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Abstract
We classify all polynomial transformations of integer sequences which preserve the
Hankel transform, thus generalizing examples due to Layman and Spivey & Steil. We
also show that such transformations form a group under composition.

1 Introduction

Given a sequence of integers {a;} = ag,a1,as, ..., the Hankel matrix of A is the infinite
matrix whose (7, j) entry is a;4; for ¢ > 0,j > 0. The Hankel matrix of order n of A is the
n X n matrix consisting of the first n rows and n columns of the Hankel matrix of A, and the
Hankel sequence determined by A is the sequence of determinants of the Hankel matrices of
order n. For example, the Hankel matrix of order 3 is given by

Qg a; az
a; az as
Qo Az a4

Let R = Zlag, a1, as, ...]. We will say that a sequence {b;} = {bg, b1, b, ...} of elements

in R is an HT P sequence (Hankel Transform Preserving) if the Hankel transform of {b;} is
formally equal to that of {a;}; that is, if the following identity holds in R for all n:

bo bl . bn ao ay e .
by by te bn—‘,—l a1 a2 crr Op4
bn bn-l—l e b2n Ap Ap41 " Aan
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An HTP sequence {b;} determines a ring homomorphism b : R — R by the equation
b(a;) = b;. We will sometimes refer to the sequence {b;} as just b. It is easy to see that
the composition of two ring homomorphisms associated to HT P sequences is the ring ho-
momorphism associated to an HT P sequence, so that the set of all HT P sequences has a
semigroup structure (with b; = a; representing the identity). We will see (Theorem 3.6) that
this is actually a group structure.

Ezample 1.1. Let 0 : R — R be given by o(a;) = (—1)a;. Then o determines an HT P se-
quence. Indeed, the order n Hankel matrix of the sequence {(—1)%a;} is given by conjugating
the order n Hankel matrix A, of {a;} by the diagonal matrix D,, with (i,4)-entry given by
(—1)". The determinant of D,'A, D, is the same as that of A,.

Ezample 1.2. For an integer k, the sequence defined by b, = >"" (T;) k" ia; is an HTP
sequence. (Here, if k = 0, then we interpret 0° to be 1.) Spivey and Steil [5] called this
the falling k-binomial transform, and they proved that this preserves the Hankel Transform.
When k = 1, this gives the binomial transform, which Layman [3] originally proved preserves
the Hankel transform.

Remark 1.3. In fact, Spivey and Steil allow k to be any real number. If k£ were not an
integer, then b, is not in R = Zlaog, a1, as, . . .], so in our language, {b, } would not be an HTP
sequence. Since we are interested in integer sequences, we have restricted to Zlag, a1, as, . . .].

Definition 1.4. An HT P sequence b preserves aqg through a,, if b; = a; for 0 <i <n.

Suppose that b(m) is a sequence of HT P sequences such that for each n, there is a
number M (n) such that b(m) preserves ag through a, for all m > M(n). Then the infinite
composition

~--ob(m)ob(m—1)o---0b(0)

is itself a well-defined sequence. Indeed, the nth term in the sequence of this infinite com-
posite is determined by b(M (n)) o b(M(n) —1)o---0b(0). It is easy to see that this infinite
composition is itself an HT P sequence.

In order to find all HT' P sequences, we first describe a special set of sequences, parametrized
by R and the positive integers. In fact, for each positive integer n, and each ¢ € R, we will
define an HT' P sequence b(n, c) which preserves ay through ay,. Example 1.2 above arises
when n =0 and ¢ € Z. Our main theorem is

Theorem 1.5. If b is a given HT P sequence, then there is a sequence ¢y, c1,Ca, ... in R and
an e € {0,1} such that

b=---0b(n,cy)o---0b(l,¢1)0b(0,c) 0 o°.

Our goal in Section 2 is to define the sequences b(n, ¢, ), which we do in Definition 2.5.
In Section 3 we prove that the set of all HT P sequences forms a group (Theorem 3.6), and
we prove our classification Theorem 1.5.



