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Abstract
We consider the pseudoprimes that M. Cipolla constructed. We call such pseudo-
primes Cipolla pseudoprimes. In this paper we find infinitely many Lucas and Lehmer
pseudoprimes that are analogous to Cipolla pseudoprimes.

1 Introduction

Take an integer a > 1. A pseudoprime to base a is a composite number n such that "~ ! =

1 (mod n). In 1904, M. Cipolla [1] found infinitely many pseudoprimes to a given base a. To
be more precise,

Theorem 1 (Cipolla [1], cf. Ribenboim [5]). Let p be a prime such that p does not divide
a(a® —1). Put

a? — 1 al +1
a—1" Ca+1’
Then n s a pseudoprime to base a.

ny = n =mnins.

In this paper we call such n a Cipolla pseudoprime. In the above theorem, if we set
P =a+1, Q = a, then n is written as n = Us,/P, where Uy, is a term in the Lucas
sequence with parameters P and (). See the next section for Lucas sequences. From this
observation, the following question arises. For given integers P, (), are there infinitely many
Lucas pseudoprimes with parameters P and @) of the form U,,/P? Here Lucas pseudoprimes
will be defined in the next section.

The purpose of the paper is to solve the above question affirmatively under a certain
condition. As a corollary to our result, we derive the result of Lehmer [4]. We are also going
to consider an analogous question for Lehmer sequences.
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2 Cipolla-Lucas pseudoprimes

In this section we consider Lucas pseudoprimes of special type.

Let P, @ be integers such that D := P? — 4(Q) # 0, and «, 8 the roots of the polynomial
2% — Pz + . For a nonnegative integer n, put

Al VAN
a—p

For example, we have Uy = 1, Uy = 1, Uy = P, Vj = 2, and V; = P. One sees that
(Un)n>o and (V,,)n>o are integer sequences. We call the sequences (U, )n>0, (Vi)n>o the
Lucas sequences with parameters P and Q).

We exhibit some results needed afterwards. One can consult Ribenboim [5, 6] for the
basic results.
(I) For a nonnegative integer n, Us, = U, V,,.
(I) (a) If P is odd and @ is even, then U,, V,, (n > 1) are odd.

(b) If P and @ are odd, then U,, V,, (31 n) are odd.
(III) (a) When U, # 1, U,,|U, if and only if m|n.
(
)

b) When V,,, # 1, V,,,|V,, if and only if m|n and n/m is odd.
(IV) For any odd prime p,

(p—1)/2 »
177 _ —(2k+1)) Pk
U, = ) (%H)PP D*, (1)
k=0
(p—1)/2
217—1‘/;0 = ( 2pk; ) pp—2k) Dk (2)
k=0

We recall Lucas pseudoprimes. A composite number n is a Lucas pseudoprime with
parameters P and @ if

n—

Un(

39

)= 0 (mod n)

holds. Here (%) is the Jacobi symbol.
Now let us define an analogue of Cipolla pseudoprimes for Lucas sequences.

Definition 2. A composite number n is called a Cipolla-Lucas pseudoprime with parameters
P and @ if it is a Lucas pseudoprime with parameters P and () and has the form Uy,/P for
a certain prime number p.

Our first result is as follows.

Theorem 3. Let P be an odd number, and @) a nonzero integer such that ged(P, Q) = 1.
Assume that D = P? — 4Q) is square-free. Then there are infinitely many Cipolla-Lucas
pseudoprimes with parameters P and Q).



Proof. Let p be an odd prime such that ged(p,3PD) = 1 and ¢(D)|p — 1. Then we show
that Us,/P is a Lucas pseudoprime. From now on we prove the theorem step by step. Put
m = ng/P.

First of all, we prove m]Um_(g). Since p is odd, U, = (%) (modp), V, = P (mod p).
So that "

D
Uy =U,V, =P (—) (mod p).
p

Since P = Us,, Us|Us,, and ged(p, P) = 1, we have m = <%> (mod p). We recall that P is
odd and ged(p,3) = 1. Hence U, and V, are odd. We see 2p|m — (%). From this, we have
U2p|Um7(%). Moreover we have m|Um7(%). We prove (%) = (£). By (1) and (2),

207U, = pPP' (mod D),
271, = PP (mod D).

