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Abstract

Let {F,}2°, ={1,1,2,3,...} be the sequence of Fibonacci numbers. In this paper
we give some sufficient conditions on a natural number k such that the equation F), =
kF,, is solvable with respect to the unknowns n and m. We also show that for & > 1
the equation F,, = kF), has at most one solution (n,m).

1 Preliminaries

Let F}, be the nth Fibonacci number, i.e.,
F1 :F2: 1 s Fn+2 :Fn—l—Fn+1, Vn € N.

It is known that these numbers have the following properties :
(1) Fm+n =Fu b, + FanJrl;
(2) ged(Fon, Fo) = Fycamo
(3) if m|n, then F,,|F,;
(4) if F,,|F, and m > 2, then m/|n.
Now, put

P = {keN: dmneNF,=kF,},
Q = {keN: Im,neN,F,=kF,}.

A simple computations show that the natural numbers which satisfy in P, less than 100, are

as follows:
1,2,3,4,5,7,8,11,13,17, 18, 21, 29, 34,47, 48, 55, 72, 76, 89.
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By definition of P and the properties (3) and (4), for each k € P there exist m,n € N such
that k = % However, it seems that the elements of @ do not have any special form.
Using a theorem of R. D. Carmichael [2], it can be shown that the product of Fibonacci
numbers and their quotients belong to Q except for some cases (see Theorem 3.10).
In this paper, we use elementary methods to prove our claim. In section 3, we obtain
some more properties of P. For example, we show that for every element k(> 1) of P,
the equation F, = kF), has a unique solution (n,m). Moreover, we give a necessary and

sufficient condition for which the product of two elements of P is again in P.

2 The Main Theorem

In this section, we introduce some elements k£ in O, so that for each fixed n € N,
k=F,F,, - F,,

belongs to Q, for all natural numbers ay, ..., a, but a finite number.
In order to prove the above claim, we need the following elementary properties of Fi-
bonacci numbers.

Lemma 2.1. For all a,b,c,aq,as,...,a, € N, the following conditions hold
a) Fopp1 = FoFy + Foo1 Fyq;
b) Forpo = FoFy — FyoFys;
¢) Forvpes = FoaFyFo+ Fyu 1By 1 Foy — Fy 0By oFoo;
d)ifn >3, then Foyva,n > FoFoy--Fy,.

Proof. Parts (a) and (b) are easily verified.
(c) Using (1), we obtain

Foyppes = FoaFye 3+ FuFyie s

For(ByoF o+ By Foy) + Fo(FyE, — Fy o F._5)
= FRF.+F, FyFoy— (Fy,— Fo)FyoF.

= LEEF.+FoFy ey — Fo by oF, 5.

(d) We use induction on n. By part (c), the result holds for n = 3. Now assume it is
true for n > 3. Clearly

Forrotanii—tm+) = Fapo—1Favtan—m) + Fa Favtan—n
2 Fan+1Fal+'“+an*n
Z FalFag"'Fan+17
which gives the assertion. O]
Remark 1. In Lemma 2.1(d), ifay =---=a, =1, thenay +---+a, — (n+1) = —1 and

by generalizing the recursive relation for negative numbers, we get F_1 = Fy — Fy = 1.



Remark 2. Note that all the formulas in Lemma 2.1 can be also deduced from Binet’s

formula
a® — ﬁn
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where

o =

Lemma 2.2. Suppose m,n and k are any natural numbers with k|n, then

an F,
“k —1
Fn n—1

Proof. We proceed by induction on m. Clearly, the result is true for m = 1. Assume it is
true for m. Now, using (1) and (3), we have

F(m+l)n an
_ F,_
F, “F,

mFrln_l + an+1

Il

+ anJrl

mFr?il + anlp(m—l)n—i-l =+ FnF(m—l)n+2

== [l

mEy" 4 Fy 1 Fn—1yn+1

mE +
(m+1)F",.

= (-

Lemma 2.3. Let ay,...,an,,n >3 and F, F,,--- F,, = Fy, then
b+n<a+--+a, <b+2n-—2.