2 A collection of HTP sequences

Definition 2.1. Let T : R[z] — R be the R-linear homomorphism defined by T(z*) = ay.
For integers i > j > 0, define T;; : R[x] — R to be the R-linear homomorphism given by

Qo a1 a2 ce Q;
ay a2 as - Q41
T”(:ck) — (_1>1+J J J J+ Jl+i|
Aj+1 Aj42 Q43 -0 Al
a; Qi1 Aip2 - A2
ar  Qg4+1 Agy2 - Ak+i

Remark 2.2. If 0 < k < i and k # j, then T;;(z*) = 0, since two rows in the matrix defining
T;;(z*) are equal. Also, keeping track of signs, one sees that T};(2?) = Tj;(z"). Finally, we
note that Ty =T

Definition 2.3. For each ¢ € R and each integer i > 1, we define a sequence of polynomials
fmic(z) € Rlx] recursively by

i—1
Joje=1, fmt1ie = fmie (@ + CTz’—l,z'—l(SBi_l)) —C (Z Ti-1,5(fmiie) - 37j> :
=0
Also, we define fmo.. € R[z] by fimoe= (x+ )", or (equivalently) recursively by

foo.e =1, fmi1.0e = fmoe (@ +c).

We will show in Lemma 2.9 that for each ¢ > 0, m > 0, and ¢ € R, f...(z) is a degree
m polynomial in z with leading coefficient 1.

Definition 2.4. Fizing a choice of i and c, define Uy, for each k,m by

fm,i,c(x> - Z Uk,mxk-

Let U be the infinite matriz whose (k,m) entry is given by Uy .

Thus U is upper triangular, with diagonal entries all 1. Let A be the infinite Hankel

matrix
ap a1 as
ayp az as
o9 a3 Ay

A:

We will show in Lemma 2.14 that the product U'AU is a Hankel matrix.



Definition 2.5. Let b(i,c) denote the sequence whose Hankel matriz is the matriz U'AU,
where U 1is defined in terms of i and ¢ as above.

We show in Corollary 2.15 that b(7, ¢) is an HTP sequence preserving ay through as;.

Fxample 2.6. If i = 1 and ¢ = 1, then the recurrence relation of Definition 2.3 becomes
111 = fma1- (@ +ag) = T(fm11),

fo11 =1

Thus,
fiti=(@+a) —TQ)=2+ay—ay =1z,

fora = z(x + ag) — T(x) = 2* + apr — ay,
f311 = (2> + apr — ay)(x + ag) — T(2* + apx — a1) = 2° + 2ap2> + (ag — a1)x + —aga; — as.

Therefore, the upper left 4 x 4 submatrix of U is

1 0 —a; —apa; — as
01 a ai—a
00 1 2ap
00 O 1

Using Mathematica, we compute the upper left 4 x 4 submatrix of U'AU to be

ao ay ag as — a% + apao
a ay az — a3 + apas x
a9 as — a% + apas T Y

asz — a% + apas x Y z

where
r = Q4 — CL(]CL% + 2@0&3 - 2@1@2 + a%ag

Yy = as — 4agpaias + 3agay — 2a1a3 — agaf + 3agaz — ag + a%ag + a‘rf
Z = ag + aéag + 3a%a2 — aga% + 4a8a3 — 2asa3 — 2a1a4 — 6aga1a2
—l—6a(2)a4 + 2a0ai’ — 3a0a§ — bagaias + 4agas
Thus, the first seven terms of b(1, 1) are ag, a1, as, az — a3 + agas, T, y, z.

Example 2.7. 1f © = 2 and ¢ = 1, then the recurrence relation of Definition 2.3 becomes
Jmr121 = fma21- (fL’ + Tl,l(x)) - Tl,l(fm,z,l)x - Tl,O(fm,Q,l):

foa1=1.
Thus,
f1’271 - (QE + G’OGQ - a%) - OZE — (CLOCLQ — a%) — x7

Fans = (o + a0t — a%) — (agaz — ) +0 = 2,



f321 = 2% (x + agag — a?) — (agas — aras)x + ajas — aj
= 2° + (agay — a®)z* — (apas — ayaz)x + ajas — aj.
Therefore, the upper left 4 x 4 submatrix of U is

2
0 0 aas—a;

1

010 a1ag — Aopasg
0 0 1 apay—al
0 00 1

Using Mathematica, we compute the upper left 4 x 4 submatrix of U'AU to be

Gp a1 az as
a; ag Qa3 Qg
s az a4 T
a3 ag T Yy

where
3 2 2
T = a5 — Ay — Qo3 — a a4 + 2a1asa3 + agasay,
3 2 4 2 2 2 2 2 2
Y = ag — 2aja2a3 — 2a5a3 + ajas — aga2as + agasas + 2apaia5a3 + 2a1a5 + 2a1a2a4
—i—afag + aoa%ag — 2a0a%a2a4 — 2a§a5 — aoaél — 2apasa4 + 2apasas.

