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Abstract

In this paper, we present many general identities connected with the classical Ra-
manujan equality. Moreover, we give Binet formulas for an accelerator sequence for
Catalan’s constant.

1 Introduction

The main objective of this paper is to obtain some general trigonometric formulas related
to the known Ramanujan equality [1, 2, 3, 5, 7]:

Jcos a + Veos 2a + Veosda = /(5 - 3V/7), (1)

where o« = 27/7. Other formulas of this type, referring to the ninth and eleventh primitive
roots of unity, etc., will be published in separate papers. The present paper, in a way,
is a continuation of previous papers [11, 12, 13] and I will take advantage of some results
from those papers. The quasi-Fibonacci sequences of the seventh order discussed in the
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above mentioned papers are applied here for describing some attractive formulas involving
radicals.
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The paper is divided into five parts:

— Section 2 — where some striking equalities related to equality (1) are presented. Fur-

thermore, Binet formulas for two new sequences {S,} and {S}} are derived, which,
at the same time, resolves the problem of an algebraic description of the zeros of
polynomials 2* — /72 — 1 and 2® — v/49z — 1 (see Remark 1).

Section 3 — where the fundamental formula (10) for a sum of the cube roots of the
three roots of a cubic polynomial is given.

Section 4 — where many basic sequences of integers, reals and complex numbers, in-
troduced and discussed earlier by the authors in papers [11, 12, 13], are presented. In
addition, some new relations between the elements of the sequences are discussed. Fur-
thermore, a new description of Binet’s formula is introduced for an accelerator sequence
for Catalan’s constant, which, naturally, makes it possible to extend this formula for
all integers (see Remark 7).

Section 5 — where applications of the formula (10) to many special kinds of polynomial
of degree three are given. This section contains many Ramanujan type trigonomet-
ric formulas. Moreover in Remark 10 the nontrivial theoretical discussion of some
numerical case is presented.

Delicious

Now we are going to prove the following three interesting identities:

CoS «v Cos 2« cos 4o
3 (2 CoS a)k + 1 (2 Cos 2a)k + ¢ (2 CoS 4a)k =
Cos 2« cos 4o CoS «v
4] cosa k+1  3/COS 2 kt1
= 2 2 2 4
Cos 2« ( o a) + cos 4o ( o a) +
5/ cos da

(2 cos oz)]ngl = V7, (2)

COos

where 1/}0 = —1, 2/)1 = 0, '(ﬁg = —3 and

Vg3 + Vg2 — 2 — Y = 0, k€ Z;

2 4
5] L5 (2 COSCY)k—l— s/ €520 (2 cosQa)k+ 5/ S8 (2 Cos4a)k =
cos 4o CoS « Cos 2«
2 4
_ e (2 cos oz)kJr1 s/ CO52 (2 cos 204)“rl +
COS (v Ccos 2«
4] COs

(2 cos 404)k+1 = V49 ¢r,, (3)

COS 4(¥



where oo =0, ;1 = —1, o =1 and

Ok+3 T Pry2 — 2041 — 0 = 0, ke Z;

Vsec 2a (2 cos oz)k + Vsec da (2 cos 2a)k + V/seca (2 cos 4a)k =
= G \/8 =6 VT + o (/6 (1+ V1) + & y/2(5-3V7)" =

3
= :\3/f3k+1 +6 — % ({’/Sskﬂ,s + v Daig1,8 + </83k+1,8 —VT3py18 ); (4)

where
60:1’ 51:07 62207
00:0, g1 :—1, 0'2:(),
60:07 5120, 62:]-7

Xk+3+Xk+2—2Xk+1—Xk:O, k:0,172,...,

for every X € {0,0,£}, whereas the sequences fsr11, Sari1s and Tgpiqs are defined by
formulas (21), (99) and (100) (in Section 4, other sequences occurring in the definition of
sequences Ssxi1s and Tg;4 1 are defined as well). The first twelve values of numbers 1, and
©, are presented in Table 1.

Moreover an interesting numerical link to the formula (2) are the considerations from
Remark 10.

Proof of formulas (2)-(4).

For k =0, 1,2, the formulas (2)—(4) follow from (34), (37), (40), (41) and (44), and (or)
from the following equalities (in both cases, equality (5) below for X = 0 is needed):

