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Abstract

For a given base a, and for all integers k, we consider the sets

Ga(k) = {ak, ak + ak−1, . . . , ak + ak−1 + · · · + a1 + a0},

and for each Ga(k) the corresponding “Frobenius set”

Fa(k) = {n ∈ N | n is not a sum of elements of Ga(k)}.

The sets Fa(k) are nested and their union is N. Given an integer n, we find the smallest
k such that n ∈ Fa(k).

1 Introduction and statement of result

The Frobenius problem for a given set A = {a1, a2, . . . , an} of positive relatively prime
integers is the problem of finding the largest integer that cannot be expressed as a sum of
(possibly repeated) elements of A. This largest such number is the Frobenius number of the
set A, denoted by g(A).

Finding the Frobenius number for sets A has been a widely studied problem since the
early 1900’s, when Frobenius was reported to have posed the question frequently in lectures.
Sylvester [12] is widely credited with showing that for relatively prime integers a and b,
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g({a, b}) = ab − (a + b), but he actually addressed a slightly different problem. In 1990,
Curtis showed that for an arbitrary relatively prime set A the Frobenius number cannot be
expressed in terms of a finite set of polynomials [2], although Greenberg and later Davison
found algorithms that are reasonably quick in practice in the n = 3 case [3, 4]. In 1996,
Ramı́rez-Alfonśın proved that the Frobenius problem for sets A of three or more elements is
NP-hard [9]. However, R. Kannan has shown that for every fixed n, there is a method that
solves the Frobenius problem in polynomial time (although the degree of the polynomial
grows rapidly with n) [6].

In this paper we study a family of sets Ga(k), defined below, and for each such set we
study not only the Frobenius number but the set of all numbers which are not sums of
elements of Ga(k). More precisely, let the base a ∈ N be fixed. For each k ∈ N, we define

Ga(k) = {ak, ak + ak−1, ak + ak−1 + ak−2, . . . , ak + ak−1 + · · · + a1 + a0}.

Note that the rightmost (and largest) element listed in the set above is a geometric series

equal to ak+1−1

a−1
, and henceforth we will write it as such without further comment. For the

sets Ga(k) we study the Frobenius sets

Fa(k) = {n ∈ N | n is not a sum of the elements of Ga(k)}.

A straightforward calculation shows that the sets Fa(k) are nested (i.e., Fa(k − 1) ⊆
Fa(k)), and the union of the sets Fa(k) over all k is N. This paper investigates the following
question: for arbitrary n ∈ N, what is the least integer k such that n ∈ Fa(k)? We denote
this least positive integer as fa(n) := min{k | n ∈ Fa(k)} and call it the Frobenius level of n
with respect to the sets Ga(k).

Example 1. With a = 2 and k ≤ 3, we have

G2(1) = {2, 3} F2(1) = {1}
G2(2) = {4, 6, 7} F2(2) = {1, 2, 3, 5, 9}

G2(3) = {8, 12, 14, 15} F2(3) = {1, 2, 3, 4, 5, 6, 7, 9, 10,
11, 13, 17, 19, 25, 33}

The sets G2(k), for k = 1, 2, . . . form the sequence A023758 of Sloane’s Encyclopedia.

We see that f2(9) = 2 and f2(19) = 3; however, there is not enough information given in
Example 1 to determine f2(30). I. Johnson and J. L. Merzel [5] determined the Frobenius
level of an integer n with respect to the sets G2(k) while studying factorizations in the
Steenrod algebra at the prime 2. Their paper serves as motivation for studying these more
general sets Ga(k) for arbitrary a and the solution presented in this paper is a generalization
of their results. It is believed that the results presented here will have implications in the
Steenrod algebra for odd primes analogous to those found at the prime 2 by Johnson and
Merzel. For a discussion of the Steenrod algebra and its role in the field of algebraic topology,
see [7, 10, 11, 13].

Our solution of this Frobenius level problem relies on careful study of base a arithmetic,
and the following definitions and notations are required to state our result. For a positive
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integer n, let [n] denote a base a expansion of n. This means if wi ∈ {0, 1, . . . , a − 1} for all
i and

n = wka
k + wk−1a

k−1 + · · · + w2a
2 + w1a

1 + w0a
0,

then [n] = wkwk−1 . . . w1w0. We note that this expansion is unique up to leading zeros. For
example, in base 3 (ternary) we may view [41] as 1112 or 0001112. We call an ordered string
of digits bkbk−1bk−2 . . . b2b1b0 with each digit bi in {0, 1, . . . , a− 1} a base a string, and given
integers i, j such that k ≥ i + j ≥ i ≥ 0 the base a string bi+j . . . bi+1bi is called a substring
of bkbk−1bk−2 . . . b2b1b0. We will use roman characters to denote integers and Greek letters
to denote strings and substrings.