Thus the first seven terms of b(2,1) are ag, a1, as, as, as, x,y.

Lemma 2.8. Suppose [ and g are two polynomials in R[x], and i > 0 is any integer. Then

[y

i—1 i—

ZT(f 2l) Ty y(g) = Y _T(g-7) - T i(f).

Jj=0 J

i
=)

Proof. Since both sides of the equation are R-linear in both f and g, it suffices to consider
the case when f = 2™ and g = 2", so we need to show that

i—1 i—

[y

N T@) Ty (@) = S T™) - Ty (2™,

j=0 J

Il
=)

Consider the matrix below:

Qo ai ag - a;—1 A
ay a2 a3 s a; Am41
a2 as Gy T @41 Am42
Qi—1 a; (T A2;—2  Am+yi—1
Qp, Qp41 Gpi2 0 Gpgi—1 0

If we compute the determinant by expanding along the rightmost column, we get

—_

11—

—_

11—

(=) apyy - Tio(a™) = =Y T(a™) - Ty (™).

<
Il

o
<
Il

o



If we compute the determinant by expanding along the bottom row, we get

i—1 1—1
D (D) any - Toy@™) = = Y T(@™) - Timyy(@™).
=0 =0

]

Lemma 2.9. For each i > 0, m > 0, and ¢ € R, fi..(x) is a degree m polynomial in x
with leading coefficient 1.

Proof. When 7 = 0 or m = 0, the claim is clear. We assume ¢ > 1. Assume by induction
on m that f,,;.(z) has degree m and leading coefficient 1. It then suffices to show by the
recursive definition of f,,41.(z) that T;_; ;(fim..) = 0 whenever ¢ > j > m. This follows at
once from Remark 2.2 and the inductive hypothesis. O]

Lemma 2.10. f,,;. = 2™ whenever m < 1.

Proof. Using the recursive definition, we see that it is enough to show that

i—1
Ty (2h) = ZTi—l,j(l’ )
j=0
whenever m < i — 1. This follows from Remark 2.2, since all terms in the right hand sum
are 0, except for the term when j = m, and this is Tj_1,,(z™)a™ = T;_1 ;1 (x*1)z™. O
Lemma 2.11. For m,n > 0,
T(fm—i—l,i,c . fn,i,c) = T(fm,i,c ' f'rL—i-Li,C)’
Proof. First,
frrr0c froe = @+ )"z +0)" = (@ + )@+ )" = foe fari0e
We now assume ¢ > 1. We then have

fm—i—l,i,c : fn,i,c - fm,i,c : fn—i—l,i,c -

i—1

(fmzc(x + Cﬂfl,ifl(lﬂ;l)) —cC (Z Tio1,j(fmie) - 55])) frie—
j=0

fm,i,c' (fnzc(x'f_cj—'z 10— 1 (ZE 1,5 fn,z,c : >)

<fm,z,c <Zﬂ 1,5 fn,z,c ’ > (Z,—Tz 1,5 fm,z,c : xj> fn,i,c)

i—1
=cC (fm,z,c ZL’ T‘z 1,](fnzc) fnzc QZ’ irz 17j<fmzc)>'
J
By Lemma 2.8, this term is in the kernel of 7T'. O]

Il
=)
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Lemma 2.12. T(f,;.(z)) = a,,, whenever 0 < m < 2i.
Proof. Suppose m = 2i. Since fy,;. = 1, and by applying Lemma 2.11 7 times,
T(fZi,i,c) = T(fQi,i,c : fO,i,c) = T(fi,i,c : fi,i,c>~

By Lemma 2.10, f;;. = 2', so (fis.)? = 2%, and T(2*) = ag;. The other cases follow

similarly. :
Lemma 2.13.
ay a; - a;
T(foisre(2)) = agipr + ¢ ai ay o ai
a; Qi v A