./ cos

3/ COS 2x 5/ cos 4o

(2 Cos a)2 +

2
2 2
Cos 2« cos4a( o8 a) +

2
p— (2 cos4a) =

5/ COS 2 5/ cos 4o

_ pf £ a (2+2 cosQa)+

cos 2«

(2 + 2 cos 4a) +
cos 4o COSs &

=2V T +2 (\:)’/cosa cos? 2a + Vcos 2a cos? da + v cos da cosza) =

2 4
:_2\3/?+</COS Oé+€/COS Oé+3 COS & :_2\3/?+\3/?w0:_3\3/?’
cos 4o COS & cos 2«

(2+2 cosa) =

and

4] cosa 5/ COS 2cx 5/ cos da

2 2 2
p—y (2 cos a) + p— (2 cos 2a) + p— (2 cos 4a) =

cos
=¢ @ (2+2cos2a)+
cos 4o COS «v

5/ COS 2x 5/ cos da

(2 + 2 cos 4a) +

p— (2 + 2 cosa) =



2 2 9
Cos 2« cos 4o COS «v
=249 ¥ ¥ 3 =
pot ( CoS 404) + ( COS & + Cos 2«
2
2 . 4 2 / 4
:i/cos a_i_i/cos a+scosa 5 5/ COS a+scosa+3008a:
cos 4o COSs & Cos 2« COSs & cos 4o Cos 2«

(V7w * 919 e = V9.

I
~—

Now let us set ,

B, = Zxk (cos (Zka))n,

k=0

where 7, € R, k = 1,2, 3, are given. Then, from Newton’s formula we obtain
%n+3 + %nJrQ -2 %nJrl - %n =0

since [5, 11, 12]:
2

[T (X -2cos(2%a)) =x*+ X2~ 2%~ 1. (5)
k=0
Hence, on account of the definitions of sequences ¢, and ¥, k € N, by applied induction
arguments the formulas (2) and (3) follow. Similarly, by applying (33), (36) and (39) we
deduce the first part of (4). The second part of (4) from (98) follows.

Remark 1. Leta,b,ce Cand a+0b+c=0. Put
sp = a® +b" 4 k € N.

Then the following relations hold [5, 6]:

2

25, = 83; 6 s5 = D 52 83;
657 = 783 84; 1057 = 7 89 s5;
25 53 57 = 2182; 50 52 = 49 54 57

and the respective Newton formula has the form
1
sn+3:abcsn+5325n+1, n € N.

Hence, and from (3) for k = 0, we get
Sn+3 = \S/?SnJrl + ‘Sm
where Sy =3, 8, =0, S, = 2V/7,

cos o \"/3 cos 2o \"? cosda \"™?
Sy = < ) + +
cos 4o COS « cos 2«
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which implies the following formula

where
p43 = Qp + 7cn7

bny3 = bp + Uy,
Cpts = Cp + by,
Zl\o - 3, Zil - 0,
bo=0, b =0, by=1,

/C\O = 0, /C\l = O, Co =
On the other hand, from (2) for & = 1, we obtain

where §§ =3, &7 =0,

<2 cosa ¢ cosa) —I—(20032a 3/ €5 a) +(2 cos 4oy o a)) n €N,

S¥ =
" cos 2« cos 4o Cos v

and by (5) for X = 0:

. cos v \2/3 cos 2\ cos da \/®
S, ::< ) (242 cos2a) + (242 cosda) + (242 cosa) =
cos 2« cos 4o Ccos

2
cosa \1/3 Cos 2« 1/3 cos 4o 1/3
=2 ((=5-)" + + -
Cos 2« cos 4o COS &
cosa \l/3 cos 4o Cos 2«
_4 ( ) +
cos 4o Cos 2« CoS «
1/3 1/3
+ (2 CcoS 04) (4 COS (v COS 204) 2 CoS 204) 4 Cos 2av cos 4a) +
+ (2 cos4a)1/3 (4 cos o cos4a) = (\/_wo) — 48+ S, = 2v/49.

So, we have

which implies

St =al, + b VT + ¢, V49,
where

*

Anyg =Gy +Tby
* 7k

bn+3 - bn + 7Cn+l7

* % *
Cn+3 = Cp + an—i—l?



CS = Y CT - Y C; =
We note that the elements Ss,, = @, and S, =a),, n =0,1,..., are all integers.

3 Some theoretical deliberations

Let us assume that &, &, & are complex roots of the following polynomial with complex
coefficients
f(z)=2"+pz"+qz+r.

The symbols /&1, /&, /€3 will denote any of the third complex roots of the numbers &;, &
and &3, respectively (only in the case where &, & and & are real numbers, we will assume
that /&1, /& and /& also denote the respective real roots).

Let us assume that ;
A= <{’/E+\3/5+ 353)
and .
B (V& Ve + VG Va+ Vaa)
Thus, the numbers

Va+¥Ve+ys and Y Ye+VaVe+ Ve Ys

belong to the sets of the third complex roots of A and B, respectively, which, for conciseness
of notation, will be denoted by the symbols v/A and v/B, respectively. In other words, we

have
Ve + 6+ s e VA
Ve e+ Ve VG + Ve Ve e VB

Hence, after two-sided raising of the numbers to the third power, we obtain the following

formulas: )
A=§1+§2+§3+3Z<€/§> Va+6Y6 64,

k£l

and

and
B=66+66+66+3Y (Va) Ve Va Ve Ve +6(Va Ve Ve)
k#l

where

Va e e Va&s==—r=—-r
Also here, for abbreviation, the product (—1) /& /& /& will be denoted by the symbol
.