For a given base-a string β, let |β| denote the integer with expansion β in base a. The
length of the string β will be denoted by len(β). Of course, the length is only defined for a
given base a string. Expressions such as len([n]) are not well-defined and will not be used.

Let β = bi+jbi+j−1 . . . bi be a substring of bk . . . b2b1b0. Then β is a non-increasing substring
if and only if bm ≤ bm−1 for i < m ≤ i+j. That is, we will read from right to left to determine
whether a string is increasing, and of course constant strings are non-increasing. (For our
purposes, “constant string” refers to a string of length at least two in which all digits are
equal.) For an arbitrary base-a string bk . . . b2b1b0 we say that a drop occurs at bm provided
bm+1 < bm. A non-increasing substring bi+j . . . bi+1bi of bk . . . b2b1b0 is said to follow a drop
provided i 6= 0 and a drop occurs at bi−1. Given a base a string β = bk . . . bm . . . b1b0, the
digit bm is said to contribute to β if bm is itself a digit in a non-increasing substring of β
that follows a drop. In examples and diagrams we will underline contributing digits. We
remark that a digit bm contributes to a string β if and only if (1) a drop occurs at bm−1, or
(2) bm−1 contributes and bm ≤ bm−1. Thus whether or not a digit contributes is completely
determined by the behavior of the digit to its immediate right.

Example 2. Here is an example of a string, γ = 201120100121, with drops indicated by
arrows and contributing digits underlined.

γ : 2 0 1 1 2
drop

ss

0 1
drop

ss

0 0 1 2
drop

ss

1

Note that we have not indicated drops within contributing substrings since the important
characteristic is whether a digit contributes.

Definition 3. For a given base-a string β, define z(β) to be the number of digits in β
that contribute to β.

For instance, in ternary, z(012021000) = 3 and z(1012112) = 4. The contributing digits
have been underlined.

The function z exhibits a “quasi-linear” property in the sense of the following lemma.

Lemma 4. Let β be a base-a string, β = bk · · · bj · · · b2b1b0, where bj is not a digit in a
constant substring that follows a drop. Then

z(β) = z(bk · · · bj) + z(bj · · · b1b0).
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Proof. If j = k or j = 0 the result is clear. Suppose k > j > 0. The assumption on bj implies
that either bj does not contribute to β, or it does contribute and bj 6= bj+1 and bj 6= bj−1.
The result is clear in the case that bj does not contribute to β, so suppose bj does contribute
to β. Then we have the following two cases:

(i) bj+1 < bj < bj−1 (ii) bj+1 > bj and bj < bj−1.
It suffices to prove that each digit of β that contributes to β also contributes to the

sum z(bk · · · bj) + z(bj · · · b0) once and only once. In case (i), bj contributes to bjbj−1 . . . b1b0;
however, it cannot contribute to bk · · · bj+1bj as it cannot follow a drop. Thus the digit
bj contributes once to the sum. The digits in the substring bjbj−1 . . . b1 are contributing
if and only if they contribute to β. Since bj+1 contributes to β, the digits of the substring
bk · · · bj+1 contribute to bk · · · bj+1bj if and only if they contribute to β. The proof for case (ii)
is analogous except that bj+1 does not contribute to β and does not contribute to bk · · · bj+1bj,
but all contributions from the left of bj+1 are the same in both strings.

Given strings α and β, their concatenation will be denoted by αβ. Lastly, we define the
“star” notation.

Definition 5. For nonempty strings α and β, we define the relation ∗ by

α ∗ β ⇔ |α| < z(β)

Example 6. Consider the ternary string 1211111201. If α = 12 and β = 11111201, then
z(β) = 6 and |α| = 5. In this case, 12 ∗ 11111201 holds; note that len(β) = 8 = 7 + 1.
However, 121 ∗ 1111201 does not hold as 16 6< 5.

The following theorem is one of the main results of this paper. In Section 3 we give an
algorithmic description of this theorem and briefly discuss its complexity.

Theorem 7. Let n ∈ N. Then the Frobenius level of n, fa(n), is the smallest k for which
we can write n = |αβ| with len(β) = k + 1 and α ∗ β.

The previous example shows that the Frobenius level of n = 36091 = |1211111201| is
f3(36091) = 7.

Theorem 7 reduces to the results of Johnson and Merzel when a = 2. In the Johnson
and Merzel paper z(β) is defined as the number of non-trailing zeros in β and our definition
of z(β) reduces to the Johnson-Merzel definition in the case a = 2.