Proof. 1f we expand the determinant on the right hand side of the equation along the last
column, we get

i1
Q2i41 + CCLQZ'TF1,Z;1($FI> - CZ Ti 1 ($i)ai+j
=0
i—1
_T <x2i+1 + CﬂU%Tz‘—l,i—l(Ii_l) _ CZE—LJ‘(Ii)%H‘j)
=0
i—1
=T (952 (:v’ (4 cTirina (@) —c> E—l,j(fi,i,c)xj)>
=0
i—1
= (xz (f“c : (313 + Cﬂfl,ifl(ajl;l)) — CZE*LJ‘(fi,i,c) : 37]))
=0

= T(l'i : fi—i—l,i,c) = T(fz',i,c : fi—i—l,i,c) = T(f2i+1,z‘,c)-

Here, we have used Lemma 2.10 to identify z* with f;; . and Lemma 2.11 for the last equality.

m
Now recall that A is the infinite Hankel matrix
ap a1 as
ay ag as
A= Az Az Q4
Lemma 2.14. The product U'AU is a Hankel matrix.
Proof. We have f,; . fuic= Zsi Us Uzt so that
T(fr,i,c : fu,i,c) - Z US,TUt,uaS+t - Z US,T‘a/S-i-tUt,U‘
st s,t
This is precisely the (r,u) entry of U'AU. Now the result follows from Lemma 2.11. O

7



Recall from Definition 2.5 that b(7, ¢) denotes the sequence whose Hankel matrix is U*AU.

Corollary 2.15. We have b(i,c¢), = T'(fnic), and b(i,c) is an HT'P sequence preserving ag
through as;. Moreover

ap ar - Gy
. ap Gz vt Q4
b(i,C)2i41 = Q2441 + C
ai Qi1 - A2

Proof. Since U and U are each triangular with 1s on the diagonal, it follows that the Hankel
matrices of finite order associated to U' AU have the same determinants as those of A. Thus
the sequence of entries on the top row of U'AU represents a transformation of A which
preserves the Hankel transform. This is the same as the sequence of entries in the top row
of AU since U' preserves the top row. But it is easy to see that this sequence is given by
T(fnic)- The first 2i terms of the sequence are given by Lemma 2.12, while the 2i 4+ 1 term
is given by Lemma 2.13. O]

3 Classifying all HT' P sequences

Lemma 3.1. For each integer n > 0, the determinant

Qg ai e np,
3] a2 ot Qg
Apn  Apy1 - QA2n

18 irreducible in R.

Proof. The statement is obvious if n = 0, so suppose n > 1. We make R into a graded ring by
assigning deg(a;) = 2n+1—1i. Then the determinant is a homogeneous polynomial of degree

(n+1)2. As a polynomial in ay, with coefficients in Z[ag, ay, . . ., a2,_1], the determinant can
be written
Qo ay Ap—1 Qp
apy air - Gp_1
ay as - Qn, An+1
al 0/2 ) an
* Uon +
ap—1  Gp - Q2p—2 A2p-1
Qp—-1 Qp -+ A2p—2 0
an Qpy1 0 Qop—1

The coefficient of ag, has degree (n + 1)? — 1, while the constant coefficient has degree

(n+1)%. But no element in Z[ag, ay, . . ., as,_1| has degree 1. Therefore, the coefficient of as,
does not divide the constant coefficient. By induction, the coefficient of as, is irreducible.
The result follows from this. [



Lemma 3.2. Suppose that b is an HTP sequence which preserves ag through as,_1. Then
an = Q2p-

Proof. In order to have

aO a/l e an aO al Y an
ay as st Ap4a ai ag R ¢ o |
- b
Ap Apy1 0 b2n Ap Apy1 c 0 Aon
we must have
Qg ayp -+ Qp-1
a’l 0/2 PR a/n
(b2n - &2n) . . . = 0.
Ap—1 QAn - A2pn—2
Thus, by, — as, must be 0. O

Lemma 3.3. Suppose b is an HTP sequence. Then either by — a; or by + ay is divisible by
ap n R.

