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Abstract

Let H be the Hankel matrix formed from a sequence of real numbers S = {a0 = 1, a1, a2, a3, ...},
and let L denote the lower triangular matrix obtained from the Gaussian column reduction of H.
This paper gives a matrix-theoretic proof that the associated Stieltjes matrix SL is a tri-diagonal
matrix. It is also shown that for any sequence (of nonzero real numbers) T = {d0 = 1, d1, d2 , d3, ...}
there are infinitely many sequences such that the determinant sequence of the Hankel matrix formed
from those sequences is T .
1. Introduction. In this paper we give a matrix-theoretic proof (Theorem 2.1) of one of

the main theorems in [1]. In Section 2 we discuss the connection between the decomposition of a
Hankel matrix and Stieltjes matrices, and in Section 3 we discuss the connection between certain
lattice paths and Hankel matrices. Section 4 presents an explicit formula for the decomposition of
a Hankel matrix.
Definition 1.1. Let S = {a0 = 1, a1, a2, a3, ...} be a sequence of real numbers. The Hankel

matrix generated by S is the infinite matrix

H =

















1 a1 a2 a3 a4 .

a1 a2 a3 a4 a5 .

a2 a3 a4 a5 a6 .

a3 a4 a5 a6 a7 .

a4 a5 a6 a7 a8 .

. . . . . .

















.

Definition 1.2. A lower triangular matrix
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L =

















1 0 0 0 0 .
l10 1 0 0 0 .
l20 l21 1 0 0 .
l30 l31 l32 1 0 .
l40 l41 l42 l43 1 .
. . . . . .

















.

is said to be a Riordan matrix if there exist Taylor series g(x) = 1 + a1x + a2x
2 + ... + anx

n + ...
and f(x) = x+ b2x

2+ b3x
3+ ...+ bnx

n+ .... such that for every k ≥ 0 the k-th column has ordinary
generating function g(x)(f(x))k.
Definition 1.3. The Stieltjes matrix of a lower triangular matrix L is the matrix SL which

satisfies LSL = L
r where Lr is the matrix obtained from L by deleting the first row of L.

Thus

















1 0 0 0 0 .
l10 1 0 0 0 .
l20 l21 1 0 0 .
l30 l31 l32 1 0 .
l40 l41 l42 l43 1 .
. . . . . .

















SL =













l10 1 0 0 0 .
l20 l21 1 0 0 .
l30 l31 l32 1 0 .
l40 l41 l42 l43 1 .
. . . . . .













and so

SL = L
−1Lr =

















1 0 0 0 0 .
−l10 1 0 0 0 .
× −l21 1 0 0 .
× × −l32 1 0 .
× × × −l43 1 .
. . . . . .





























l10 1 0 0 0 .
l20 l21 1 0 0 .
l30 l31 l32 1 0 .
l40 l41 l42 l43 1 .
. . . . . .













=

















b0 1 0 0 0 .

c0 b1 1 0 0 .

× c1 b2 1 0 .

× × c2 b3 1 .

× × × c3 b4 .

. . . . . .

















where

b0 = l10, bk = lk+1,k − lk,k−1, k > 0,

c0 = l2,0 − l
2
1,0, ck = (lk,k−1lk+1,k − lk+1,k−1)− l

2
k+1,k + lk+2,k, k > 0.

Definition 1.4. Let L and SL be as in Definition 1.3. We define
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DL =

















d0 0 0 0 0 .

0 d1 0 0 0 .

0 0 d2 0 0 .

0 0 0 d3 0 .

0 0 0 0 d4 .

. . . . . .

















to be the diagonal matrix with diagonal entries given by d0 = 1, dk+1 = dkck for k > 0.

2. Stieltjes and Hankel Matrices.

The following two theorems are proved in [1].
Theorem 2.1. Let L be a lower triangular matrix and let D = DL be the diagonal matrix

with nonzero diagonal entries {di} as in Definition 1.4. Then LDL
t is a Hankel matrix if and only

if SL is a tri-diagonal matrix, i.e. if and only if

SL =

















b0 1 0 0 0 .

c0 b1 1 0 0 .

0 c1 b2 1 0 .

0 0 c2 b3 1 .

0 0 0 c3 b4 .