Taking into account Viete’s formulas for polynomial f(z), the expressions for A and B
can be attributed the following form (from now on, symbols v/A and v/B will mean the
properly selected elements from sets v/A and /B, respectively):

A= —p+3VAVB+3Yr (6)

and
B=q—3VAVBYr-3 (). (7)

By multiplying the first of these equations by /r and adding the equations side-by-side,
we obtain

B=q—(A+p)Vr. (8)
At the same time, the equation (6) yields

3VAVB=A+p—3r,

ie.,

2TAB= (A+p-33r)°,
hence, with respect to (8) we obtain
21A (q— (A+p)¥r) =A% +p* —27r +
+3 (A% (p=3Vr) + AP +9(Vr)*) = 3p"Vr +9p (Vr)?) — 18 Ap V/r,

and having rearrange the summands (with respect to the powers of A), we obtain the basic
equality

A 43 (p+6Ir)A+3 (P +3pIr+9(r)?—99)A+ (p—3r)’ =0. (9)

By applying Cardano’s formula to this polynomial, we get the following basic formula
(the right side of the formula below means a properly selected third root of the number
present in the formula):

VA= /6 + 6+ 6=

:\3/_])_6%_%({‘/3+ﬁ+ i/s-ﬁ) (10)

where

S:=pq+6qr+6pVr2+9r,
T =p"¢ —4¢>—4p>r+18pqr — 2717

In the case when 7 > 0, § € R, r € R, we assume that all the roots appearing here are real.



Remark 2.  We note that, if in the formula (9) the following condition holds

(p+6/7)" =p*+3p¥/r +9(Vr) =9,
ie.,
PV +3(Vr)?+q=0, (11)
then the equation (9) could be given in the form

(A+p+6¢r)° = (p+6¥r) — (p—3vr)",

hence we get

A=—p=6¢r+(p+6r) — (p—33r)" (12)

Remark 3.  The analysis which enabled describing the value of A by means of coefficients
of polynomial f(z) comes from the papers [7, 5] (see also [4]).

4 Basic sequences

We will now provide definitions of a dozen basic sequences (not only integer sequences)
used further in the paper. For more information concerning these sequences (including the
trigonometric relationships defining their terms), see the papers [11, 12].

The sequences {A4,(8)}5, {Bn(0)}2, and {C,(5)}°, are the so-called quasi-Fibonacci
numbers of the seventh order described in [11] by means of relations

(1+0(€" +%)" = Au(0) + Ba(0) (€" + %) + Cu(0) (€ + ™) (13)

for k = 1,2,3, where ¢ € C is a primitive root of unity of the seventh order (¢ = 1 and
£#1),6 €C, d+#0. These sequences satisfy the following recurrence relations

Ao(d) =1, Bo(0) = Co(6) =0,
An+1(5) A5+ 253 (8) — 5 C,(6),
nt+1(0) = 0 Ay (6) + By(9),
(6) =6 B

5 s (14)
Coa(0) = 0 B (0) + (1= 0) (o),

for every n € N.
Two auxiliary sequences {A,(5)}>2, and {B,(0)}°, connected with these ones are de-
fined by the following relations:

An(8) 1= 3 A, (8) — Bp(8) — Cp(5) (15)
and )
B, (6) = 5((An((S))2 — Az (9)). (16)

Furthermore, to simplify notation, we will write

A, = A, (1), B,=B,(1), A, = A.(1), B, = B,(1) and C,, = C,,(1), (17)

8



for every n € N.
We note that the elements of the sequences {A,}2°, {A,}02. {Bn}i2, and {C),}22,
respectively, satisfy the following recurrence relation (see [12, eq. (3.20)]):

Xn—i—i’) - 2Xn+2 - Xn+1 + Xn =0.

Simultaneously, the elements of sequence {B,}22, by [12, egs. (3.18), (3.13)] satisfy the
following relation
Bn+3 + Bn+2 - 2Bn+1 - Bn = 0. (18)

Remark 4. The sequence {B,};°, is an accelerator sequence for Catalan’s constant
(see [10, sequence A094648] and papers [11, 12]).