Proof. Clearly, by = ag, since the Oth terms in the Hankel transforms must coincide. Now,

in order to have
ap by Qo ai

bl b2 - a; as
we must have byag — b? = asag — a?, so ag(by — as) = b3 — a? = (by — ay)(by + ay). Therefore,
ao divides either b; — a; or by + a;. O
Lemma 3.4. Fiz an integer n > 1. Suppose b is an HT P sequence preserving ag through
aop. Then boy1 — agpiq s divisible by

ao al ) an
ay a2 N N |
an Apty1 Aon
Proof. We have
Qo 3] te Gp, Qp41
aq a2 o Opg1 o Qpy2
(07% Apy1 "0 A2n b2n+1
ap4+1  Qpt2 - b2n+1 b2n+2
Qo (451 o Ap—1 A, Qg (5] T Qap, Ap+1
ay a2 T Qp, An41 (451 ¢5) Tt Qp41 Apy2
- b2n+2 T +
Ap—1 (07% e Aopn—2 A2p—1 n p4+1 " Aon b2n+1
Qp  Qpy1 0 A2p—1 A2n Qpy1 Qpy2 -0 b2n+1 0




The determinant on the

ap aq

right above can be written

ap Ap+1 ) ai ap Ap+1
: n :
0 0 0 bontr Up  Qpy1 a2y 0
0 O b1 0O 0 0 bapy1 0
Qo aq Ap Qi1 Qo ay Ap  Gp41
4| Py :
0 0 0 boptr ap  Gpgt az, 0
(py1 Gpi2 0 0 (pi1 Gpi2 0 0

(In each of the four above matrices, all rows except the last two are the same.) Now, we

can write this as

Qo ai Ap—1

o 3] (p—-1  OApy1
_ 2 .
= —b5, 11 — ban+1 :
Ap—-1 Qp A2pn—2 Ap  Qp41 Aon—1 O

) ay ap—1 an ap ay Ap  Qp41
—ban+1 + )
Ap—1 an, Aopn—2 A2p—1 an, Ap41 Aon 0
(py1 Gpi2 aon 0 (pi1 Gpi2 0 0

The second and third terms in the above sum are equal, since the determinant of a matrix

is equal to the determinant of its transpose.
Now suppose

Qo a1 Qap, Ap+1
ay a2 Qp+1 Apy2
(079 an+1 Aon b2n+1
Ap+1 Qpy2 b2n+1 b2n+2

Qo ai

aq )

ap Ap+1
Qpt1 Qp42

Expanding these determinants as above and setting them equal, we get

ao

ai Qn ag
b ay a2 Ap+1 B2 ai
2n—+2 —Y2n+1
Gp  An41 a2n, Gp—1
ag ai (07 aq
a1 a2 Ap41 9 ai
A2n+2 —Aop41
Gn  Gn+41 A2n, an—1

a2n—2

10

—2a9n+1

(7% An+1
an+1 an+2
A2p  Q2n41
(2n4+1  A2n4-2
ao a1 ap—1 Qp
a1 a2 Gnp, Anp+1
anp—1 (079 a2n—2 a2p—1
Up+1  An42 a2n—1 0
aop ay Ap—1 an
ay a2 Anp, An+1
Gp—1 Anp, A2n—2 aA2p—1
(pt1 Api2 A2n—1 0




Thus, we must have

aD al .« .. an
ai a2 st Oyl
(b2n42 — azn42)
Ap  Qp41 - A2n
aop ai s ap—1 (279}
ago [ an—1
ai a2 s Qnp Gp41
2 2 a]_ CLQ “ . a/n
= (b2p41 — A1) | . . |+ 2(b2n41 — az2nt)
an—1 an, o A2p—2  G2n-—1
Ap—-1 Aap -+ G2pn—2
(py1 Qpy2 -+ A2p—1 0
By Lemma 3.1, either the claim is true or

a‘O al o« o e an

ap az o Gpyl

ap  Qp41 - a2n

must divide
ap aj e Ap—1 (7%
ap ap -+ Qp-1
ai a2 s Qp Ap+1
a1 as e G,
(ban+1 + agnt1) | . . .| +2
’ ' ’ an—1 (79 o A2p—2  A2n—1
Ap—-1 Aap -+ A2p—2 0
Un+1 Ap42 -+ A2p—1
But in the quotient by the ideal I generated by ag,ai,...,an—1,an12,0n13,...,02,+1, the first

determinant becomes a”*! (up to a sign), while the sum above becomes 2a” * a, 11 (again up to a

sign). Since a, does not divide a,1 in R/I, the claim must be true.
O

We now turn to showing that the set of HT P sequences forms a group under composition.
For this, we first need the following Lemma.

