A. Zekraoui
Université de Monastir
F. S. M.
Dép. de Math.
Avenue de l'environnement
5000 Monastir
Tunisie
For
![$ P\in \mathbb{F}_2[z]$](abs/img1.gif)
with
![$ P(0)=1$](abs/img2.gif)
and
![$ \deg(P)\geq 1$](abs/img3.gif)
, let
![$ {\cal A}={\cal A}(P)$](abs/img4.gif)
be the unique
subset of
![$ \mathbb{N}$](abs/img5.gif)
such that
![$ \sum_{n\geq 0}p({\cal
A},n)z^n\equiv P(z)$](abs/img6.gif)
(mod
![$ 2$](abs/img7.gif)
), where
![$ p({\cal A},n)$](abs/img8.gif)
is the
number of partitions of
![$ n$](abs/img9.gif)
with parts in
![$ {\cal A}$](abs/img10.gif)
. Let
![$ p$](abs/img11.gif)
be
an odd prime number, and let
![$ P$](abs/img12.gif)
be irreducible of order
![$ p$](abs/img11.gif)
; i.e.,
![$ p$](abs/img11.gif)
is the smallest positive integer such that
![$ P$](abs/img12.gif)
divides
![$ 1+z^p$](abs/img13.gif)
in
![$ \mbox{$\mathbb{F}$}$](abs/img14.gif)
![$ _2[z]$](abs/img15.gif)
. N. Baccar proved that the elements of
![$ {\cal A}(P)$](abs/img16.gif)
of the form
![$ 2^km$](abs/img17.gif)
, where
![$ k\geq 0$](abs/img18.gif)
and
![$ m$](abs/img19.gif)
is odd,
are given by the
![$ 2$](abs/img7.gif)
-adic expansion of a zero of some polynomial
![$ R_m$](abs/img20.gif)
with integer coefficients. Let
![$ s_p$](abs/img21.gif)
be the order of
![$ 2$](abs/img7.gif)
modulo
![$ p$](abs/img11.gif)
, i.e., the smallest positive integer such that
![$ 2^{s_p}\equiv 1$](abs/img22.gif)
(mod
![$ p$](abs/img11.gif)
). Improving on the method with which
![$ R_m$](abs/img20.gif)
was obtained explicitly only when
![$ s_p=\frac{p-1}{2}$](abs/img23.gif)
, here we make explicit
![$ R_m$](abs/img20.gif)
when
![$ s_p=\frac{p-1}{3}$](abs/img24.gif)
. For that, we have used the number of points of the elliptic curve
![$ x^3+ay^3 =1 $](abs/img25.gif)
modulo
![$ p$](abs/img11.gif)
.