. . . . . .

















where b0 = l1,0 , c0 = d1 , bk = lk+1,k − lk,k−1 , ck =
dk+1
dk
, k ≥ 1.

Proof. Let H = LDLt be a Hankel matrix. Then
L = H(DLt)−1,
Lr = (H(DLt)−1)r = Hr(DLt)−1,
SL = L

−1Lr = L−1(Hr(DLt)−1) = (L−1Hr)(DLt)−1.
Since H is a Hankel matrix, deleting the first row has the same effect as deleting the first

column.

L−1H = DLt =

















d0 d0l10 d0l20 d0l3,0 d0l4,0 .
0 d1 d1l21 d1l31 d1l41 .
0 0 d2 d2l32 d2l42 .
0 0 0 d3 d3l43 .
0 0 0 0 d4 .
. . . . . .

















,

L−1Hr = L−1Hc = (L−1H)c =

















d0l10 d0l20 d0l30 d0l4,0 .
d1 d1l21 d1l31 d1l41 .
0 d2 d2l32 d2l42 .
0 0 d3 d3l43 .
0 0 0 d4 .
. . . . .

















,
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SL = (L
−1H)c(DLt)−1 =

















d0l10 d0l20 d0l30 d0l4,0 .
d1 d1l21 d1l31 d1l41 .
0 d2 d2l32 d2l42 .
0 0 d3 d3l43 .
0 0 0 d4 .
. . . . .



































1
d0
× × × × .

0 1
d1

× × × .

0 0 1
d2
× × .

0 0 0 1
d3
× .

0 0 0 0 1
d4
.

. . . . . .



















=

















b0 1 0 0 0 .

c0 b1 1 0 0 .

0 c1 b2 1 0 .

0 0 c2 b3 1 .

0 0 0 c3 b4 .

. . . . . .

















where

b0 = l1,0 , c0 =
d1

d0
= d1 , bk = lk+1,k − lk,k−1 , ck =

dk+1

dk
, k ≥ 1.

Conversely, let SL be a tri-diagonal matrix and let H = LDL
t. Then

L−1Hr = L−1(LDLt)r = L−1(LrDLt) = (L−1Lr)DLt = SLDL
t

=

















b0 1 0 0 0 .

c0 b1 1 0 0 .

0 c1 b2 1 0 .

0 0 c2 b3 1 .

0 0 0 c3 b4 .

. . . . . .

































d0 d0l10 d0l20 d0l3,0 d0l4,0 .
0 d1 d1l21 d1l31 d1l41 .
0 0 d2 d2l32 d2l42 .
0 0 0 d3 d3l43 .
0 0 0 0 d4 .
. . . . . .

















.

Therefore
(L−1Hr)n,k = cn−1dn−1lk,n−1 + bndnlk,n + dn+1lk,n+1
= dn
dn−1
dn−1lk,n−1 + bndnlk,n + cndnlk,n+1

= dn(lk,n−1 + bnlk,n + cnlk,n+1)
= dnlk+1,n = (DL

t)n,k+1 = (DL
t)cn,k = (L

−1H)cn,k = (L
−1Hc)n,k.

We have shown that L−1Hr = L−1Hc, and so Hr = Hc. Hence H is a Hankel matrix.

Theorem 2.2. L is a Riordan matrix (i.e. bk = b1 = b and ck = c1 = c for k ≥ 1) if and only
if f = x(1 + bf + cf 2) and

g =
1

1− xb0 − xc0f
,

where f, g are as in Definition 1.2.
See [1] for the proof.
Corollary 2.3. Let T = {d0 = 1, d1, d2 , d3, ...} be any sequence of (nonzero) real numbers.

Then there exists a sequence S = {a0 = 1, a1, a2, a3, ...} such that T is equal to the sequence of
diagonal entries of D in the decomposition H = LDLt of the Hankel matrix generated by S .
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Proof. As in Theorem 2.1, let c0 = d1 , ck =
dk+1
dk
, k ≥ 1, and form the Stieltjes matrix

SL =

















b0 1 0 0 0 .

c0 b1 1 0 0 .

0 c1 b2 1 0 .

0 0 c2 b3 1 .

0 0 0 c3 b4 .

. . . . . .

















where the bis are arbitrary. By Definition 1.3 there is a lower triangular matrix L such that
LSL = L

r. Let S be the sequence formed by the first column of L and let H denote the Hankel
matrix generated by S. By Theorem 2.1 the diagonal entries of D in the decomposition H = LDLt

form the sequence T .