The elements of the sequences {a,}7°, {b,}5°, and {c, }52, are defined by the following
recurrence relations:

CLQZbQ:Co:ﬁ

and
Apt1 = 2a, + bna
bpi1 = ap + 2b, — cp, (19)
Cn+1 = Cp — bna
forn=0,1,2,....
Moreover, we will use the following sequences
Qp = Cpyl,
B, = —a, — by, (20)
771 = Qnp,

Next, sequences {f,,}°° o, {gn}o 0, {hn}, and {H, }5°, are defined in the following way

fo=g0o=ho=—1,

and
fos1 = fn + n, n >0,
In+1 :fn+hn, n >0,
hn = By, n>1, (21)

2Hn:f7%+f2n_gg+hi_h2n+l_2h2n7 71207

(the numbers B,, are defined by the formula (17) above).
And at last, the elements of sequences {u, }52 o, {vn}520, {wn}o0, {20}, {Un}22, and
{zn}5°, are defined by

Up+1 = Tn,
Un+1 = —Yn — Zn = Tp — ﬁzn—la
Wnp+1 = Yn — Tn, (22)

Tp+1 = Up — Wh,
Yn+1 = Wy — Up,
Zn41 = 22p-1 — Un,

\

forn:O,l,Q,...,Whereuozvozwoz—1,:50:y0:,20:ﬁandz1:7.

9
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Remark 5.  All the recurrence sequences above have a third order; the selective identities,
Binet formulas and generating functions, and some different identities for these numbers, are
presented in papers [11, 12]. For example, the following equivalent recurrence relations hold

(19) < Xn+3 - 5Xn+2 + GXnJrl - Xn - O,

forn =0,1,2,..., and X € {a,b,c}, and ag = by = co = V7, a; = 37, by = 27, ¢; = 0,
a2—8\/_ 7, by = \/_01 —24/7. We also have

a, = 22! _sin « (cos 404)2” + sin 2« (cos a)2n + sin 4« (Cos 204)%_ ,

b, = 22! -sin 2c (cos 4a)2n + sin 4« (cos 04)2” + sin « (cos 204)%- ,

— 227‘L+1

-sin 4o (cos 4a)2n + sin « (cos a)Qn + sin 2« (cos 2a)2n- ,
etc.

Remark 6.  Now we present some new identities for the above sequences (identities (23)—
(26), (28)—(31)), which will be used in subsection 5.2. These identities significantly complete
those obtained in paper [12]. By [12, Lemma 3.14 (a)], equality (5) and [12, eq. (3.21)], the
following identity holds

(-1)" A, = Hpq1. (23)

Hence, by [12, eq. (3.23)], we obtain

2 cos o (2 cos 2a) + 2 cos 2« ( os4a) + 2 cosda (2 cos a)fn =
= (_ ) (A + An 1 -An—2) = (_1)n (An—f—l - An)a (24)

and next, by [12, eq. (3.22)], we obtain

2 cos (2 coS 4a) " 42 cos 2 (2 coS a) " 4+ 2 cosda (2 coS 2a) =
- (_1)n (An—l-l - An—l + An—2 - 7An) - (_1)n (An—l - An+1)7 (25)

since, by [12, Remark 3.11], we have the identity
Aniz =2A000 + A1 — Ay
and by [12, Remark 3.8], we have
4 A, — Ao =TA,.
Moreover, the following formula can be easily generated
B, = gnt1+ hna. (26)

By [12, eq. (3.18)], we have
hy—1 = B, (27)
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which by (26) implies
In+1 = Bn - Bn+2> (28)
and next, by [12, eq. (3.12)] and by (18), we get

fn = On+1 — hn - Bn - Bn+2 - BnJrl - _anl - Bn (29)
Moreover, we obtain
fn+ Gn = —Bn — Basa (30)
and
fn + hn - Bn - Bn+2- (31)

Remark 7. From (27) we get (see [12, eq. (3.11)]):
B, =2" (cos” o+ cos” 2a + cos” 4a),

from which the next form can be deduced

B, = (sin 204)” n (sin4a>n n ( sin o >n (32)

sin « sin 2« sin 4«

This forms of Binet’s formula for B, are more attractive than the Sloane’s ones (see [10,
sequence A094648]). Moreover, the formula (32) makes it possible to extend the definition
B,, for negative integers n. So {B,}22 _ . is a two-sided sequence of integers which is defined
for all integers either by recurrence formula (18), or equivalently by Binet’s formula (32).

5 Applications of the formula (10)

5.1 Some special formulas

By [12, eq. (3.30)]

for n = 1:
J/seca + Vsec 2o + Vsecda = \/8 — 6V/7: (33)
for n = 2:
i/m+\3/m+scos4a:_w; (34)
cos 2 cos da COS (v
for n = 3:

1 -
cos 2a V2 cos a + cos da V2 cos 2a + cos a V2 cos da = 5 €/5+3\?/7—3\3/49; (35)

for n = 4:

3 3

cos 2a V/'sec 4a + cos da ¥/sec a + cos o Vsec 2a = — (1+ \3/7)2 ; (36)

:

11
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for n = 5:

