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Abstract

Let E be a set with n elements, and let T (n, k) be the number of all labeled
topologies having k open sets that can be defined on E. In this paper, we compute
these numbers for k ≤ 17, and arbitrary n, as well as tN0(n, k), the number of all
unlabeled non-T0 topologies on E with k open sets, for 3 ≤ k ≤ 8.

1 Introduction

Let E be an n-element set, and let T (n) be the total number of labeled topologies one can
define on E. Using the one-to-one correspondence between finite topologies and idempotent
0–1-matrices with 1 in the diagonal (see Krishnamurty [17]), it is possible to establish explicit
formulae for T (n) (see Erné [7]), but they are too complex for a numerical evaluation in
reasonable time, even on a modern computer. Comtet [5], Evans et al. [11], Renteln [19] and
others reduced the computation of the numbers T (n) to that of the numbers γn of labeled
acyclic transitive graphs, in other words, of partially ordered sets with n points. These
numbers are connected via the formula T (n) =

∑n

l=1 Sn,lγl, where the Sn,l are the Stirling
numbers of the second kind. That formula is evident in view of the one-to-one correspondence
between quasiorders and topologies, respectively, between partial orders and T0-topologies,
observed by Alexandrov [1] already in the 1930’s, and pursued later by many authors (see,
e.g., [2, 3, 7, 8, 9, 10, 14]). Consequently, γn is simultaneously the number T0(n) of all
T0-topologies on n points. Combining the above formula with computer methods, Evans et
al. obtained the numbers T (n) for n ≤ 7 in 1966; using suitable combinatorial identities,
Erné computed T0(n) and T (n) for n ≤ 8 in 1970 and for n ≤ 9 in 1972 (see [7]). Later the
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calculations were pushed forward, via sophisticated computer techniques, by Das [6], Stege
[24], Heitzig and Reinhold [14], and finally by Brinkmann and McKay [3, 4] until n = 18.

We shall use a refinement of the above formula involving the Stirling numbers, due to
Erné (see [7, 8], saying that for any property p of topologies that is invariant under lattice
isomorphisms, the number T p(n) of all topologies on n points with property p is obtained from
the corresponding numbers T

p
0 (n) of T0-topologies by the identity T p(n) =

∑n

l=1 Sn,lT
p
0 (l).

For example, this applies to the numbers T (n, k) of all topologies on n points having exactly
k open sets, or even more specifically, to the numbers Ta(n, k) of all such topologies with
exactly a atoms, i.e., minimal (nonempty) open sets. Alternatively, T (n, k) is the number
of all quasiordered sets with k downsets or antichains, respectively. Sharp [21] and Stephen
[25] showed that the maximal size of non-discrete topologies on E is 3 · 2n−2. Stanley [23]
enumerated all labeled topologies on E with k ≥ 7 · 2n−4 open sets, and Kolli [16] extended
the range to k ≥ 6 · 2n−4. Erné and Stege [9, 10] determined T0(n, k) and T (n, k) for n ≤ 12
and, using these numbers, T0(n) and T (n) for n ≤ 14. In their paper [10], using another
approach via an elegant combinatorial identity, they obtained formulae for T0(n, n + k + 1)
and k ≤ min{n, 12}. Combining the results of the two papers [9] and [10], one could compute
T0(n, k) and T (n, k) for n ≤ 12 and k ≤ 25, but not for all larger values. Independently,
Benoumhani [2] computed by a direct method, for all n, the number of labeled topologies with
k ≤ 12 open sets, and gave alternate proofs of some known facts in the field. The enumeration
of unlabeled (T0) topologies seems to be an even more difficult task. For an early approach,
see Knopfmacher [15], and for later more extensive calculations, [3, 4, 9, 10, 14].

The results in this paper are presented as follows: in Section 2, we continue the calculation
of T (n, k). The method used is one that was developed in [16]. The tedious calculations
in Section 2 illustrate how hard it is to determine, for instance, T0(10, n). In Section 3, we
compute the number of unlabeled non-T0 topologies with k ≤ 8 open sets, thereby extending
the work of Stanley [23]. In the two main results, the presence of the sequences related to
partitions of sets or numbers, respectively, is evident: labeled topologies create set partitions
(induced by the equivalence relation identifying points with the same closure), and as the
elements of the blocks are distinguishable in that case, the Stirling numbers of the second
kind are involved. When counted up to homeomorphism, finite topologies are related, in a
similar way, to partitions of integers, because in that case, only the number of elements in
the single blocks is relevant. This explains the appearance of the numbers of partitions of
the integer n in the corresponding formulae.