2 Proof of Theorem 1

The proof of Theorem 7 is organized as follows: Lemma 8 gives a particularly useful way
to represent integers that are not in Fa(k). Lemmas 9 and 10 show that the sets Fa(k) can
be described recursively. Lemmas 13 and 14 set up technical details to assist in the proof
of Theorem 15 by induction. Theorem 7 is then a corollary of Theorem 15. Along the way,
Theorem 11 gives an explicit formula for the Frobenius number of Ga(k) which corresponds
to the well-known results of Nijenhuis and Wilf [8].
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Lemma 8. If n 6∈ Fa(k), then there exist c1 ∈ Z≥0, c2, . . . , ck+1 ∈ {0, . . . , a − 1} such that
n = c1a

k + c2(a
k + ak−1) + · · · + ck+1(a

k + ak−1 + · · · + a + 1).

Proof. Suppose n 6∈ Fa(k). Then there exist coefficients wi, 1 ≤ i ≤ k + 1, such that

n = w1a
k + w2(a

k + ak−1) + · · · + wk+1(a
k + ak−1 + · · · + a1 + a0).

If the coefficients wi satisfy the conditions of the lemma then we are done; otherwise, let j
be the largest subscript for which wj ≥ a. Using the division algorithm, write wj = aq + cj,
where 0 ≤ cj < a. Substitution gives

wj(a
k + ak−1 + · · · + ak−j+1) = (aq + cj)(a

k + ak−1 + · · · + ak−j+1)

= aq(ak + ak−1 + · · · + ak−j+1)

+cj(a
k + · · · + ak−j+1)

= aq(ak) + q(ak + ak−1 + · · · + ak−j+2)

+cj(a
k + · · · + ak−j+1).

Next, define cm := wm for all j < m ≤ k + 1. Thus n can be written as

n = (w1 + aq)ak + w2(a
k + ak−1) + · · · + wj−2(a

k + ak−1 + · · · + ak−j+3)

+(wj−1 + q)(ak + ak−1 + · · · + ak−j+2) + cj(a
k + ak−1 + · · · + ak−j+1)

+cj+1(a
k + ak−1 + · · · + ak−j) + · · · + ck+1(a

k + ak−1 + · · · + a1 + a0).

Now cj, cj+1, ..., ck+1 ∈ {0, 1, 2, . . . , a − 1}, and repeating the procedure above at most j − 2
times gives the coefficients ci in the desired range for i = 2, 3, ..., k + 1.

Lemma 9. Let n ∈ N, and let q and r be the unique integers such that n = aq + r, where
0 ≤ r < a. Let R = r ak+1−1

a−1
. Then n ∈ Fa(k) if and only if n < R or n−R

a
∈ Fa(k − 1).

Proof. We prove that n /∈ Fa(k) if and only if n ≥ R and
n − R

a
/∈ Fa(k − 1).

Suppose n ≥ R and n−R
a

6∈ Fa(k−1). Then
n − R

a
is a nonnegative-integral combination

of the elements of Ga(k − 1); thus

n − R

a
= c1a

k−1 + c2(a
k−1 + ak−2) + · · · + ck(a

k−1 + ak−2 + · · · + 1)

for some c1, . . . , ck ∈ Z≥0. Therefore

n = c1a
k + c2(a

k + ak−1) + · · · + ck(a
k + ak−1 + · · · + a) + R,

where c1, c2, ..., ck ∈ Z≥0. Because R = r
(

ak+1−1

a−1

)

= r
(
ak + ak−1 + · · · + a + 1

)
, n 6∈ Fa(k).

Conversely, suppose n 6∈ Fa(k). By Lemma 8, there exist c1 ∈ Z≥0 and c2, c3, . . . , ck+1 ∈
{0, . . . , a − 1} such that

n = c1a
k + c2(a

k + ak−1) + · · · + ck+1(a
k + · · · + a + 1)

= a(c1a
k−1 + c2(a

k + ak−1) + · · · + ck+1(a
k−1 + · · · + 1)) + ck+1.
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Since r is unique and 0 ≤ ck+1 < a, we see from the equation above that ck+1 = r. Therefore,

n − R

a
= c1a

k−1 + c2(a
k−1 + ak−2) + · · · + ck(a

k−1 + ak−2 + · · · + 1).

Thus, n−R
a

6∈ Sa(k − 1). Since n − R ≥ 0, n ≥ R.

Lemma 10. Let n 6≡ 0 (mod a). Then n ∈ Fa(k) if and only if n − ak+1−1

a−1
∈ Fa(k).

Proof. Let n − ak+1−1

a−1
/∈ Fa(k). Then n /∈ Fa(k) follows immediately.