Proof. By Lemma 2.1, F}, = F, F,--- F,, < Fy,1ay+ta,—n and hence b < ay +as + -+ +
a, — n. This gives the left hand side of the inequality. By repeated application of Lemma
2.1 we have

Fb FalFaQ"'Fan
Fa1+a2—2Fa3"'Fa

Fa1+a2+a3—4Fa4 e Fa

n

AVARLY,

n

Fa1+~~+an72(n71) )

and so b > a; + -+ a, —2(n — 1), which completes the proof. O



Remark 3. Note that using Binet’s formula, for n > 2, one obtains
(1-B%a" < V5F, < (1+ 8%a",
which implies the following inequalities
m—u<a+---+a,—b<un—wv,

where

yo Joe(=pY/V5) _ | oo
s a 717

and

oo Joe(+89/VE) _ | g
oea 559. ...

One observes that the above inequalities are sharper than Lemma 2.5.

Definition. A solution of the equation F, F,, ---F, = F} is said to be nontrivial, whenever
ay,...,a, > 3 or equiwvalently F,,,..., F, > 1.

Lemma 2.4. The equation F,F, = F, has no nontrivial solution, for any natural numbers
a,b and c.

Proof. We may assume a < b and the triple (a, b, ¢) is a nontrivial solution of the equation,
i.e., a,b > 3. Clearly, Fy|F. and hence blc. Now put ¢ = kb which gives & > 2 and therefore
Fan = Fkb Z ng = Fb(Fb—l + Fb+1) > Fb2 Z Fan, which is impossible. ]

We are now able to prove the main theorem of this section.

Theorem 2.5. For each fized n > 2, the equation F, F,,---F, = F, has at most finitely
many nontrivial solutions.

Proof. By Lemma 2.4, the result follows for n = 2. Assume, n > 3 and let (aq,...,a,;b)
be a nontrivial solution of the equation. Without loss of generality, we may assume 3 <
a < ay < --- <a, Puta +---+a, = b+ k. Clearly, by Lemma 2.3 there are only
finitely many natural numbers k, which can satisfy the latter equation. As F, |F, and
a, > 3, we have a,|b and so b = k'a, for some k' € N. Similarly, F, . |F, = Fj,, and
a,—1 > 3, which implies that a,,_1|k’a, and so a,,_1 = K"k with k"|k" and k""|a,,. Now since
Fon| Fo,_, |22

kK K" E" satisfying these equations. Thus there are only finitely many choices for a, 1
and consequently for aq,...,a,_». Finally, there are only finitely many choices for a, and b
satisfying the equation. O]

FZ’;/“” , Lemma 2.2 implies that Fj»|k’. By Lemma 2.3, there are only finitely many

Remark 4. The above theorem shows that except finitely many cases if k = F,, ---Fy,_,
where aq,...,a, > 3 the equation F, = kFy has no solution.



3 Some More Results

In this section, we consider some more properties of the elements of P and Q. For instant,
it is shown that every element k& > 1 of P satisfies a unique equation of the form F,, = kF,,.

Theorem 3.1. The equation F,F, = F.F; holds for natural numbers a, b, c,d if and only if
F,=F.and F, = Fy, or F, = F; and I}, = F,.

Proof. Clearly, if one the numbers a, b, c or d, (a, say), is less than 3 then F, = F.F,; and
Lemma 2.4 implies that either F, = F, = 1 and F, = F;, or F; = F, = 1 and F, = F,.
Therefore, we assume that a, b, ¢, d > 3 and by symmetry we may assume that 3 < a < b, ¢, d.
Using Lemma 2.1, we have

Fa+b72<Fan:Fch<Fc+dfla

which implies that a +b—2 < c+d —1 and hence a + b < ¢+ d. Similarly c+d < a+b
and so a + b = ¢+ d. By repeated application of Lemma 2.1, we obtain

Fan = Fch
= Iyafy, = FoFy

= FZFb—a—i-Q - Fc—a+2Fd—a+2
= Fb—a+2 = Fc—a+2Fd—a+2-

Now by Lemma 2.4, F, ..o =1 or F; ,.o = 1, which implies that either a = ¢ and b = d,
ora=dandb=c. O

The following corollaries follow immediately.
Corollary 3.2. Suppose o = L £ 1 then F, = F, and F, = F.