2 Computation of T (n, k), k ≤ 17

The following (known) properties of Stirling numbers of the second kind will be needed in
Example 4. We put them in

2



Lemma 1. For all n, and 1 ≤ k ≤ n − 1, the following relations hold

n−1
∑

l=1

(

n

l

)

Sl,k = (k + 1)Sn,k+1

n−1
∑

l=1

(

n

l

)

Sl,kSn−l,m =

(

m + k

k

)

Sn,k+m.

For a proof of this result, and other properties concerning Stirling numbers, see [13].

For the sake of brevity, we recall the definition of an ideal in a topology T (this is the
definition of an ideal in a poset).

Definition 2. Let T be a topology on E. The set A ⊂ T is called an ideal if it satisfies

∀A, B ∈ A, ∀O ∈ T , A ∪ B ∈ A, and A ∩ O ∈ A.

From [16] recall the definition of a minimal open set.

Definition 3. The element A ∈ T is called a minimal open set if for all O in T , we have

A ∩ O ∈ {∅, A}.

Using the lattice theoretic terminology, a minimal open set is in fact an element covering
the least element that is, an atom.

We designate by Ta(n, k) the set of all labeled topologies, having k open sets, and a

minimal open sets, T (n, k) the set of all topologies on E having k open sets. Let Ta(n, k) =
|Ta(n, k)|, and T (n, k) = |T (n, k)|. It is easy to see that

T (n, k) =
∑

a,2a≤k

Ta(n, k).

For a = 1, Kolli [16] proved

T1(n, k) =
n−1
∑

l=1

(

n

l

)

T (l, k − 1), ∀ n ≥ 1. (1)

To compute the other remaining numbers Ta(n, k), we use the method developed in [16]: if
T ∈ Ta(n, k), write it as

T = {∅, A1, . . . , Aa, . . . , E},

where A1, . . . , Aa are the minimal open sets of the topology T . Let A =
⋃a

i=1 Ai, and define
the mapping

Φ(T ) = T ′ = {O − A, O ∈ T }.

It is clear that T ′ is a topology on E − A, having r open sets, where

k − 2a + 1 ≥ r ≥

⌈

k

2a−1

⌉

− 1. (2)
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Conversely, if T ′ is in T (l, r), with l < n and r satisfies (2), we may restitute all the
topologies T from T ′ by determining all the possibilities of r. This means, we determine all
the topologies T having k open sets and a minimal open sets, and such that Φ(T ) = T ′.

Example 4. To illustrate our method, we compute T (n, 10) in all details. Using formula
(1), we have

T1(n, 10) =
n−1
∑

l=1

(

n

l

)

T (l, 9).

Now, let T = {∅, A1, A2, A3 = A1 ∪ A2, A4, . . . , A8, E} ∈ T2(n, 10), and let
T ′ = {O − A3, O ∈ T }. This topology has r open sets, and according to (2), the only
possibilities for r are 7, 6, 5, 4. Let us examine these cases one by one. For r = 7, let
T ′ = {∅, B1, . . . , B5, E − A3}, and since a topology is stable by union, then

T = {∅, A1, A2, A3 = A1 ∪ A2, A4 = B1 ∪ A3, . . . , A8 = B5 ∪ A3, E}.

The topology T is then completely determined by T ′, and the total number of such topologies
is

n−1
∑

l=1

(

n

l

)

Sl,2T (n − l, 7).

For r = 6, let T ′ = {∅, B1, B2, B3, B4, , E − A3}. The topology T will be obtained as
follows:

T = {∅, A1, A2, A3 = A1 ∪ A2, A4 = B1 ∪ A3, . . . , A7 = B4 ∪ A3, X, E}.

We have to determine the form of X. Note that if {∅, B1} is an ideal of T ′, then we have
two solutions: X = B1 ∪ Al, l = 1, 2. So, the wanted number is

n−1
∑

l=1

(

n

l

)

Sl,2

(

2T1(n − l, 6) + 4T2(n − l, 6)

)

.

For r = 5, let T ′ = {∅, B1, B2, B3, E − A3}. The topology T has the form

T = {∅, A1, A2, A3 = A1 ∪ A2, A4 = B1 ∪ A3, . . . , A6 = B3 ∪ A3, X, Y, E}.