Suppose n 6∈ Fa(k). Write

n = c1a
k + c2(a

k + ak−1) + · · · + ck+1(a
k + ak−1 + · · · + a + 1),

where c1 ∈ Z
+ and c2, c3, . . . , ck+1 ∈ {0, 1, . . . a − 1}. Note that ck+1 ≥ 1 since n 6≡ 0 (mod

a). Then

n −
ak+1 − 1

a − 1
= c1a

k + c2(a
k + ak−1) + · · · + (ck+1 − 1)

ak+1 − 1

a − 1
,

which implies that n − ak+1−1

a−1
6∈ Fa(k).

We notice that the Frobenius number for the sets Ga(k) is the largest element of Fa(k),
and since the sets Fa(k) can be described recursively we present an easy to prove formula for
g(Ga(k)) in Theorem 11. We note that the sets Ga(k) are part of a well studied class known
as sequentially redundant sets. Recall that a sequentially redundant set of positive integers
is a set A = {a1, a2, . . . , an} such that for j = 2, 3, . . . , n, there exist non-negative integers
tij such that

aj

dj

=
1

dj−1

j−1
∑

i=1

tijai,

where di = gcd{a1, a2, . . . , ai} for each 1 ≤ i ≤ n. The Frobenius number of a sequentially
redundant set is well-known [8]; thus the result below is not new.

Theorem 11. The Frobenius number of the set Ga(k) is

g({ak, ak + ak−1, . . . , ak + ak−1 + · · · + a0}) =
1 − ak+1k − ak+1 + ak+2k

a − 1

Proof. We proceed by induction on k. Ga(1) = {a, a + 1}, so using Sylvester’s formula we
have g({a, a + 1}) = a(a + 1)− (2a + 1) = (a− 1)(a + 1)− a as desired. Next we assume the
formula holds for Ga(k − 1). Then the largest number in Sa(k − 1) is

g(Ga(k − 1)) = (a − 1)

(
k−1∑

i=1

(ak−1 + ak−2 + · · · + ak−1−i)

)

− ak−1.

Lemma 9 implies that if w is the largest element of Fa(k− 1), then for maximal R aw +R is
the largest element of Fa(k). The largest possible R occurs for r = a− 1; thus R = ak+1 − 1.
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Therefore

g(Ga(k)) = a

(

(a − 1)

(
k−1∑

i=1

(ak−1 + ak−2 + · · · + ak−1−i)

)

− ak−1

)

+ak+1 − 1

= (a − 1)

(
k∑

i=1

(ak + ak−1 + · · · + ak−i)

)

− ak

=
1 − ak+1k − ak+1 + ak+2k

a − 1
.

The next two lemmas describe the behavior of the function z when a base-a string of
ones is subtracted from a base a string with a specific form. We precede these lemmas with
the following motivating example.

Example 12. Let a = 3 and consider the ternary string

γ = 21101000100121.

Let δ = 111 · · · 1 be a constant ternary string of ones with len(δ) = 14. We first calculate
γ − δ and add a leading zero so len(γ − δ) remains 14; γ − δ = 02212111212010. Next we
compare z(γ) and z(γ − δ). Contributing digits are underlined below.

γ : 2 1 1 0

��

1 0

��

0

��

0

��

1 0

��

0
BC

GF
��

1

��

2 1

γ − δ : 0 2 2 1 2 1 1 1 2 1 2 0 1 0

Thus z(γ) = 7 = z(γ − δ). The key observation to make in this example is that all
contributing digits in γ are paired with contributing digits in the same position in γ − δ
except for the rightmost contributing zero in γ, which is paired with the leading contributing
digit in γ − δ.

Lemma 13. Suppose a base-a string γ = hnhn−1 · · ·hl+1hlhl−1 · · ·h1h0 satisfies the following
conditions:

(i) for 0 ≤ i ≤ l − 1, hi > 0,

(ii) hl = 0 [note: it is possible that l = 1],

(iii) for l + 1 ≤ i ≤ n − 1, hi = 0 or 1 (possibly empty), and

(iv) hn > 1.
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Suppose δ is a base-a string of 1’s with length n + 1. Then z(γ − δ) = z(γ), where γ − δ has
the same length as γ (by appending a leading zero if necessary).

Proof. Firstly, note that a > 2 is forced by the given conditions. Now, to compute γ − δ, we
“borrow” from each digit to the left of hl. The result is

γ − δ = [hn − 2][hn−1 + a − 2] · · · [hl+1 + a − 2][hl + a − 1][hl−1 − 1] · · · [h1 − 1][h0 − 1].