2 4
cos 2a \3/ cos 2o + cos da \3/ costa +cosa ¢ s _ 0; (37)
cos 4o COS & cos 2«
for n = 6:

cos?(2a) V2 cos a + cos®(4a) V2 cos 2 + cos?(ar) V2 cos dar =
1
_ Z{’/m{”ﬁ— (4+3¥7)%; (38)

forn=":
1
cos?(2a) V/sec 4o + cos? (4ar) /sec a + cos? () Vsec 2o = 1 v2(5-3 \3/?)2 ; (39)
for n = &:
2c cos 4o
309 ./ cosa 34 5/ COs 3 5 _
cos”(2) cos 2« + cos™(4a) cos 4o + cos™(a) Ccos
1 2(9 )30032a+ 2(4 )3COS4Oz+ 2(q) @ cos « 3\3/? (40)
= — | cos”’ (2« cos” (4o cos”(a = ——
2 cos 4o COS (v cos 2av 8 ’

which also can be generated from (34).
Remark 8.  The formula (39) also follows from (1) and (5) for X = 0:

2 cos?(2a) Vsec 4a + 2 cos?(4a) ¥/sec a + 2 cos?(a) Vsec 2o =
2 2
2
= Z v/ sec(2ka) + Z ( ¥ COS(Qka>> =

k=0 k=0
2 2 ) 2
= Z v/ sec(2ka) + < v cos(2ka)> -2 Z $/cos(2ka) cos(2k+1a) =
k=0 k=0 k=0

— (3 Ve )

k=0

By [12, eq. (3.31)]

for n = 2:

3/cos2a+ 3/(3034(szL 4] cosa ~ 0. (41)
CoS (v cos 2« cos 4o

1 3
cos a v/ cos 2ar + cos 2a v/ cos da + cos da /cos a = —3 v 1+ 5 V49 (42)

for n = 3:

12



for n = 4:

9
cos a v/sec da + cos 4o v/'sec 200 + cos 2o seca = o 1 (2 — \3/7) ;
for n = 5:
9 5/ cosda 9 4] cosa 9 5/ Cos 2 1,
cos” (2ar) + cos”(4a) + cos®(«) = —— V/49;
cos 2« cos 4o Cos (v 4
for n = 6:

cos?(2a) Vcos 4a + cos®(a) Vcos 2a + cos® (4a) /cos a =

277/? €/47+3\77—12\3/4_9;

forn="T:

cos?(a) V/sec 4a + cos?(4a) V/sec 2a + cos®(2ar) /sec o =

——25/36/73+36€’/7+3€/4_9;

Remark 9. We note that

2 cos?(2a) V2 cos a + 2 cos®(4a) V2 cos 2 + 2 cos?(a) V2 cos da =
= (\3/2 cosa + V2 cos2a + V2 cos4a> +

+ cosda V2 cosa + cosa v2 cos 2a + cos 2 \3/2 cosda =

(43)

(44)

(45)

(46)

(D.(2) /o 3\/—__,/2+3 \/12\/_ 4+3\/_)

which implies the identity

€/16+12€/?+9€/E:2{’/3\3/?—5+ {’/2+3\3/@.

By [12, eq. (3.32)]

CoS «v Cos 2« cos 4o \/
3 — = /2(11 —3+/4
cosz(Qa) \/C082 4ov) \/0082 9);

cos a \/c082a+ v cos da _ /36 <1+\3/7>;

cos 2 cos 4o CoS &

for n = 2:

for n = 3:

13



By [12, eq. (3.33)]

for n = 2:
CcoS (v cos 2a cos 4o \/ 6
6(—1 V4 :
cos2 4ar) \/ cos?(a C082 2a) VT ) 1 + /7
for n = 3:

\/COSOé Vcos 2a N Vcos da _ €/4 (26—6\3/?—3\3/5);

Cos 4a COS & Cos 2«

By [12, eq. (3.34)]
for n = 2 we get (33);

for n = 3:

—2/3 -2/3

(2 cosa) +(2 Cos2a) —|—(2 cos4a 23 \/12—1—6\/_—1—3\/_

By [12, eq. (4.30)]

forn=1:

%(\%ota%— Vveot 2a + \?700t4a> =

:§/€/4_9—6+3€/3(1—W+%)—3{’/5+3W—3\7E;

for n = 2:

7
i/g(\g/cotoz csca + veot 2o esc 2a + Vot 4o csc4a> =

:\3/6—2\‘77—3\3/3(1+\3/?)2—3<’/—26+6\3/7+3€/4_9,

ie,

i\?/cotQka csc2kq = \3/% <2—§\3ﬁ— {’/3(1-1-\3/7)2— <’/3<1+\3ﬁ)2_27>'

k=0

Moreover from (117) below we have for n = 1:

Vtan a + vtan 2o + vVtan 4o =

- %€/3§/3(1—x77+3/@—3{’/5+3€/7—3\3/E—6—\3/7;

14

(53)



5.2 Some general formulas
1. By [12, eq. (2.1)] we obtain (for n =0,1,2,...):

/3

(2 cos O‘)n/s + (2 cos2a)™” + (2 cos 4a)n/3 —

- i/mw-% ({’/Sn,1+ Tn,l+{’/8n,1—\/f,1)7

where

Sp1i=(-1)"""A, (B, +6)— 68,09,

Ton = A2B2+4(-1)" A 4B +18(-1)" A, B, — 2T.