As above, if {∅, B1, B2} is an ideal of T ′, then we have two solutions:

(X = B1 ∪ Al, Y = B2 ∪ Al) l = 1, 2,

and if {∅, B1}, {∅, B2} are two distinct ideals of T ′, then also we have two solutions:

(X = B1 ∪ A1, Y = B2 ∪ A2) ,

and
(X = B1 ∪ A2, Y = B2 ∪ A1) .
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So, the wanted number of such topologies is

n−1
∑

l=1

(

n

l

)

Sl,2

(

2T1(n − l, 5) + 4T2(n − l, 5)

)

.

For r = 4, T ′ = {∅, B1, B2, E − A3}, the topology T ′ is either a chain or its proper open
sets form a partition of the whole set (see Figure 1). We restitute T as follows:

T = {∅, A1, A2, A3 = A1 ∪ A2, A4 = B1 ∪ A3, A5 = B2 ∪ A3, X, Y, Z, E}.

If T ′ is a chain topology, then we have two solutions:

(X = B1 ∪ A1, Y = B2 ∪ A1, Z = E − A2),

and
(X = B1 ∪ A2, Y = B2 ∪ A2, Z = E − A1).

In the other case, there is no solution, and then the total number of such topologies is

2
n−1
∑

l=1

(

n

l

)

Sl,2T1(n − l, 4).

All these numbers added, we obtain T2(n, 10).
Now, we compute T3(n, 10). Let

T = {∅, A1, A2, A3, . . . , A7 = A1 ∪ A2 ∪ A3, A8, E} ∈ T3(n, 10),

where A1, A2, A3 are its three minimal open sets. Let T ′ = {O−A7, O ∈ T }. This topology
has r open sets with r = 3 or r = 2. For r = 3, T ′ = {∅, B1, E − A7}, then

T = {∅, A1, A2, A3, . . . , A7 = A1 ∪ A2 ∪ A3, A8 = B1 ∪ A7, E}.

The topology T is then totally determined by T ′. The total number of possibilities to
reconstruct T from T ′ is

n−1
∑

l=1

(

n

l

)

Sl,3T (n − l, 3).

For r = 2, T ′ = {∅, E − A7}. The topology T has the form

T = {∅, A1, A2, A3, . . . , A7 = A1 ∪ A2 ∪ A3, X, E},

and the three possibilities for the open set X are:

X = E − A3, or X = E − A2, or X = E − A1.

The number of such topologies is 3
∑n−1

l=1

(

n

l

)

Sl,3. Adding these numbers for r = 2, 3, yields
T3(n, 10), and then T (n, 10).
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According to Erné’s result [7]:

Ta(n, k) =
n−1
∑

l=1

Ta,0(l, k)Sn,l =
n−1
∑

l=1

Ca(l, k)l!Sn,l.

This means that the numbers Ta(n, k) are linear combinations of the (l!Sn,l)
k−1
l=1 . So, we

only have to determine the coefficients Ca(l, k). This is done in the following tables for
10 ≤ k ≤ 17. Note that we omitted the easy computations for k ≤ 9.

Ca(l, 10).

l = 4 l = 5 l = 6 l = 7 l = 8 l = 9

a = 1 0
5

6
5

11

2
3 1

a = 2
1

2

9

2

33

8
2

1

2
0

a = 3
1

2

1

6
0 0 0 0

Ca(l, 11).

l = 5 l = 6 l = 7 l = 8 l = 9 l = 10

a = 1 1
11

2

73

8

15

2

7

2
1

a = 2
31

12

15

2

43

8

9

4

1

2
0

a = 3
7

12

1

6
0 0 0 0

Ca(l, 12).

l = 4 l = 5 l = 6 l = 7 l = 8 l = 9 l = 10 l = 11

a = 1 0 0
25

6

79

6

29

2

39

4
4 1

a = 2 0
7

2

67

6

45

4

27

4

5

2

1

2
0

a = 3
1

2
1

2

3

1

6
0 0 0 0

Ca(l, 13).
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l = 5 l = 6 l = 7 l = 8 l = 9 l = 10 l = 11 l = 12

a = 1
1

2

9

2
16

295

12

85

4

49

4

9

2
1

a = 2
1

2

125

12

79

4

253

16

33

4

11

4

1

2
0

a = 3 1
17

12

3

4

1

6
0 0 0 0
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Ca(l, 14).