Example 2.4. Let T = {1, 1, 2, 5, 14, 42, 132, ...} be the Catalan sequence (A000108 in [2]) and
let

SL =

















0 1 0 0 0 .
1 0 1 0 0 .
0 2 0 1 0 .
0 0 5

2 0 1 .
0 0 0 14

5 0 .
. . . . . .

















.

Then

L =

















1 0 0 0 0 .
0 1 0 0 0 .
1 0 1 0 0 .
0 3 0 1 0 .
3 0 11

2 0 1 .
. . . . . .

















,

LDLt =

















1 0 0 0 0 .
0 1 0 0 0 .
1 0 1 0 0 .
0 3 0 1 0 .
3 0 11

2 0 1 .
. . . . . .

































1 0 0 0 0 .

0 1 0 0 0 .

0 0 2 0 0 .

0 0 0 5 0 .

0 0 0 0 14 .
. . . . . .

































1 0 1 0 3 .

0 1 0 3 0 .

0 0 1 0 11
2 .

0 0 0 1 0 .

0 0 0 0 1 .

. . . . . .

















=

















1 0 1 0 3 .

0 1 0 3 0 .

1 0 3 0 14 .

0 3 0 14 0 .

3 0 14 0 167
2 .

. . . . . .

















= H.

3. Lattice Paths and Hankel Matrices
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We consider those lattice paths in the Cartesian plane running from (0, 0) that use steps from
S = {u = (1, 1), h = (1, 0), d = (1,−1)} with assigned weights 1 for u, w1 for h and w2 for d.
Let L(n, k) be the set of paths that never go below the x-axis and end at (n, k). The weight of a
path is the product of the weights of its steps. Let ln,k be the sum of the weights of all the paths
in L(n, k). See also [3], [4].
Theorem 3.1. Let L = (ln,k)n,k≥0. Then L is a lower triangular matrix, the Stieltjes matrix

of L is

SL =

















w1 1 0 0 0 .

w2 w1 1 0 0 .

0 w2 w1 1 0 .

0 0 w2 w1 1 .

0 0 0 w2 w1 .

. . . . . .

















and H = LDLt is the Hankel matrix generated by the first column of L and dk = w
k
2 for k > 0.

Proof. From Theorem 2.1.

Example 3.2. For w1 = 0, w2 = 1, L is the Catalan matrix. For w1 = t, w2 = 1, L is the
t-Motzkin matrix. In both cases D is the identity matrix. For example, when t = 1,

L =

















1 0 0 0 0 .
1 1 0 0 0 .
2 2 1 0 0 .
4 5 3 1 0 .
9 12 9 4 1 .
. . . . . .

















,

LDLt =

















1 1 2 4 9 .
1 2 4 9 21 .
2 4 9 21 51 .
4 9 21 51 127 .
9 21 51 127 323 .
. . . . . .

















= H

where S = {1, 1, 2, 4, 9, 21, 51, ...} is the Motzkin sequence A001006.
Theorem 3.3. If w1, w2 depend on the height k, i.e. w1(k) = bk and w2(k + 1) = ck, then

SL =

















b0 1 0 0 0 .

c0 b1 1 0 0 .

0 c1 b2 1 0 .

0 0 c2 b3 1 .

0 0 0 c3 b4 .

. . . . . .

















and H = LDLt is the Hankel matrix generated by the first column of L and dk = Πi≤kci.
Proof. From Theorem 2.1.

See Example 2.4 for an illustration.
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4. Gaussian Column Reduction

Let S = {a0 = 1, a1, a2, a3, ...} be a sequence of real numbers and let H denote the Hankel
matrix generated by S. All the results in this section are well-known in matrix theory. We shall
express the entries of L in term of S. We assume that H is positive definite.
Lemma 4.1. The decomposition of a positive definite Hankel matrix H = LDU is unique and

U = Lt, where L is a lower triangular matrix with diagonal entries 1, D is a diagonal matrix and
U is an upper triangular matrix with diagonal entries 1.
Proof. Let LDU = H = L1D1U1. Then DUU

−1
1 = L−1L1D1 is both an upper and lower

triangular matrix, hence UU−11 = L
−1L1 = I is the infinite identity matrix.