Since 2 ≤ hn ≤ a−1, hn−2 < a−2. Also, hn−1 is either a 0 or 1 in γ. Thus, the n−1 digit
in γ − δ is a− 2 more than the n− 1 digit of γ: it increases by a due to borrowing from hn,
loses one because the n−2 digit borrows from it, and loses one more from subtracting δ. The
value of the n−1 digit of γ− δ is thus either a−2 or a−1. Therefore, hn−2 < hn−1 +a−2,
and the n digit will be a drop in γ − δ. However, in γ, hn > hn−1, so there is a drop in γ − δ
that is not in γ.

In γ − δ, the l + 1 through n− 1 digits are each a− 2 more than hi (since γ − δ requires
borrowing throughout these digits), and therefore this section yields the same digit-by-digit
contribution to γ − δ as to γ.

Note that hl = 0, so the l-digit of γ−δ is a−1. (Since hl is the first zero appearing in γ, no
borrowing is necessary to the right of hl.) If hl+1 = 0 (and is hence part of a non-increasing
sequence to the left of a drop) in γ, then the l + 1 digit in γ − δ is a − 2 and is therefore a
drop and counted as it was for z(γ). If hl+1 = 1, then the l + 1 digit in γ − δ has value a− 1
and thus is not part of a non-increasing sequence following a drop; it is again counted as it
was for z(γ). Thus, in either case, the contribution to γ − δ from the l + 1 digit is the same
as it is in γ.

Since hl−1 − 1 is less than a− 1 and hl + a− 1 = a− 1, the l digit in γ − δ is not a drop.
However, the digit at position l in γ is a drop since it is the first zero appearing in γ. Thus,
γ − δ loses a drop that γ had.

For l − 1 > i ≥ 1, each digit hi > 0, and therefore no borrowing is required for cor-
responding digits in γ − δ. Thus these digits make the same contribution to γ − δ as to
γ.

The net result of these considerations is that the contribution in γ that occurs at hl is
moved to the leading digit in γ − δ, but all other contributions remain the same. Therefore
z(γ − δ) = z(γ), as desired.

Before continuing with the next lemma, we pause to recall the relation ∗: if α and β are
nonempty base-a strings, then α ∗ β ⇐⇒ |α| < z(β).

Lemma 14. Let β = bkbk−1 · · · b2b1b0 and α be strings in base a. Let δ = 1 · · · 1 be a string
of k + 1 ones in base a.

Suppose

(a) β 6≡ 0 (mod a),

(b) z(β) > 0, and

(c) |α| > 0.
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Then

(i) for |β| > |δ|, α ∗ β ⇔ α ∗ (β − δ), and

(ii) for |β| < |δ|, α ∗ β ⇔ [|α| − 1] ∗ ([1]β − δ), where 1 and β are concatenated to create
[1]β > δ.

Proof. Case (i): Suppose |β| > |δ|. Then either β is zero-free or it contains a zero. If β
is zero-free, then β − δ requires no borrowing, so z(β) = z(β − δ) and α does not change.
(Note: this also implies that in Case (i), the hypotheses |α| > 0 is unnecessary.) Thus
α ∗ β ⇐⇒ α ∗ (β − δ).

Now suppose that β contains at least one zero. Write β = bkbk−1 · · · b1b0. Inductively
define substrings βi, i = 1, 2, . . . m, for m < k + 1, as follows:

β1 = bj1 · · · bl1 · · · b1b0,

where l1 is the smallest subscript in β such that bl1 = 0, and j1 > l1 is the smallest subscript
in β such that bj1 > 1. Note that this subscript exists since |β| > |δ|. If bw = 0 for some
w > j1, then define β2 = bj2 · · · bl2 · · · bj1 , where l2 > j1 is the smallest subscript such that
bl2 = 0, and j2 > l2 is the smallest subscript such that bj2 > 1. A diagram of the basic
structure of each βi is included below.

βi

︷ ︸︸ ︷

bji
︸︷︷︸

>1

. . .
︸︷︷︸

≤1

bli
︸︷︷︸

=0

. . . bji−1
︸ ︷︷ ︸

6=0

Create successively β1, β2, β3, . . . , βm as above, where either bk appears in βm or bw > 0 for
all w > jm. In the former case, define βm+1 to be the empty string; in the latter case, define
βm+1 = bkbk−1 · · · bjm

. The following diagram gives a picture of β and the βi substrings.

β : bk

βm+1

. . . bjm

βm

. . . blmBC

GF
��

. . . bjm−1
. . . bj1

β1

. . . bl1BC

GF
��

. . . b0

β − δ : bjm
− 2 bj1 − 2

The βi satisfy the hypotheses of Lemma 13 and of quasi-linearity. Thus each bli is
contributing in β and is paired with the contributing digit bji

− 2 in β − δ.
Let δi denote a string of ones of length len(βi) for i = 1, . . . ,m + 1. We compute:

z(β) =
m+1∑

i=1

z(βi) by quasi-linearity

=
m+1∑

i=1

z(βi − δi) by Lemma 13.