We note that
B, = (2 cosa)n + (2 cos 204)” + (2 cos4a)n,

so we get the following interesting identity

1

Moreover, if n € N then by [12, eq. (3.34)] and by (23) and (26) we obtain

(2 cos a) Ly (2 coS 2a) /s (2 coS 404) /3

2 (64 Bi = B2) = {/3(Sun1 + VToua) + /4 (Sna = Vo)

= i’/(—l)”An—!—()'—% <€/Sn,1+ %,1+</Sn,l_\/f,l>'

Hence, for example for n = 2 the formula (33) follows.
2. By [12, eq. (3.27)] we obtain

{’/2 sin o (2 cos4oz)n + {’/2 sin 2av (2 cosoz)n + </2 sin 4« (2 cos2oz)n =

= i"/png—(i\fy?—%(f/sn@—l- 7;,24-\3/571,2—\/?,2)’

where

Sn,2 =7 (_1)n Bn (6 w - pn,2) -6 \?/?pn,Z +9 ﬁa
Tn2 =49B. (ps, —28(—1)" B,) +
+2VTpus (202, — 63 (~1)"B,) — 189,

~ any if n is even,
Pn.2 = Q(n—1)/2 if n is odd,

gn2 = 7 (_1)n Bn,
Tn2 = \/?
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3. By [12, eq. (3.28)] we obtain

{’/2 sin o (2 cosZoz)n + {’/2 sin 2cv (2 COS40z>n + {’/2 sin 4o (2 Cosoz)n =

_ i/pmg 67— % (/s + Vs + {/Sus = VT ), (68)

where

Snz=T(=1)" (By = Cy) (pns — 6 V7) =6 VTpas +9V7, (69)
Tns =49 (B, — o) (025 + 28 (—1)" (B, — C,)) +

+2VTpas (2925 +63(=1)"(B, — C,)) — 189, (70)

R if n is even,

pn,3 B { B(n—l)/Q lf n iS Odd, (71)
qn,3 = 7 (_1)n71 (Bn - Cn)a (72)
Tns = V7. (73)

4. By [12, eq. (3.29)] we obtain

{’/2 sin «v (2 cos&)n + {’/2 sin 2« (2 cos?a)n + {’/2 sin4o (2 cos4a)n =

_ \/p 6 (St VT4 S0 VT ),

where
Spa=T(=1)"Cp (pna — 6 V7) — 6 VTp,a +9V7, (75)
Toa = (TPas Co +9(=1)"VT7)* +4(7 (=1)" C2 + VTP ,) — 756, (76)
ma={ 52, o m
Gna =T(=1)""1Cy, (78)
s = V7. (79)

5. By [12, eq. (3.31)] we obtain

{’/2 COoS o (2 cos4oz)n + {’/2 cos 2« (2 COSCY)n + {’/2 cos 4o (2 COSQOz)n =

:§/Qn+6—%(</5n,5+ 7—n,5+<)/8n,5_\/f»5)7 (80)

where

S5 =—G9ntns — 6 (g + ns) — 9, (81)
7;1,5 = (gn Qns + 9)2 —4 (92 + Q2,5) - 1087 (82)
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Pn5 = —Gn, (83)
Gy = (—1)" (Ap + A1 = TA,), (84)
Tns = —1. (85)

6. By [12, eq. (3.32)] and (24) we obtain

f/cosa (sec2a)n + f/cosQa (sec4a)n + f/cos4a (seca)n =

:</2”1 <_pn,6+6_%<€/8n,6+ 7;1,64‘{)/8%6_\/?76))’ (86)

where
S = (—1)" (Aps1 — Ay) (Bugz — By — 6) + 6 (Buiz — By) — 9, (87)
7;1,6 - (Bn+2 - Bn)2 <(-/4n - An+l)2 + 4 (Bn+2 - Bn)) +

+2(=1)" (A, — Apps) (2 (A= A1)’ +9 (Boga — Bn)> o7, (88)
Pne = (_1)n (An - AnJrl)a (89)
Gn,6 = fn + hn - Bn - Bn+27 (90)
Tne = —1. (91)

