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Abstract

The number of inversions in a random permutation is a way to measure the

extent to which the permutation is “out of order”. Let In(k) denote the number of

permutations of length n with k inversions. This paper gives asymptotic formulae

for the sequences {In+k(n), n = 1, 2, . . .} for fixed k.

1. Introduction Let a1, a2, . . . , an be a permutation of the set {1, 2, . . . , n}. If
i < j and ai > aj, the pair (ai, aj) is called an “inversion” of the permutation; for

example, the permutation 3142 has three inversions: (3,1), (3,2), and (4,2). Each

inversion is a pair of elements that is “out of sort”, so the only permutation with

no inversions is the sorted permutation.

2. Generating Function Let In(k) represent the number of permutations of

length n with k inversions.

Theorem 1 (Muir,1898). [10] The numbers In(k) have as generating function

Φn(x) =

(n
2
)
∑

k=0

In(k)x
k
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=

n
∏

j=1

j−1
∑

k=0

xk

=
n
∏

j=1

1− xj
1− x .

Clearly the number of permutations with no inversions, In(0), is 1 for all n, and

in particular I1(0) = 1 = Φ1(x). So the formula given in the theorem is correct for

n = 1. Consider a permutation of n− 1 elements. We insert the nth element in the
jth position, j = 1, 2, . . . , n, choosing the insertion point randomly. Since the nth

element is larger than the n−1 elements in the set {1, 2, . . . , n−1}, by inserting the
element in the jth position, n − j additional inversions are added. The generating
function for the number of additional inversions is 1 + x + x2 + · · · + xn−1 since
each number of additional inversions is equally likely. The additional inversions

are independent from the inversions present in the permutation of length n − 1,
so the total number of inversions has as its generating function the product of the

generating function for n−1 inversions and the generating function for the additional
inversions:

Φn(x) = (1 + x+ · · · + xn−1)Φn−1(x).

The required result then follows by induction.

Below is a table of values of the number of inversions (see sequence A008302 in

[13], also [2], [3], [8], [11]):

Table 1 In(k) = In(
(

n
2

)

− k)
k, number of inversions

n\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13

1 1

2 1 1

3 1 2 2 1

4 1 3 5 6 5 3 1

5 1 4 9 15 20 22 20 15 9 4 1

6 1 5 14 29 49 71 90 101 101 90 71 49 29 14

7 1 6 20 49 98 169 259 359 455 531 573 573 531 455

8 1 7 27 76 174 343 602 961 1415 1940 2493 3017 3450 3736

9 1 8 35 111 285 628 1230 2191 3606 5545 8031 11021 14395 17957

10 1 9 44 155 440 1068 2298 4489 8095 13640 21670 32683 47043 64889
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Table 1 (continued) In(k) = In(
(n
2

)

− k)
k, number of inversions

n\k 14 15 16 17 18 19 20 21 22 23

6 5 1

7 359 259 169 98 49 20 6 1

8 3836 3736 3450 3017 2493 1940 1415 961 602 343

9 21450 24584 27073 28675 29228 28675 27073 24584 21450 17957

10 86054 110010 135853 162337 187959 211089 230131 243694 250749 250749

3. Asymptotic Normality The unimodal behavior of the inversion numbers

suggests that the number of inversions in a random permutation may be asymp-

totically normal. We explore this possibility by looking at the generating function

for the probability distribution of the number of inversions. To get this generating

function, we divide Φn(x) by n! since each of the n! permutations is equally likely.

φn(x) = Φn(x)/n!.

Following Vladimir Sachkov, we have the moment generating function [12]

Mn(x) = φn(e
x)

=
n
∏

j=1

1− ejx
j(1 − ex)

= exp

{

1

2

n−1
∑

j=0

jx

} n
∏

j=1

e−jx/2 − ejx/2
j(e−x/2 − ex/2)

= exp

{

1

2

n−1
∑

j=0

jx

} n
∏

j=1

ejx/2 − e−jx/2
j(ex/2 − e−x/2)

= exp

{

n(n− 1)x
4

} n
∏

j=1

sinh(xj/2)

jsinh(x/2)

An explicit formula for the generating function of the Bernoulli numbers is

x

ex − 1 =
∞
∑

k=0

Bk
xk

k!
.