l = 5 l = 6 l = 7 l = 8 l = 9 l = 10 l = 11 l = 12 l = 13

a = 1 0 2
49

3

73

2

649

16

59

2
15 5 1

a = 2
3

2
13

365

12

94

3

85

4

79

8
3

1

2
0

a = 3
7

4
3

15

8

5

6

1

6
0 0 0 0

Ca(l, 15).

l = 5 l = 6 l = 7 l = 8 l = 9 l = 10 l = 11 l = 12 l = 13 l = 14

a = 1 0
13

4
18

389

8

206

3

2975

48

315

8
18

11

2
1

a = 2
1

2

33

4

209

6

439

8

557

12

221

8

93

8

13

4

1

2
0

a = 3
1

2

127

36

13

3

19

8

11

12

1

6
0 0 0 0

Ca(l, 16).

l = 4 l = 5 l = 6 l = 7 l = 8 l = 9 l = 10 l = 11 l = 12 l = 13 l = 14 l = 15

a = 1 0 0 1
541

36

343

6

847

8
116

4309

48
51

85

4
6 1

a = 2 0 0
41

4

139

3

685

8

2155

24

2097

32
35

27

2

7

2

1

2
0

a = 3 0
3

2

23

4

293

36

143

24

35

12
1

1

6
0 0 0 0

a = 4
1

24
0 0 0 0 0 0 0 0 0 0 0
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Ca(l, 17).

l = 5 l = 6 l = 7 l = 8 l = 9 l = 10 l = 11 l = 12 l = 13 l = 14 l = 15 l = 16

a = 1
1

24

3

2
17

139

2

595

4

2383

12

5841

32

1999

16

129

2

99

4

13

2
1

a = 2 0
11

2

1013

24

677

6

2503

16

413

3

8567

96

695

16

31

2

15

4

1

2
0

a = 3 0
9

2

91

8

149

12

379

48

7

2

13

12

1

6
0 0 0 0

a = 4
1

24
0 0 0 0 0 0 0 0 0 0 0

3 Unlabeled topologies for small k

In this section, we investigate the number of unlabeled topologies, with k ≤ 8 open sets,
denoted by tN0(n, k). Note that a T0− topology must satisfy k > n, and since these topologies
are calculated for n ≥ k, they are all non-T0. We have the

Theorem 5. For n ≥ k, the numbers tN0(n, k) satisfy the following identities:

tN0(n, 2) = 1

tN0(n, 3) = n − 1

tN0(n, 4) =
2n2 − 4n + 3

4
+

(−1)n

4

tN0(n, 5) =
2n3 − 6n2 + 10n − 9

12
−

(−1)n

4

tN0(n, 6) =
2n4 − 8n3 + 40n2 − 112n + 87

48
+ (−1)n 3

16

tN0(n, 7) =
2n5 − 10n4 + 100n3 − 560n2 + 1113n − 675

240
+ (−1)n (n − 3)

16

tN0(n, 8) =
4n6 − 24n5 + 400n4 − 2820n3 + 8056n2 − 10386n + 5130

2880
− (−1)n (3n − 7)

32
+

{

n2

12

}

Note that the number of partitions of n in to 2 and 3 summands, P (n, 2), P (n, 3) are given

by P (n, 2) =
⌊

n
2

⌋

, P (n, 3) =
{

n2

12

}

, where {x} is the nearest integer to x.

The proof of the previous theorem is based on the following lemma:
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Lemma 6. We have

n−1
∑

k=2

⌊

k

2

⌋

=
⌊n

2

⌋

⌊

n − 1

2

⌋

=
⌊n

2

⌋

(

⌊n

2

⌋

−
(−1)n + 1

2

)

n−2
∑

k=2

k

⌊

k

2

⌋

=
1

12

⌊

n − 1

2

⌋(

4n2 − (15 − 2(−1)n)n + 12 +
3

2
(1 − (−1)n)

)

n−2
∑

k=2

⌊

k

2

⌋2

=
(n − 2)

4

(

(n − 1)(n − 3)

3
+

(1 + (−1)n

2

)

n−2
∑

k=2

⌊

k

2

⌋⌊

−
k − 1

2

⌋

= −
n−2
∑

k=2

⌊

k

2

⌋2

= −
(n − 2)

4

(

(n − 1)(n − 3)