7. By [12, eq. (3.33)] and (25) we obtain

f/cosoz (sec4oz)n + {’/003204 (secoz)n + :\3/005404 (secZa)n =

:i”/Q”l <—pn,7+6—%<{’/5n,7+ Tn,7+</5n,7_\/f,7>>’ (92)

where
Spr=(=1)"(Ans1 — Ap1) (6 = Bug1 — By) + 6 (By1 + B,) — 9, (93)
,];1,7 - (Bn+1 + Bn)2 ((An-i-l - An—1)2 + 4 (Bn—i—l + Bn)) +

+2(=1)" (Anpr — Ap) (2 (st — Aud)* +9 (B + Bn)> —27,  (94)
Prr = (=1)" (A1 — An1), (95)
gn,7 = fn + gn = _Bn - BnJrla (96)
Tpy = —1. (97)

8. By [12, eq. (3.30)], we obtain

{’/2 CcoS (v (2 cos 2@)” + {’/2 cos 2« (2 Cos4oz)n + 6/2 cos 4o (2 cosoz)n =

- i/fn+6—% (/s + Vs + {/Sus = VT ), (98)
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where

Sn,S - _fn dn,;8 — 6 (fn + Qn,S) -9,
Tos = (futns +9)" =4 (f2 +dis) — 108

Png = _fm
rn,S = —1.

Remark 10. As results from direct observation of the value of expression

1

2 (50 V)
forn =0,1,...,2000, for the indicated index values, the following equalities hold
(=117, for n=3k—12>05,
§/ ! (Sns = VTus) =4 VT (=1)"Gi. for n =3k,

V49 (—1)F1 2 for n=3k+1,

for k=1,2,..., where

T =2, To =5, 73 = 16,
:/g\l = 17 /y\Z = 47 ﬂs = 127
/Z\l:la /2\2:?)’ /2\3:97

and the elements of any of the sequences: {Zx}72, {Urk}22, and {Z}32,, satisfy the following

recurrent relation
Xn+3 - 4Xn+2 + 3Xn+1 + Xn — 0

Also, the following interesting relationships occur (see (14)):
Tp = Ap(—1) + 2Ck(—1) — C_2(—1), k> 2,
i = Ar(=1) + Cr(=1),
Zr = Cr(—1) — Bg(—1).

Hence, by [11, eqgs. (3.17), (3.18), (3.19)], we obtain, inter alia, the following Binet formulas:

Tp = (2 —2cosa+ 4 005204) (1 -2 cosoz)k*2 +
+ (2 — 2 cos2a +4 Cos4a) (1 -2 COS2O¢)k72 +

+ (2 -2 cosda+4 cosa) (1 —2 cos4a)k_2,

o~

Yk = (1 + cos2a — 2 cos4a) (1 -2 cosoz)k +

= Do

+ % (1—1—(:08404—2 cosa) (1 -2 cosQa)k—i—

= Do

_|_
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2 = % (COSQCY—COSO./) (1 -2 cosoz)k—i—
+ % (Cos4a — cos2a) (1 -2 cos2a)k +
+ ; (cosa — cos4a) (1 -2 COS40z)k.

Next, as results from direct observation of the value of expression

{f3 (S VT

forn =0,1,...,2000, for the indicated index values, the following equations hold
T, for n =3k +2,
§/%<8n78+\/f,8>: N for n=3k+1,
/497, for n =3k,
for k=1,2,..., where 2o = 2 and
T =38, To = 29, 3 = 120,
=1, Y2 =2, ys = 10,
z1 =1, Zo = 3, z3 = 13,

and the elements of any of the sequences {Ty}72,, {Ur}io, and {Z;}2, satisfy the following
recurrent relation:

Xn—i—S - 3XTL+2 - 4Xn+]_ - Xn — O

After substitution x +— (2 — 1) in the respective characteristic polynomial of this relation,

we obtain polynomial 2 — 7x — 7, for which by [12, eq. (4.14)], for n = 1, we obtain

X3—7X—7:H<X+\/77csc

2

k=0

Hence, the following Binet formulas hold

(Qka)) .

Dn = Qp (1 — g Ccsc a)n +b, (1 — \/77 Ccsc 2a)n +¢ (1 — g CSC40z)n,

for every p € {z,y, 2}, and where

az ~ —1.246979604,
ag ~ —1.064961507,
as ~ —0.4355596199,

Additionally, we note that

bs = 0.4450418679,
by ~ 0.9189943261,
b: ~ 0.2417173531,

50:(1574—()54—05:1,
§0:a5+bg+c§:0,
202a5+bg+0520.