It remains to show that
∑m+1

i=1
z(βi − δi) = z(β − δ). Notice that quasi-linearity does not

apply to the strings βi − δi as the leading digit of βi − δi is one less than the last digit of
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βi+1 − δi+1. However, we can piece these strings together to form β − δ by deleting the last
digit of each βi − δi for i = 2, . . . ,m + 1 and concatenating appropriately. Recall that these
last digits are not contributing digits to βi − δi so none of them are underlined. In addition,
every digit in each βi − δi has the same right neighbor after forming β − δ (by deletion and
concatenation) except bji−1+1−1, so we must only show that bji−1+1−1, for i = 2, . . . ,m+1,
contributes to βi − δi if and only if it contributes to β − δ. (That is, we must show that the
deletion-concatenation procedure does not disturb any underlining.)

Now

bji−1+1 − 1 contributes to βi − δi ⇐⇒ bji−1+1 − 1 < bji−1
− 1

⇐⇒ bji−1+1 − 1 ≤ bji−1
− 2.

We know from the proof of Lemma 13 that bji−1−2 contributes to βi−1− δi−1, and hence
to β−δ. This implies that bji−1+1−1 ≤ bji−1

−2 if and only if bji−1+1−1 contributes to β−δ.

Thus each contribution to βi − δi is counted once and only once in β − δ, so
∑m+1

i=1
z(βi −

δi) = z(β − δ).
Case (ii): Now consider |β| < |δ|. If β has no digits larger than 1, then form β̃ as below

(with t = −1). If β has a digit larger than 1, let t be the largest integer such that bt > 1.
Apply case (i) to β′ = bt . . . b1b0 and δ′ = 1 . . . 1, a string of t+1 ones. Then z(β′) = z(β′−δ′).

Consider β̃ = [1]bkbk−1 . . . bt+1 = [a + bk]bk−1 . . . bt+1 where bt+1, . . . , bk ∈ {0, 1}. Let
s ≥ t+1 be the least integer such that bs = 0. Note that such a bs exists since |β| < |δ|. Let
δ̃ = 1 . . . 1 be a string of k − t ones. For i from t + 1 through k, the digits ci of β̃ − δ̃ are as
follows: 





ci = 0, if t + 1 ≤ i < s;
cs = a − 1;
ci = a − 1, if i > s and bi = 1;
ci = a − 2, if i > s and bi = 0.

If t ≥ 0, then the digits labelled t + 1 through s− 1 of β̃ are all 1, and the corresponding
digits of β̃ − δ̃ are all 0. Since the t + 1 digit is a drop in either case, both strings contribute
the same. If t = −1, then digits t + 1 = 0 through s− 1 of β̃ are all 1 (since β 6≡ 0 (mod a))
and the corresponding digits of β̃ − δ̃ are all 0, and none of these contribute. Note that the
string of digits from t + 1 to s − 1 could be empty.

Now bs = 0 contributes to β̃ since it is a drop from the preceding digit, but the sth digit
of β̃ − δ̃ does not contribute since it equals a − 1. Thus, the contributions in β up through
the sth digit are z(β′) + (s− t− 1) + 1, and the contributions in [1]β − δ up through the sth
digit are z(β′) + (s − t − 1).

From the table above, we see that the s + 1 through k digits contribute in β if and only
if they contribute in [1]β − δ since 0 ↔ a− 2 and 1 ↔ a− 1. For bs becomes a− 1 in β̃ − δ̃.
Therefore, if bs+1 = 0 (and therefore contributes to β), then the s + 1 digit of β̃ − δ̃ is a− 2,
which contributes to β̃ − δ̃. If bs+1 = 1 (and therefore does not contribute to β), then the
s+1 digit of β̃− δ̃ is a−1, which does not contribute to β̃− δ̃. The remaining digits of β̃− δ̃
may be considered in the same way.

Thus, overall, we have z([1]β−δ) = z(β)−1 since only the sth digit contributes differently
in β and β̃ − δ̃.
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Theorem 15. For nonempty strings α and β with |αβ| 6= 0,

α ∗ β ⇔ |αβ| ∈ Fa(len(β) − 1).

Proof. We proceed by induction on n := |αβ|. Set k := len(β) − 1, so the theorem asserts
α ∗ β ⇔ n ∈ Fa(k).