Let Hn be the truncated submatrix of H with n ≥ 0 . For example,

H3 =









1 a1 a2 a3
a1 a2 a3 a4
a2 a3 a4 a5
a3 a4 a5 a6









, H4 =













1 a1 a2 a3 a4
a1 a2 a3 a4 a5
a2 a3 a4 a5 a6
a3 a4 a5 a6 a7
a4 a5 a6 a7 a8













.

LetHn(k) be the matrix obtained fromHn by replacing the last column ofHn by ak, ak+1, ak+2, ..., ak+n.
For example,

H3(1) =









1 a1 a2 a1
a1 a2 a3 a2
a2 a3 a4 a3
a3 a4 a5 a4









, H3(5) =









1 a1 a2 a5
a1 a2 a3 a6
a2 a3 a4 a7
a3 a4 a5 a8









.

.
Let hi = detHi and define an infinite upper triangular matrix R = (rn,k) in term of (n, k)-

cofactor of Hk by rn,k = 0 for k < n, and

rn,k =
1

hk−1
(−1)n+k+2 det

























1 a1 a2 . ak−1
a1 a2 a3 .. ak
a2 a3 a4 . ak+1
. . . . ..

an−1 an an+1 . ak+n−2
an+1 an+2 an+3 . ak+n
. . . . .

ak ak+1 ak+2 . ak+k

























for k ≥ n. For example,

r2,4 =
1

h3
(−1)(2+4)+2 det









1 a1 a2 a3
a1 a2 a3 a4
a3 a4 a5 a6
a4 a5 a6 a7









.

Remark 4.2. HR = LD, where L = (ln,k) is the Gaussian column reduction of the Hankel
matrix H and D is the diagonal matrix with diagonal entries {di}, R

−1 = Lt with di =
hi
hi−1

and

ln,k =
1
hk−1

detHk(n).
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Remark 4.3. If L is a Riordan matrix, then for i ≥ 1, c = ci =
di+1
di
=
hi+1hi−1
hihi

and b = bi =

li+1,i − li,i−1 =
1
hi−1
detHi(i+ 1)−

1
hi−2
detHi−1(i) is a recurrence relation for the sequence S.

Example 4.4. Let S = {1, 3, 13, 63, 321, 1683, 8989, 48639, 265729, ...} be the central Delannoy
numbers A001850, and let H be the Hankel matrix generated by S. Then

H =













1 3 13 63 .

3 13 63 321 .

13 63 321 1683 .
63 321 1683 8989 .
. . . . .













,

R =













1 −3 5 −9 .
0 1 −6 21 .

0 0 1 −9 .
0 0 0 1 .

. . . . .













,

LD = HR =













1 0 0 0 .

3 4 0 0 .

13 24 8 0 .

63 132 72 16 .
. . . . .













,

RtHR = D =













1 0 0 0 .

0 4 0 0 .

0 0 8 0 .

0 0 0 16 .
. . . . .













,

L = HRD−1 =













1 0 0 0 .
3 1 0 0 .
13 6 1 0 .
63 33 9 1 .
. . . . .













,

SL = L
−1Lr = RtLr =













1 0 0 0 .
−3 1 0 0 .
5 −6 1 0 .
−9 21 −9 1 .
. . . . .

























3 1 0 0 0 .
13 6 1 0 0 .
63 33 9 1 0 .
321 180 62 12 1 .
. . . . . .













=













3 1 0 0 .
4 3 1 0 .
0 2 3 1 .
0 0 2 3 .
. . . . .













,
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LDLt =













1 0 0 0 .
3 1 0 0 .
13 6 1 0 .
63 33 9 1 .
. . . . .

























1 0 0 0 .

0 4 0 0 .

0 0 8 0 .

0 0 0 16 .
. . . . .

























1 3 13 63 .
0 1 6 33 .
0 0 1 9 .

0 0 0 1 .

. . . . .













=













1 3 13 63 .

3 13 63 321 .

13 63 321 1683 .
63 321 1683 8989 .
. . . . .













= H.

Remark 4.5. If H is the Hankel matrix corresponding to a sequence S, then by Theorem 3.1
and Theorem 3.3 we may use lattice paths to find L, the Gaussian column reduction of H.
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