We explore the effect of different values of the shift parameter
![$s$](abs/img1.gif)
on the behavior of the family of meta-Fibonacci sequences defined by
the
![$k$](abs/img2.gif)
-term recursion
with the
![$s+k$](abs/img4.gif)
initial conditions
![$T_{s,k}(n) = 1$](abs/img5.gif)
for
![$1 \leq n
\leq s + k$](abs/img6.gif)
. We show that for any odd
![$k \geq 3$](abs/img7.gif)
and non-negative
integer
![$s$](abs/img1.gif)
the values in the sequence
![$T_{s,k}(n)$](abs/img8.gif)
and
![$T_{0,k}(n)$](abs/img9.gif)
are essentially the same. The only differences in these sequences
are that each power of
![$k$](abs/img2.gif)
occurs precisely
![$k+s$](abs/img10.gif)
times in
![$T_{s,k}(n)$](abs/img8.gif)
and
![$k$](abs/img2.gif)
times in
![$T_{0,k}(n)$](abs/img9.gif)
. For even
![$k$](abs/img2.gif)
the
frequency of
![$k^r$](abs/img11.gif)
in
![$T_{0,k}(n)$](abs/img9.gif)
depends upon
![$r$](abs/img12.gif)
. We conjecture
that for
![$k$](abs/img2.gif)
even the effect of the shift parameter
![$s$](abs/img1.gif)
is analogous
to that for
![$k$](abs/img2.gif)
odd, in the sense that the only differences in the
sequences
![$T_{s,k}(n)$](abs/img8.gif)
and
![$T_{0,k}(n)$](abs/img9.gif)
occur in the frequencies of
the powers of
![$k$](abs/img2.gif)
; specifically, each power of
![$k$](abs/img2.gif)
appears to occur
precisely
![$s$](abs/img1.gif)
more times in
![$T_{s,k}(n)$](abs/img8.gif)
than it does in
![$T_{0,k}(n)$](abs/img9.gif)
.