026 109504 109578 -74 -0.06758 -0.22
1027 208822 209170 -348 -0.16665 -0.76
1028 400643 401200 -557 -0.13903 -0.88
1029 771735 772935 -1200 -0.15549 -1.37
1030 1494772 1495205 -433 -0.02897 -0.35
1031 2903761 2903388 373 0.01285 0.22
1032 5658670 5657731 939 0.01659 0.39
1033 11059937 11061388 -1451 -0.01312 -0.44
1034 21696205 21692750 3455 0.01592 0.74
1035 42670184 42665199 4985 0.01168 0.76
1036 84144873 84141713 3160 0.00376 0.34
1037 66369603 166363608 5995 0.00360 0.46
1038 329733896 329724862 9034 0.00274 0.50
1039 655014986 654988567 26419 0.00403 1.03
1040 1303918824 1303921334 -2510 -0.00019 -0.07
1041 2601139051 2601093060 45991 0.00177 0.90
1042 5198859223 5198788710 70513 0.00136 0.98

Table 1: Count of (6m + 1)(12m + 1)(18m + 1) Carmichael Numbers up to X
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5 Estimating C3(X) for large X

The 3-component Carmichael numbers can be expressed in the form

(am + 1)(bm + 1)(cm + 1), a < b < c, a, b, c relatively prime in pairs.

As shown in Ore’s book [7, Ch. 14], m = m0+k(abc), k = 1, 2, 3 . . ., where m0 is the solution

to the linear congruence

m0(ab + ac + bc) ≡ −(a + b + c) (mod abc).

Thus, for a given a, b, c it is easy to find all allowable values of m. All that remains is to

test the three components for primality for each allowable m. In this way a “family” of

Carmichael numbers is found corresponding to (a, b, c). Our 6–12-18 Carmichael numbers

are the (1, 2, 3) family.

From another project we found that part of the process of counting 3-component Carmichael

numbers, C3(X) could be greatly speeded up if we counted by families. For example, find-

ing all such numbers less than 1018, took about 1100 hours using a Pentium III/550 MHz.

However, we found 64.4% of them in about 4 hours by limiting the search to all families

with a = 1, that is (1, b, c). We repeated this for a wide range of X and found that the time

improvement factor of about 300 was consistant and the ratios of Carmichael numbers found

to C3(X) were remarkably similar. The results are shown in Table 2.

Having accurate values for C3(10
n) for large values of n is quite desirable to support

various conjectures in [4]. Exhaustive searching is now used to obtain exact counts, but even

with the continuing cost-performance improvement in computing hardware it takes much too

long to extend the count for each additional decade. It seems we should consider sacrificing

some accuracy in determining C3(10
n) if the upper limit of n can be extended in a practical

manner.

Note the percentage columns of Table 2. The counts of (1, a, b) are about 64.4% of the

corresponding C3(10
n) for a wide range of n. Similarly the counts of (1, 2, 3) are about 2.2%

of C3(10
n), and appear to be closely correlated to counts of (1, a, b). If we assume these cor-

relations continue for larger values of n then the actual counts of the (1, 2, 3) family possibly

could be used to estimate C3(10
n) up to n = 42 with about 1% accuracy. Optimistically,

this might even be extended for n > 42 by using the estimates from Eq. (8).

However, it must be remembered that all these results are heuristic, and although inter-

esting they require more rigorous theory and study. One area for future research is to relate

the above results to the conjectures and conclusions of the Granville and Pomerance paper

[4].
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X C3(X) (1,2,3) % (1, b, c) %
103 1
104 7
105 12
108 84 59 70.24
109 172 122 70.93
1010 335 10 2.985 227 67.76
1011 590 16 2.712 403 68.31
1012 1000 25 2.500 680 68.00
1013 1858 50 2.691 1220 65.66
1014 3284 86 2.619 2104 64.07
1015 6083 150 2.466 3911 64.29
1016 10816 256 2.368 6948 64.24
1017 19539 436 2.331 12599 64.48
1018 35586 783 2.200 22920 64.41
1019 65309 1435 2.198 41997 64.32
1020 120625 2631 2.182 77413 64.22

Table 2: Count of families of 3-component Carmichael numbers
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