3
+

1 + (−1)n

2

)

n−1
∑

k=3

⌊

k

2

⌋ ⌊

k − 1

2

⌋

=
⌊n

2

⌋

⌊

n − 2

2

⌋(

2n − 5

6
+

(1 − (−1)n)

3

)

n−1
∑

k=4

k

⌊

k

2

⌋ ⌊

k − 2

2

⌋

=
1

4

⌊n

2

⌋

⌊

n − 3

2

⌋ (

n2 − 2n +
(1 − (−1)n)

2

)

n−1
∑

k=4

(−1)k−1

⌊

k

2

⌋ ⌊

k − 2

2

⌋

= −
(n − 1)(n − 3)

8
(1 − (−1)n)

Proof. First, note that

⌊

k

2

⌋

=
2k − 1 + (−1)k

4
⌊

−
k

2

⌋

= −

⌊

k

2

⌋

−
1 − (−1)k

2
⌊

k − 1

2

⌋

=

⌊

k

2

⌋

−
(−1)k + 1

2
.

So, the second formula of the lemma is

n−2
∑

k=2

k

⌊

k

2

⌋

=
n−2
∑

k=2

k

(

2k − 1 + (−1)k

4

)

.

Using the known summations
l

∑

k

kj and
l

∑

k

(−1)kkj, we obtain

n−2
∑

k=2

k

⌊

k

2

⌋

=
n−2
∑

k=2

k

(

2k − 1 + (−1)k

4

)

=
n3

6
−

7n2

8
+

35n

24
−

13

16
−

(−1)n−1n

8
+

3(−1)n−1

16
.
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This may be written

n−2
∑

k=2

k

⌊

k

2

⌋

=

{

(n−2)(4n2−13n+12)
24

, if n = 2l;
(4n−5)(n−1)(n−3)

24
, if n = 2l + 1.

In a more compact formula, the previous summation becomes

n−2
∑

k=2

k

⌊

k

2

⌋

=
1

12

⌊

n − 1

2

⌋(

4n2 − (15 − 2(−1)n)n + 12 +
3

2
(1 − (−1)n)

)

For the fourth one, using the observations in the beginning of the proof, we obtain

n−2
∑

k=2

⌊

k

2

⌋ ⌊

−
k − 1

2

⌋

= −
n−2
∑

k=2

⌊

k

2

⌋2

.

But

n−2
∑

k=2

⌊

k

2

⌋2

=
n−2
∑

k=2

(

2k − 1 + (−1)k

4

)2

=
(n − 2)

4

(

(n − 1)(n − 3)

3
+

(1 + (−1)n

2

)

.

The remaining cases are proved similarly.

Proof of Theorem 5.

Proof. Before starting the proof, we point out the following easy but important facts:
1) Two finite topologies are homeomorphic if and only if, as a poset, they have the same
Hasse diagram and all the corresponding open sets have the same cardinality.
2) The number of unlabeled non-T0 chain topologies having k nontrivial open sets (i.e.; open
sets different from φ and E) is

(

n−1
k

)

. This is also, the number of strictly increasing sequences
having k terms, taken from a set of n integers.
For the sake of simplicity and shortness, we performed the calculations using the floor brack-
ets.
The computations of tN0(n, k) will be the same as in [2]: We list all the possible forms, and
then count them. Calculation of tN0(n, 3) is easily obtained: those are chains with three
elements, their number is

(

n−1
1

)

. For tN0(n, 4), we have two kinds of topologies: chains with
4 open sets and topologies having the form below

•@
@@
•�

��
•
@

@@•

�
��

Figure 1
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For the first one the number is
(

n−1
2

)

. In the second case, the total number of different
non-T0 topologies is

⌊

n
2

⌋

, (this is also the number of partitions of n into exactly 2 summands;
P (n, 2)).
Furthermore

tN0(n, 4) =

(

n − 1

2

)

+
⌊n

2

⌋

=

(

n − 1

2

)

+ P (n, 2) =
2n2 − 4n + 3

4
+

(−1)n

4
.

For tN0(n, 5), there are 3 forms: Chains and topologies having one of the two last forms as
indicated in the figure below (note that the two last diagrams have the same number).

