André proved that
![$ \sec x$](abs/img1.gif)
is the generating
function of all up-down permutations of even length and
![$ \tan x$](abs/img2.gif)
is the generating function of all up-down permutation
of odd length. There are three equivalent ways to define
up-down permutations in the symmetric group
![$ S_n$](abs/img3.gif)
. That is, a permutation
![$ \sigma $](abs/img4.gif)
in the symmetric group
![$ S_n$](abs/img3.gif)
is an
up-down permutation if either (i) the rise set of
![$ \sigma $](abs/img4.gif)
consists
of all the odd numbers less than
![$ n$](abs/img5.gif)
, (ii) the descent set of
![$ \sigma $](abs/img4.gif)
consists of all even number less than
![$ n$](abs/img5.gif)
, or (iii) both (i) and (ii).
We consider analogues of André's results
for colored permutations of the form
![$ (\sigma ,w)$](abs/img6.gif)
where
![$ \sigma \in S_n$](abs/img7.gif)
and
![$ w \in \{0,\ldots, k-1\}^n$](abs/img8.gif)
under the product order.
That is, we define
![$ (\sigma _i,w_i) < (\sigma _{i+1},w_{i+1})$](abs/img9.gif)
if and only if
![$ \sigma _i < \sigma _{i+1}$](abs/img10.gif)
and
![$ w_i \leq w_{i+1}$](abs/img11.gif)
.
We then say a colored permutation
![$ (\sigma ,w)$](abs/img6.gif)
is
(I) an
up-not up permutation
if the rise set of
![$ (\sigma ,w)$](abs/img6.gif)
consists
of all the odd numbers less than
![$ n$](abs/img5.gif)
, (II) a
not down-down permutation
if the descent set of
![$ (\sigma ,w)$](abs/img6.gif)
consists
of all the even numbers less than
![$ n$](abs/img5.gif)
, (III) an
up-down permutation
if both (I) and (II) hold. For
![$ k \geq 2$](abs/img12.gif)
,
conditions (I), (II), and (III) are pairwise distinct. We
find
![$ p,q$](abs/img13.gif)
-analogues of the generating functions
for up-not up, not down-down, and up-down colored permutations.