If n = 1, then |α| = 0, |β| = 1, β = 0 · · · 01
︸ ︷︷ ︸

k+1 digits

and z(β) = k, so α ∗β ⇔ |α| < z(β) ⇔ 0 <

k ⇔ 1 ∈ Fa(k), where the last equivalence follows from the definition of Fa(k) and the fact
that 1 ∈ Fa(k) exactly when k > 0.

Now assume that n > 1 and that the theorem holds for all smaller positive integers.

(i) Suppose n ≡ 0 (mod a).

Write β = β′0, and note len(β′) = k and z(β) = z(β′) since appending a zero to the
right of β′ cannot introduce a drop. Then

α ∗ β ⇔ α ∗ β′ ⇔
n

a
= |αβ′| ∈ Fa(k − 1) ⇔ n ∈ Fa(k),

where the second equivalence follows by induction and the last from Lemma 9 since
R = 0.

(ii) Suppose n 6≡ 0 (mod a). Note that this implies that in base a, the last digit of β is
nonzero. There are three cases:

(a) Suppose z(β) = 0. Then β has no drops and thus can be written as a sum
of the elements in Ga(k). Then |β| = c1a

k + · · · + ck+1(a
k + · · · + a + 1), and

n = |α| · ak+1 + c1a
k + · · · + ck+1(a

k + · · · + a + 1) /∈ Fa(k). In this case, α ∗ β
and n ∈ Fa(k) are both false.

(b) Suppose z(β) > 0 and |α| = 0. Certainly n = |β| ≤ ak+1 − 1. In fact, since β
has a drop, we have n < ak+1 − 1. (The base-a digits of β cannot all equal a − 1
since β has a drop.) There are two cases.

(1) If |β| < ak+· · ·+a+1, then n < R (n 6≡ 0 (mod a) =⇒ R ≥ ak+. . .+a1+a0).
Thus, by Lemma 9, n ∈ Fa(k), and therefore α ∗ β and n ∈ Fa(k) are both
true.

(2) Again let δ be a string of k+1 ones in base a, and assume that ak+· · ·+a+1 ≤
|β| < ak+1 − 1. Since |α| = 0, we may apply Lemma 9 to obtain

α∗β ⇔ α∗ (β− δ) ⇔ |αβ|− |δ| = n− (ak + . . .+a+1) ∈ Fa(k) ⇔ n ∈ Fa(k),

where it is understood that len(β − δ) = len(β). The first equivalence follows
from Lemma 14 (recall that the hypothesis |α| > 0 was unnecessary for Case
(i)), the second from the induction hypothesis, and the last from Lemma 10.
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(c) Suppose z(β) > 0 and |α| > 0; then by Lemma 14

α ∗ β ⇔ α ∗ (β − δ) or [|α| − 1] ∗ ([1]β − δ)

⇔ n − (ak + · · · + a + 1) ∈ Fa(k)

⇔ n ∈ Fa(k),

where the first equivalence follows from Lemma 14, the second from the induction
hypothesis, and the last from Lemma 10.

Theorem 7 is actually a corollary of Theorem 15. One can easily compute fa(n) from
Theorem 7. Here are a few example calculations. Notice that to apply Theorem 7 it may
be necessary to write a string with leading zeros.

Corollary 16. Let n ∈ Z
+. Then n ∈ Fa(k) if and only if there exist base-a strings α and

β such that

1. |αβ| = n,

2. α ∗ β, and

3. k = len(β) − 1.

Proof. If such strings α and β exist, then n = αβ ∈ Fa(k) by Theorem 15. Conversely, if
n ∈ Fa(k), then let β be the last k + 1 digits of a base-a representation of n, and let α be
the remaining digits, setting α = 0 if otherwise α would be empty. This gives |αβ| = n and
k = len(β) − 1 directly. Furthermore, since |αβ| = n ∈ Fa(k), α ∗ β by Theorem 15.

Example 17.

1. For n = 24 = |11000| = |0011000| with base a = 2, let α = 0 and β = 011000; then
|αβ| = 24 and 0 = |α| < z(β) = 1. We see that f2(24) = len(β) − 1 = 5 since for no
shorter β will we have a drop.

2. In ternary, for n = 5010 = |12123|, let α = 0 and β = 1212; then |αβ| = 50 and
0 = |α| < z(β) = 2. Thus f3(50) = len(β) − 1 = 3.

3. In base 7, for n = 2241310 = |1222267|, let α = 1 and β = 22226; then |αβ| = 22413
and 1 = |α| < z(β) = 4. Therefore f7(22413) = 4.

We note that Theorem 15 and Corollary 16 completely characterize the Frobenius sets,
Fa(k). In addition, if n 6∈ Fa(k − 1) there is a simple algorithm giving n as a non-negative
linear combination of the elements of Ga(k − 1).