Hence

x

ex − 1 +
x

1− e−x =
∞
∑

k=0

Bk
xk

k!
+
∞
∑

k=0

Bk
(−x)k
k!

xe−x/2

ex/2 − e−x/2 +
xex/2

ex/2 − e−x/2 = 2
∞
∑

k=0

B2k
x2k

(2k)!
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e−x/2 + ex/2

ex/2 − e−x/2 = 2

∞
∑

k=0

B2k
x2k−1

(2k)!

e−x/2 + ex/2

2(ex/2 − e−x/2) =
1

x
+
∞
∑

k=1

B2k
x2k−1

(2k)!

e−x/2 + ex/2

2(ex/2 − e−x/2) −
1

x
=

∞
∑

k=1

B2k
x2k−1

(2k)!

ln

(

sinh(x/2)

x/2

)

=
∞
∑

k=1

B2k
x2k

2k(2k)!
,

where the final step follows from integrating both sides and noting that

lim
x→0

sinh(x/2)

x/2
= 1,

so the constant of integration is zero.

Using this generating function, we find that the log of the moment generating

function is

lnMn(x) =
n(n− 1)x
4

+
n
∑

j=1

(

ln

(

sinh(xj/2)

xj/2

)

− ln
(

sinh(x/2)

x/2

))

=
n(n− 1)x
4

+

∞
∑

k=1

B2k
x2k

2k(2k)!

n
∑

j=1

(j2k − 1).

Now consider lnMn(t/σ), where σ is the standard deviation of the number of inver-

sions in a random equiprobable permutation with n elements,

σ =

√

2n3 + 3n2 − 5n
72

,

lnMn(t/σ) =
n(n− 1)t
4σ

+

∞
∑

k=1

B2k
t2k

2k(2k)!σ2k

n
∑

j=1

(j2k − 1).

The sum

σ−2k
n
∑

j=1

(j2k − 1),

for k > 1 is bounded above by the following integral:

n
∑

j=1

(j2k − 1) <
∫ n+1

1
(t2k − 1)dt = (n+ 1)

2k+1 − 1
2k + 1

− n,

so

σ−2k
n
∑

j=1

(j2k − 1) = O(n1−k).
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Hence

∞
∑

k=2

B2k
t2k

2k(2k)!σ2k

n
∑

j=1

(j2k − 1)→ 0, as n→∞ ,

uniformly for t from any bounded set. Therefore

lim
n→∞

Mn(t/σ) exp

{

−n(n− 1)t
4σ

}

= lim
n→∞

exp

{ ∞
∑

k=1

B2k
t2k

2k(2k)!σ2k

n
∑

j=1

(j2k − 1)
}

= lim
n→∞

exp

{

B2
t2

2(2)!σ2

n
∑

j=1

(j2 − 1)
}

= et
2/2.

This leads to the following theorem:

Theorem 2 (Sachkov). [12] If ξn is a random variable representing the number

of inversions in a random equiprobable permutation of n elements, then the random

variable

ηn = (ξn −Eξn)(Varξn)−1

has as n→∞ an asymptotically normal distribution with parameters (0, 1).

The graph below shows the density for a standard normal random variable in

black. The red curve gives a continuous approximation for the discrete probability

mass function for the number of inversions of a random permutation with n elements.

The graph shown is for n = 10. As n increases, the red curve moves closer to the

standard normal density so that it appears that the normal density may serve as a

useful tool for approximating the inversion numbers.
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Figure 1. Comparison of the inversion probability mass function to the standard

normal density

The figure below shows the ratio of the inversion numbers to the estimate pro-

vided by the normal density. The better the approximation, the closer the curve

will be to 1. The graph is scaled so that the x−axis is the number of standard
deviations from the mean.