•

•

∅

•

•

•E

•@
@

@
•�

�
�
•
E

@
@

@•

�
�

�

∅
• •@

@
@
•�

�
�
•
@

@
@•

�
�

�

∅

E
•

Figure 2

For the chains, their number is
(

n−1
3

)

. For the remaining cases the number is counted
as follows: take 2 ≤ k ≤ n − 1, and then partition into 2 parts, to obtain a topology of four
open sets on a set of cardinality k. To obtain a topology on E, add the whole set E. The
number of ways to do that is

n−1
∑

k=2

⌊

k

2

⌋

.

The previous number is counted twice because of the symmetry of the cases. By Lemma 6,
this gives

2
n−1
∑

k=2

⌊

k

2

⌋

= 2
⌊n

2

⌋ (

2
⌊n

2

⌋

− (−1)n − 1
)

= 2
⌊n

2

⌋

⌊

n − 1

2

⌋

Thus, the total number in this case is

tN0(n, 5) =

(

n − 1

3

)

+ 2
⌊n

2

⌋

⌊

n − 1

2

⌋

=

(

n − 1

3

)

+
2n2 − 4n + 1

4
−

(−1)n

4

=
2n3 − 6n2 + 10n − 9

12
−

(−1)n

4

For tN0(n, 6), the forms are illustrated below
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The number of chain topologies is
(

n−1
4

)

. The number of topologies corresponding to the
next three graphs is counted as follows. Take 3 ≤ k ≤ n − 1, there are

1

2

⌊

k

2

⌋(

2

⌊

k

2

⌋

− (−1)k − 1

)

=

⌊

k

2

⌋⌊

k − 1

2

⌋

non-T0 topologies with 5 open sets, on a k-element set, having the second (or the third) form
in Figure 2. A topology of the wanted form is obtained by adjoining the whole set E. This
sum has to be taken three times. So, the wanted number is

3
n−1
∑

k=3

⌊

k

2

⌋ ⌊

k − 1

2

⌋

using the fifth formula in Lemma 6, we obtain

3
n−1
∑

k=3

⌊

k

2

⌋⌊

k − 1

2

⌋

= 3
⌊n

2

⌋

⌊

n − 2

2

⌋(

2n − 5

6
+

(1 − (−1)n)

3

)

=
1

2

⌊n

2

⌋

⌊

n − 2

2

⌋

(2n − 2(−1)n − 3) .

For the number of topologies corresponding to the last graph in Figure 3, let 2 ≤ k = |C| ≤
n − 1. Partition it into two parts, k = l + j, |A| = l, |B| = j. To each partition of k,

13



it corresponds two different topologies: τ1 = {φ, A1, B1, C, D1, E}, |A1| = l, |B1| =
j, |D1| = n − k + j and τ2 = {φ, A2, B2, C, D2, E}, |A2| = j, |B2| = l, |D2| =
n− k + l, unless l = j, in this case we have only one topology. So, the number of topologies
corresponding to k is

αk =

{

2
⌊

k
2

⌋

, if k = 2l + 1;

2
⌊

k
2

⌋

− 1, if k = 2l.

The wanted number is
n−1
∑

k=2

αk = 1 + 2 + 3 + · · · + n − 2 =

(

n − 1

2

)

.

Finally, summing and replacing

⌊

l

2

⌋

by
2l − 1 + (−1)l

4
, and the binomial coefficients by

their values we obtain

tN0(n, 6) =

(

n − 1

4

)

+

(

n − 1

2

)

+
1

2

⌊n

2

⌋

⌊

n − 2

2

⌋

(2n − 2(−1)n − 3)

=

(

n − 1

4

)

+

(

n − 1

2

)

+
4n3 − 18n2 + 20n − 3

16
+ (−1)n 3

16

=
2n4 − 8n3 + 40n2 − 112n + 87

48
+ (−1)n 3

16

For tN0(n, 7)), we have
(

n−1
4

)

) chain topologies. Insert the graph in Figure 1 into a chain of
4 elements (the number is counted 4 times): this gives the number

4
n−3
∑

k=2

(

n − k − 1

2

)⌊

k

2

⌋

.

By Lemma 6, this number is

4
n−3
∑

k=2

(

n − k − 1

2

)⌊

k

2

⌋

= 2
n−3
∑

k=2

(n − k − 1)(n − k − 2)

⌊

k

2

⌋

= 2(n2 − 3n + 2)
n−3
∑

k=2

⌊

k

2

⌋

− 2(n − 3)
n−3
∑

k=2

⌊

k

2

⌋

+ 2
n−3
∑

k=2

(k2 + k)

⌊

k

2

⌋

.