19

¢z ~ 1.801937736,
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By juxtaposing the obtained values of expressions

[

we can now invest formula (98) to the new interesting form (for cases n = 3k, 3k + 1,3k + 2
respectively, and only within the indicated range of values n = 1,2,...,2000):

V2 cos o (2 Cos 2a)k + v/2 cos 2 (2 Cos 4a)k + v/2 cos 4o (2 COS a)k =
_ Q/f% 64+ 3 (=115, /T — 35, V49,

Vsec da (2 coS 204)k + v/sec (2 coS 4a)k + V/sec 2o (2 coS a)k =
_ f/z (Fsper + 6 — 3T V/7 + 3 (= 1)k 35, V/49) ,
and the formula which is equivalent to relation (2) and which generates the identity

TY8 = fonso +6 =3 (T + (1) Tppr). (104)
9. By [12, eq. (4.15)] we obtain
n/3

(2 sin a) + (2 sin 2a)n/3 + (2 sin 4a)n/3 =

] \/ 61 70— = (S04 VT + 00— VT ). (109

where

Sno = (3201 +3(=1)" 1) (2901 — 22_)—

—6- T 2 —9(—=1)" T2, (106)
Tno = (—1)" T2 2y (5 22— 929, 1)+

+ 1 (221 —22) (22, — z2n_1)2 —27-7", (107)
DPn9 = —Zn—1, Gng = ; (,2,21 ZQn_l), Tno = (—1)"7! 772, (108)

1
10. By [12, eq. (2.2)] we have (for 6 € R):

n/3 n/3 /3

(1+25cosa) —I—(1—|—25008204) +(1+25cos4oz)n =

= [ A,(6) +65" - % (f/sn(a) VT, + {'/sn@) —JT,0) )} 1/3, (109)

where

§=0%—28"—6+1, (110)
Sn(6) = — A (8) Ba(6) — 6B, (8) 0™ — 6 A, (8) 02> —95™, (111)
T,(0) = A%(0) BA(0) — 4 A3(6) 0" — 4 B3(0) + 18 Ay (0) B, (8) 6™ — 277" (112)

= (An(8) Bu(6) +90™) — 4 (A2(6) 6" + B2(8)) — 108" (113)
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11. By [12, eq. (6.14)] we have

7% ((cot @)™ + (cot 2a)™® + (cot dar)"/?) =

n 2 n ~n/3 3 n/3 </ / / </ / / e
= 3T A) 6 (1) T T ( S+ T + sn—ﬁ)} . (114)

where
Sp= (3" Au(3) + 6 (=1)"T%) 2 (22) + 6 (55)" Au(3) +9(=1)", (115)
T,;:((—3)"An(§)§zn(j—;)+9) —4 (T (2E) + (- F)" AL(3)) — 108, (116)

The numbers Q,(6) are defined for n € N and § € C, in the following way
Q,(6) == (1+2idsina)” + (1 +2id sin2a)” + (1 + 2446 sinda)”,
(see [12, Section 6] for more details).
Remark 11. Moreover, we have
(X — (tan a)") (X — (tan Qa)”) (X (tan4a)” ) =
=X — (=VT)" 0 (28) X2 + (=3)" An(3) X — (V7). (117)
(6.1
in

This ”distribution” easily results from [12, eq. 4)]. Now we will present a direct proof
of the relation (117), because the formula (6.14) in [12] is presented without a proof. For
this purpose, let us suppose that £ = exp(i27/7). Then we have

(tana)™ + (tan2a)" + (tan4a)” =
_¢bn 2 _ ¢Byn 4¢3
:<_i§+§6> +<_Z§2+§5> (- §4+§3> -

- (Toe j@(e ) {(@ —EO)E+ENE +EY) +

+(E@ -+ +6)) + (€' - e+ e+ »:5))"} =

()" [(2 (E-)-(-&)—(E-)- (" -¢) +
+(2 - - - - - - (- &) +
+(206-¢)- (-9 - <£2—§5>—<é4—§3>)"]=

[12, eq. (1

+ (—2@(5—56)—@"} = (=V7)" (),

Sl
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and

(tana tan 204)” + (tan& tan404)n + (tan 2c0 tan4a)n =
_ 6 2 _ ¢bn _¢6 4_ 3 \n
~(Cge) Care)) (Cae) Care)
2 _ ¢5 4_ 3 \n
H((Higre) Care) -

= (E+E+E)E+¢eY) [((56 —OE - E)E+E) +

+ (-0 -)E+6) + (€ - -+ 56))"} -
— (—3 —2(6+ 56)>n + (—3 —2(e* + 53)>n + (—3 —2(&+ 55)>n = (=3)" A, (3).

Final remark. I was only after I received the referee report on my paper that I learnt about
two important publications in this field [8, 9]. Certainly, both papers supplement and enrich
the contents of Section 3. As a spontaneous reaction to [8] and the report on the present
paper, two more papers sprang up [14] and [15].
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Table 1:
ln ]l Of 1] 2[ 3] 4] 5] 6] 7] 8[ 9f 10 11]
Py || —1 01| -3 2| -8 91 —23 33 | =70 | 113 | —220 376
©On 0] -1 1] -3 41 -9 14 | —28 47 | —89 155 | —286
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