Figure 2. The ratio of the inversion probability mass function to the standard

normal density scaled by the number of standard deviations from the mean

The curves have roughly the shape of a cowboy hat. The top of the hat at about

y = 1 seems to be getting broader as n increases (black is n = 10, red is n = 25,

blue is n = 50, and green is n = 100), suggesting that the approximation improves

with increasing n. Compare the figure above to the one below:

Figure 3. The ratio of the inversion probability mass function to the standard

normal density scaled by the nonzero inversion numbers
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The curves are rescaled in this figure so that 0 inversions is mapped to −0.5, and
(

n
2

)

inversions is mapped to 0.5 on the x−axis. In this way, we can see whether
the estimates for the nonzero inversion numbers improve as a percentage of the

total nonzero inversion numbers as n increases. Note that the colored curves are in

the opposite order of the preceding figure. The figure suggests that the estimates

actually get worse as n increases. The width of the top of the cowboy hat is getting

narrower as n increases. What this shows is that the relative error of the normal

density approximation increases as n increases as we move further into the tails of

the distribution. We can examine the asymptotic behavior of In(k) for k ≤ n more
closely.

4. An explicit formula for the inversion numbers Donald Knuth has made

the observation that we may write an explicit formula for the kth coefficient of the

generating function when k ≤ n ([8], p. 16). In that case,

Theorem 3 (Knuth, Netto). [8],[11] The inversion numbers In(k) satisfy the

formula

In(k) =

(

n+ k − 1
k

)

+

∞
∑

j=1

(−1)j
(

n+ k − uj − j − 1
k − uj − j

)

+

∞
∑

j=1

(−1)j
(

n+ k − uj − 1
k − uj

)

, (1)

for k ≤ n.

The binomial coefficients are defined to be zero when the lower index is negative,

so there are only finitely many nonzero terms: b−1/6 +
√

1/36 + 2k/3c in the first
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sum, and b1/6+
√

1/36 + 2k/3c in the second. The uj are the pentagonal numbers
(sequence A001318 in [13]),

uj =
j(3j − 1)
2

.

Figure 4. The pentagonal numbers

Donald Knuth’s formula follows from the generating function and Euler’s pen-

tagonal number theorem.

Theorem 4 (Euler). [1][7][8]

∞
∏

j=1

(1− xj) = 1 +
∞
∑

k=1

(−1)k(xk(3k−1)/2 + xk(3k+1)/2).

Recall the generating function

Φn(x) =
n
∏

j=1

1− xj
1− x

=

( n
∏

j=1

(1− xj)
)

(1− x)−n

=

( n
∏

j=1

(1− xj)
) ∞
∑

m=0

(

m+ n− 1
m

)

xm, for |x| < 1.

The coefficients of
∏n
j=1(1−xj) will match those in the power series expansion of the

infinite product given by Euler’s pentagonal number theorem up to the coefficient
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on xn. We consider the product

( ∞
∏

j=1

(1− xj)
) ∞
∑

m=0

(

m+ n− 1
m

)

xm =

(

1 +

∞
∑

i=1

(−1)i(xi(3i−1)/2 + xi(3i+1)/2)
) ∞
∑

m=0

(

m+ n− 1
m

)

xm.

The coefficient on xk is given by (1), for k ≤ n.

5. An asymptotic formula for the inversion numbers We are interested in

the sequences {In+k(n), n = 1, 2, . . .}. For k ≥ 0, the nth term of the sequence is
given by

In+k(n) =

(

2n+ k − 1
n

)

+

b−1/6+
√
1/36+2n/3c
∑

j=1

(−1)j
(

2n+ k − uj − j − 1
n− uj − j

)

+

b1/6+
√
1/36+2n/3c
∑

j=1

(−1)j
(

2n+ k − uj − 1
n− uj

)

(2)

With a = uj + j or a = uj , all terms are of the form

(

2n+ k − a− 1
n− a

)

=
(2n+ k − a− 1)!
(n− a)!(n+ k − 1)! .