Lemma 3.5. Suppose that b and b/ are two HT P sequences which each preserve ag through
aon, 1 > 1. Also, suppose that byyi1 +0b5, | = 2a2n41. Then bol preserves ag through ag,o.

Proof. Let d =bol/. Clearly d preserves ag through as,. By Lemma 3.4, there is a ¢ such
that

CLO al ) a/n

ay a2 o Ap4a
bont1 = Qop41 + €

An Ap41 Aon,

11



Since bap 41 + b, 1 = 2a9,41, we must have

ao al ... an

, ap Q2 Gpiga
on+1 — @2nt1 — C

ap Ap41 ° Aop,

Since both b and b’ preserve ag through as,, it follows that ds, 1 = aon11. Now doyio = 2,42
by Lemma 3.2. [

Theorem 3.6. The set of HT'P sequences forms a group under composition.

Proof. 1t suffices to show that any HT' P sequence b has a left inverse. By Lemma 3.3, either
by — ay is divisible by ag or by + a; is divisible by ag. We will assume first that b; — ay is
divisible by ag. Now let n be the smallest number such that be, 1 # a2,.1 (S0 n > 0, since
byp = ag.) By Lemma 3.2, we know that by, = as,. Choose ¢, as in Lemma 3.4 (or 3.3) so
that

ao al “e an
ay a2 R |

b2n+1 = A2p4+1 — Cp .
An Ap41 Aon

Then by Lemma 3.5 and Corollary 2.15, the composition b(n,c,) o b preserves ay through

A2n+2-
Now, we inductively define a sequence cg, ¢1, ¢a, . .. so that the composition

b(n,cp,)ob(n —1,¢,-1)0---0b(0,c0) 0b
preserves ag through ag, 2. Thus
(«+-0b(n,c,) ob(n—1,¢,-1)0-+-0b(0,¢cp)) o b =1id.

We assumed above that b; — a; is divisible by ag. If by + aq is divisible by ag, then we
can reduce to the former case by replacing b by bo o (see Example 1.1). Then, as above, we
can find a sequence cg, ¢1, ¢, ... so that

~wob(n,cy,)ob(n —1,¢y-1) 0+ 0b(0,¢9) 0oboo =id.
Composing and precomposing both sides with o (which satisfies 02 = id), we get

ogo(--ob(n,e,)obn—1,¢,1)0---0b(0,¢)) 0b=id.

Lemma 3.7. The inverse b(n,c)™! of b(n,c) preserves ag through as, and satisfies

ao al e an
ay Qg - Apyd
-1 .
b(”) c)2n+1 = Q2p41 — C .
Qp  QApt1 c Q2p,

12



Proof. Since b(n, ¢) preserves ag through as, by Corollary 2.15, it is clear that b(n,c)~! also
preserves ag through as,. For the second part, b(n, —c) = b(n, —c) o b(n,c) o b(n,c)~!. Since
b(n, —c)ob(n, c) preserves ag through ag, ;2 by Lemma 3.5 and Corollary 2.15, it follows that
b(n,c)~! must have the same 2n + 1 term as b(n, —c). O

Remark 3.8. We do not know whether or not b(n, )™ = b(n, —c) in general.

We now prove our main theorem.

Proof. As in Theorem 3.6, we can inductively define c¢g, ¢, ... such that either
Vi=bob(0,c0)  ob(l,¢c;) to--0b(n,e,) "

or

b =booob(0,c) " ob(l,c1)™ o 0b(n,c,)”!

preserves ag through as, 2. Here, we use Lemma 3.7 together with Lemma 3.5 to complete
the inductive step. Now either b or b o o can be written as

b ob(n,c,)o---ob(1,e1)0b(0,cp).

It follows that
~-rob(n,cy)o---0b(1,¢1)0b(0,co)

agrees on all terms with b or bo ¢. In the latter case, we multiply both sides by o. O]
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