=
1

3

⌊n

2

⌋

⌊

n − 2

2

⌋(

n2 − 4n − (1 + (−1)n)(n − 4) +
1 − (−1)n

2

)

Again, replacing

⌊

l

2

⌋

by its value, we obtain

1

3

⌊n

2

⌋

⌊

n − 2

2

⌋(

n2 − 4n − (1 + (−1)n)(n − 4) +
1 − (−1)n

2

)

=
4n4 − 32n3 + 80n2 − 64n + 6

48
−

1

8
(−1)n

The number corresponding to the graph below is is evaluated as follows:
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Take a subset of cardinality 2 ≤ k ≤ n − 2, then partition it into two parts, this is done
by ⌊k

2
⌋ and then put over it two subsets containing it, such that their union is the whole set,

this can be done by ⌊n−k
2
⌋, so the wanted number is

n−2
∑

k=2

⌊

k

2

⌋⌊

n − k

2

⌋

=
⌊n

2

⌋

⌊

n − 2

2

⌋

(n − (−1)n)

6

=
2n3 − 6n2 + n + 3

48
+

3(n − 1)

48
(−1)n

The number corresponding to the last case in tN0(n, 6), with a least or a greatest element
is (this is counted twice):

2
n−1
∑

k=3

(

k − 1

2

)

= 2

(

n − 1

3

)

.

Summing all these numbers, we obtain tN0(n, 7) as claimed.
For tN0(n, 8), we have six forms: chains (

(

n−1
6

)

). Topologies such that their diagram is

formed by three copies of the graph in Figure 1. Their number is 2
(

n−1
3

)

. Topologies in the
figure corresponding to the last case in tN0(n, 6), with a least and a greatest element added
(counted three times) is 3

(

n−1
3

)

. The number of different and non homeomorphic topologies
corresponding to the graph below, is counted as follows:
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@
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• •

•

•

•

••

•

Figure 5

The number of topologies with 7 open sets on a set of k > 3 elements, having the form

15



in Figure 4, is
⌊

k

2

⌋ ⌊

k − 2

2

⌋

(

k − (−1)k
)

6
.

In order to obtain a topology on E, with 8 open sets, we adjoin the whole set. Thus, the
number is

n−1
∑

k=4

⌊

k

2

⌋ ⌊

k − 2

2

⌋

(

k − (−1)k
)

6
.

The last sum is counted three times. We obtain

3
n−1
∑

k=4

⌊

k

2

⌋⌊

k − 2

2

⌋

(

k − (−1)k
)

6
=

1

2

⌊n

2

⌋

⌊

n − 2

2

⌋⌊

n − 3

2

⌋(

n

2
+

(1 − (−1)n)

4

)

=
2n4 − 12n3 + 16n2 + 6n − 9

64
−

3(2n − 3)

64
(−1)n.

Topologies formed by a chain and a copy of the graph in Figure 1 (a chain with four
elements over the graph). These topologies are counted 5 times. This is counted as follows:
For each 2 ≤ k ≤ n − 4, we may construct

(

n − k − 1

3

)⌊

k

2

⌋

different topologies. Using the summation formulas of Lemma 6, the total number is

5
n−4
∑

k=2

(

n − k − 1

3

)⌊

k

2

⌋

=
1

12

⌊n

2

⌋

⌊

n − 2

2

⌋⌊

n − 4

2

⌋(

2n2 − (10 + 3(−1)n)n + 1 +
15

2
(1 + (−1)n)

)

=
4n5 − 50n4 + 220n3 − 400n2 + 256n − 15

192
+

15

192
(−1)n

The number of topologies corresponding to the boolean algebra (the figure below) is P (n, 3),
the number of partitions of the integer n into 3 summands. Summing all these quantities,
we obtain the desired formula.
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Figure 6
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4 Conclusion

In the first part of this paper, we computed T (n, k) for every n and k ≤ 17. Our method does
not use the powerful tool of poset theory. It is somewhat direct and rests heavily on some
elementary and simple diophantine equations. Calculations may be pushed till a reasonable
range of k, (k ≤ 30 for example), and if refined, we may go far beyond this range.

In the second part of the paper, we encounter a difficulty to compute the numbers
tN0(n, k), since there is no method to deal with them, and there is no analogous formula, as
for T0(n, k). Here too, we may reach the range of k = 10 or k = 11. This is the project of a
forthcoming paper.
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