We can approximate this quantity using Stirling’s approximation ([4], p.54 or [6],

p.452):

n! =
√
2πnn+1/2e−n(1 + (12n)−1 +O(n−2)).

So we have
(

2n+ k − a− 1
n− a

)

=

(

2n+ k − a− 1
n− a

)n−a(2n+ k − a− 1
n+ k − 1

)n+k−1( 2n+ k − a− 1
2π(n+ k − 1)(n− a)

)1/2

×

×
(

1− (8n)−1 +O(n−2)
)

=
22n+k−1−a√

πn

(

1 +
(a+ k − 1)2

4(n− a)(n+ k − 1)

)n(

1− k + a− 1
2(n+ k − 1)

)k−1

×

×
(

1− n+ k − 1
2n+ k − a− 1)

)a( 1

1− a/n

(

k + a− 1
2(n+ k − 1)

))1/2(

1− (8n)−1 +O(n−2)
)

=
22n+k−1−a√

πn

(

1 +
n(a+ k − 1)2

4(n− a)(n+ k − 1)

)(

1− (k − 1)(k + a− 1)
2(n+ k − 1)

)

×
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×
(

1− a(n+ k − 1)
2n+ k − a− 1)

)(

1 +
a− k + 1
4n

)(

1− (8n)−1 +O(n−2)
)

=
22n+k−1−a√

πn

(

1− 1
8n
+
1

4n
(k + 3a− (k + a)2) +O(n−2)

)

.

Using this asymptotic formula we can compute an asymptotic formula for the

sum In+k(n) given in equation (2):

In+k(n) =
22n+k−1√
πn

Q

(

1− C1
n
+
C2k − k2
4n

+O(n−2)

)

where

Q =

∞
∏

j=1

(

1− 1
2j

)

=

∞
∑

i=1

(−1)i
(

2−i(3i−1)/2 + 2−i(3i+1)/2
)

≈ 0.2887880951

is a digital search tree constant [5], and C1 and C2 are given by the convergent sums

C1 =
1

8
− 1

4Q

∞
∑

i=1

(−1)i
(

2−i(3i−1)/2(3(i(3i − 1)/2) − (i(3i − 1)/2)2)

+2−i(3i+1)/2(3(i(3i + 1)/2) − (i(3i + 1)/2)2)
)

≈ 1.855938894,

and

C2 = 1 +
1

Q

∞
∑

i=1

(−1)i(2−i(3i−1)/2(i(3i − 1)) + 2−i(3i+1)/2(i(3i + 1)))

≈ 6.488067775,

respectively. We summarize a less precise result in the following theorem:

Theorem 5.

In+k(n) =
22n+k−1√
πn

Q

(

1 +O(n−1)

)

, k ≥ 0,

where Q =
∏∞
j=1

(

1− 1
2j

)

.

This formula provides asymptotic estimates for the sequences A000707, A001892,

A001893, A001894, A005283, A005284 and A005285 of [13].
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The figure below shows the behavior of the tail of the number of permutations

with k inversions for k ≤ n. The blue curve is n! times normal density with mean
n(n− 1)/4 and variance 2n3+3n2−5n72 , that is, the blue curve is the estimate of In(k)

based on the normal density. The red dots are the values of the asymptotic estimate;

and the green dots are the exact values of In(k). Where the red and green dots are

not both visible, one dot covers the other. The figure shows the tail for n = 8 and

n = 16.

Figure 4. Comparison of normal density estimate to asymptotic formula and actual

inversion numbers

From our asymptotic formula for In(n) we can see that

lim
n→∞

In(n)

In−1(n− 1)
= 4,

but the normal density approximation for the ratio In(n)
In−1(n−1)

gives the estimate

ne−9/8 as n tends to infinity. Hence the normal density approximation grows much

faster than the inversion numbers in the tails do.
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