By ¢(D)|p — 1, we have U, = p(mod D), V, = P (mod D). Hence Uy, = pP (mod D). By
ged(P, D) = 1, it follows that m = Uy,/P = p(modD). Observe that D = 1(mod4)
because P is odd. Thus we have (%) = (%), which implies m|Um7(2).

We next show that m is a composite number. Since p is odd and P = U, = Vi, one has
P U, and P|V,. Now assume that there exists an odd prime p satisfying V,, = £P. Then
one has V1|V, and V,|V;. This implies p = 1, which is absurd. Therefore m is a composite
number.

Finally, we prove the infinitude of U,,/P. By Dirichlet’s theorem on primes in arithmetic
progression, there are infinitely many primes p such that ¢(D)|p — 1. The number of primes
p with ged(p,3PD) > 1 among them is finite. This proves the claim. O

As a corollary to the last theorem, we can derive a known result. We call the Lucas
sequence with parameters 1 and —1 the Fibonacci sequence. We write (F,,),>¢ for it. A
composite number n is called a Fibonacci pseudoprime if

Fo(

n

Ells]

)= 0 (mod n)

is valid. Using the last theorem, we have

Corollary 4 (Lehmer [4]). There are infinitely many primes p such that F, is a Fibonacci
pseudoprime.

Proof. Since P =1 and Q = —1, Uy,/P becomes Fy,. In this case one has D = 5. Hence for
any prime p > 5 with p = 1(mod 4), the two conditions ged(p,3PD) = 1 and p(D)|p — 1
hold. This yields the result. [



3 Cipolla-Lehmer pseudoprimes

In this section we consider Lehmer pseudoprimes. First, we review Lehmer sequences.

Let a, 3 be distinct roots of the polynomial f(z) = 2% — v/Lz + M, where L > 0 and
M are rational integers, and K := L — 4M is the discriminant of f(z). For a nonnegative
integer n, put

D — (™= ") /(a— ) if n is odd
" (@™ — ™) /(a® = 3%) if n is even,
Jo— { (™ + ") /(a+p) if n is odd

a + (" if n is even.

For example, we have Dy =0, Dy = Dy =1, By =2, E; =1, and Ey = L — 2M. One sees
that (Dy,)n>0 and (E,),>0 are integer sequences. We call the sequences (D,,),>0 and (Ey,)n>0
the the Lehmer sequences with parameters L and M. It should be noticed that we modify
the original definition of the Lehmer sequences in order to make them integer sequences.
We exhibit some results needed afterwards. One can consult Lehmer [3] for the basic
results.
(I) For a prime p, Dy, = D, E,,.
(IT) D,, is even in the following cases only
(a) L =4k, M =2l + 1, n = 2h,
(b) L=4k+2, M =2l + 1, n = 4h,
(¢) L=4k+1, M =20+ 1, n=3h.
(III) E,, is even in the following cases only
(a) L =4k, M =2l +1,
(b) L =4k+2, M =20+ 1, n = 2h,
(¢) L=4k+1, M =2l +1, n=3h.
)

(IV) If m|n, then D,,|D,,.
(V) For any odd prime p,
(p—1)/2 »
p—1 _ (p—2k—1)/2 17k
27D, = (2k—|—1)L K", (3)
k=0
(r—1)/2
Qp—lEp = ( 21;{; ) LWP=2k)/2 k- (4)
k=0

D= (%) woan) B=(2) (uodp)

Next, we review Lehmer pseudoprimes. A composite number n is called a Lehmer pseu-
doprime with parameters L and M if

an(%) =0 (mod n)

holds. Here (%) denotes the Jacobi symbol.
Any Cipolla pseudoprime is written as Dy, for some prime p. Hence we define Lehmer
pseudoprimes related to Cipolla pseudoprimes as follows.
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Definition 5. A composite number n is called a Cipolla-Lehmer pseudoprime with param-
eters L and M if it is a Lehmer pseudoprime with parameters L and M and has the form
D, for a certain prime p

Our second result is as follows.