Representation Algorithm: Assuming n 6∈ Fa(k − 1) the following algorithm gives
ti ≥ 0 such that

n = t0a
k−1 + t1(a

k−1 + ak−2) + t2(a
k−1 + ak−2 + ak−3) + · · · + tk(a

k−1 + · · · + a1 + a0).
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1. Write n in base a as n = cr · · · c1c0.

2. Let tk := c0 and Remain := n − tk(a
k−1 + · · · + a1 + a0).

3. If Remain = 0, put tk−1 = tk−2 = · · · = t0 := 0, then STOP.

4. Let m := 1.

5. Write Remain in base a as cmr . . . cm2cmm

m zeros
︷ ︸︸ ︷

00 . . . 0 .

6. Let tk−m := cmm and put Remain := Remain − tk−m(ak−1 + ak−2 + · · · + am).

7. If Remain = 0, put tk−m−1 = tk−m−2 · · · = t0 := 0, then STOP.

8. If Remain > 0, put m := m + 1. If m < k GOTO step (5).

9. If Remain > 0 and m = k, put t0 = Remain
ak . STOP.

Here is an example using the Representation Algorithm.

Example 18. Suppose a = 3. Let n = 1541 = 2·36+34+2. The ternary representation of
1541 is 2010002. Since 2∗010002 holds but 20∗10002 is false, 1541 ∈ F3(5) but 1541 6∈ F3(4)
by Corollary 16. Recall that G3(4) = {81, 108, 117, 120, 121}. We begin by writing the
elements of G3(4) in base a = 3: [G3(4)]3 = {10000, 11000, 11100, 11110, 11111}. We will
find non-negative coefficients ti such that

2010002 = t0(10000) + t1(11000) + t2(11100) + t3(11110) + t4(11111)

The ternary representation of 1541 implies t4 = 2. The next few steps outlined below
involve subtracting the appropriate multiple of the elements of G3(4). The quantity Remain
is changed by each subtraction and each new Remain amount gives another ti.

Step 1 Step 2
n = 2010002 1210010

−22222 −11110
Remain : 1210010 1121200

=⇒ t3 = 1 =⇒ t2 = 2

Step 3 Step 4
n = 1121200 1022000

−22200 −22000
Remain : 1022000 1000000

=⇒ t1 = 2 =⇒ t0 = 9
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3 Theorem 15 as an Algorithm

Fix the integer a ≥ 2. In this section we present the algorithm for determining, given n ∈ Z
+,

the least k such that n ∈ Fa(k). We then briefly discuss the computational complexity of
our algorithm.
Algorithm:

1. Write n in base a : n = ck · · · c1c0.

2. Let α0 := ck · · · c1 and β0 := c0.

3. If α0 ∗ β0, then n ∈ Fa(0). STOP.

4. If not α0 ∗ β0, let l := 1.

5. Let αl := ck · · · cl+1 and βl := cl · · · c0.

6. If αl ∗ βl, then n ∈ Fa(l). STOP.

7. If l < k − 1, then put l := l + 1. GOTO step 5.

8. Let αk := 0 and βk := ck · · · c0.

9. If α ∗ β, then n ∈ Fa(k). STOP.

10. Let αk+1 := 0 and βk+1 = 0ck · · · c0. Then |α| = 0 and z(βk+1) = 1, so α ∗ β and
n ∈ Fa(k + 1). STOP.

It is clear that the above algorithm terminates. Furthermore, since the algorithm checks
membership in Fa(k) for each value of k sequentially beginning with k = 0, it must determine
the least value of k such that n ∈ Fa(k), as desired.

In the worst case, steps 5 through 7 are repeated at most loga(n − 1) + 1 times. Each
iteration requires about loga(n) operations (mostly from computation of z(β)). Steps outside
of this loop require minimal computation, so the algorithm is O(log2

a(n)). Note that this
algorithm can be improved to O(log(n)) by repeated bisection of the base-a representation
of n.

We note in closing that a working group at Willamette University has studied a similar
Frobenius-level problem for the following related G-sets. For positive integers a, b, c, d such
that gcd(a, b) = gcd(c, d) = 1 and a < b, define G(0) = {a, b}, G(1) = {ac, bc, bc + d}, and
for k ≥ 2

G(k) = {ack, bck, bck + dck−1, bck + dck−1 + dck−2, . . . , bck + dck + · · · + dc0}.

They have found necessary and sufficient conditions for nested corresponding Frobenius-sets.
They are working to solve the Frobenius-level problem for these more general sequentially
redundant sets [1].
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