Theorem 6. Let L be a square-free odd number and M an integer such that ged(L, M) = 1.
Assume that K = L — 4M 1s square-free. Then there are infinitely many Cipolla-Lehmer
pseudoprimes with parameters L and M.

Proof. The proof is similar to that of Theorem 3. Let p be an odd prime such that
ged(p, KL) = 1 and o(KL)|p — 1. Then we prove that D, is a Lehmer pseudoprime.

Put m = Dy,.

We first show m|Dm7(%>. Since p is odd, D, = (%) (modp), E, = <%> (mod p).
Hence
m = Dy, =D, E, = <%) (mod p).

That is to say, p|m — <%) Since L is odd, D, and E, are odd. Hence m is odd. We find

that m — (%) is even. Thus 2p|m — (%) Using this, we have D2p|Dm7(KL), which shows
m]Dm_(ﬂ). We must prove (%) = (%) Since K is odd, by (3) and (4),

D, = pL'T + KT (mod KL),
B, = L' +pK'T (mod KL).

Since p(KL)|p— 1 and 24 KL hold, 2°~* =1 (mod KL). Hence we have
m=D,E,=p(K"'+ L") (mod KL).

It should be noted that KP~! 4+ LP~™! = 1 (mod KL). Indeed, because of gcd(K,L) = 1,
the condition (K )p(L)|[p — 1 implies LP~! = 1 (mod K) and K?~! = 1 (mod L). For any
prime divisor [ of K, I[|KP~! + LP~! — 1. Hence we have K?~! + [P7! — 1 = 0 (mod K). In
the same way, we have K?~! + LP~! — 1 = 0 (mod L). Therefore our claim is proven. Using
this observation, we obtain m = p (mod K'L). By the way, we see KL = L? —4ML = [? =
1 (mod 4). Thus we conclude that <%) = (EL). We get m|Dm_<ﬂ).

Clearly m = D,E, is a composite number.

Finally we show the infinitude of D,,. By Dirichlet’s theorem on primes in arithmetic

progression, there are infinitely many primes p such that (K L)|p—1. The number of primes
p with ged(p, K L) > 1 among them is finite. This proves the claim. O

References

[1] M. Cipolla, Sui numeri composti P, che verificanola congruenza di Fermat a”~! =

1 (mod P). Annali di Matematica 9 (1904), 139-160.

5



[2] N. Koblitz, A Course in Number Theory and Cryptography. Springer-Verlag, 1994.

[3] D. H. Lehmer, An extended theory of Lucas’ functions. Annals of Math. 31 (1930),
419-448.

[4] E. Lehmer, On the infinitude of Fibonacci pseudo-primes. Fibonacci Quart. 2 (1964),
229-230.

[5] P. Ribenboim, The Book of Prime Number Records. Springer-Verlag, 1989.

[6] P. Ribenboim, My Numbers, My Friends — Popular Lectures on Number Theory.
Springer-Verlag, 2003.

[7] A. Rotkiewicz, Lucas pseudoprimes. Functiones et Approzimatio XXVIII (2000),
97-104.

[8] A. Rotkiewicz, Arithmetic progressions formed by pseudoprimes. Acta Mathematica et
Informatica Universitatis Ostraviensis 8 (2000) 61-74.

9] J.-P. Serre, Cours d’arithmétique. Presses Universitaires de France, 1970.

2000 Mathematics Subject Classification: Primary 11A51; Secondary 11B39.

Keywords: pseudoprime, Lucas sequence, Lucas pseudoprime, Lehmer sequence, Lehmer
pseudoprime.

Received July 17 2007; revised version received August 1 2007. Published in Journal of
Integer Sequences, August 14 2007.

Return to Journal of Integer Sequences home page.


http://www.cs.uwaterloo.ca/journals/JIS/

	Introduction
	Cipolla-Lucas pseudoprimes
	Cipolla-Lehmer pseudoprimes