Fy Fy

Corollary 3.3. Fvery element k > 1 of P satisfies a unique equation of the form F, = kF,,,
for some natural numbers m and n.

Corollary 3.4. The least common multiple of two Fibonacci numbers is again a Fibonacci
number if and only if one divides the other.

Proof. Suppose lem(F,,, F,,) = Fy, for some natural numbers m and n. Then clearly
FoF, = ng<Fm7 Fn>lcm(Fm7 Fn) = Fgcd(m,n)Fk
and so ged(Fn, ) = Fyed(m,n) 1s either Fy, or F,. Hence either F,,|F), or F,|F,. O

Theorem 3.5. For any natural numbers a, b, c,d and e, the equation F,FyF. = FyF, has no
nontrivial solution.



Proof. Assume (a, b, c;d, e) is a nontrivial solution of the equation F,F,F, = FyF,. Hence
a,b,c,d,e > 3. By Lemma 2.1, we have

Fa+b+c—4 < R, = FaFe < Fd+e—1
and

Fd+672 < IyF, = F,F,F, < Fa+b+0737
which imply that a + b+ ¢ = d + e+ 2. Using Lemma 2.1 once more and noting the identity
a+b+c—3=d+e—1, we obtain

Foyees < FyaFeq

Faleblecfl - Fa72Fb72Fcf2
Fa—lFb—ch—l

Fa+b+c—6-

IN A

Thus d+ e+ 2 < a+ b+ ¢, which is impossible. O

Theorem 3.6. Let (a,b,c;d, e, f) be a nontrivial solution of the equation F,FyF, = FyF Fy,
then a,b, c are equal to d,e, f, in some order.

Proof. Without loss of generality, we may assume that a < d,3 <a<b<cand 3 <d <
e < f. If a = d, the result follows immediately by Theorem 3.1. Now assume that a < d.
Using Lemma 2.1, we have

Fa+b+c—4 < IR, = FdFeFf < Fd+e+f—3

and
Fd+e+ff4 < FdFeFf = I, E,. < Fa+b+cf3'

Thus a+b+c=d+ e+ f, and so by Lemma 2.1 we obtain

Fo By Foy — FooFy oF,. 5 = Fdleeleffl - Fd72F672Ff72
2F, oFy oF. 9 — Foy 3ky 3F. 3 = 2Fg oFc ol o — Fy 3be 3Fy 3

Hence for each ¢ > 1
Fipnbo iy iFe i — FiFo by iaFe i1 = FigFgiFe iFp i — FiFy i1 Fe i 1Fp .
By replacing ¢ by a in the above equality, we obtain
02> —FoFy a1ltea1=F o1y oFe oFyo— FoFy o 1Fe o 1Fy 0120,

Then
Fa+le7aFefaFffa - FaFdfaleefaleffafl =0,

which is impossible, since otherwise we must have
FdfaFefaFffa = Fdfaleefaleffafl =0,

which implies that d = a. O



The following corollary is an immediate consequence of the above theorem.

Corollary 3.7. Let x = ?—‘;, Y= % be in P. Then xy € P if and only if one of the following
occurs

i)xr=1;

i)y = 1;

i) r=y=2;
w) F, = Fy, or
’U) Fb = Fc.

Now we turn to the equation F, F,,---F, = Fj,. The special case when a;’s are equal

follows easily from the following theorem. We are not aware of its proof so we prove it here
(see [3]).

Theorem 3.8. Let p be a prime and let m and n be natural numbers such that p t m and
p*||Fy, for o> 0. Then

i) P Py, if (p, ) # (2,1);
i) P2 P, if (p; ) = (2, 1).

Proof. By the assumption and Lemma 2.2,

Thus if p f m then p®||F,, and hence it is enough to show that p*™||F,,. By repeated
applications of (1), we have

Fn F —1)n
?i = Fn—l(an) + F(P*l)nJrl

Flp—2)n
= I, (Fnl (1}12) + F(p—2)n+1) + F(p—l)n+1

n

= ng + F5:12Fn+1 + ng):fF?n—f—l + -+ i Fp—oyns1 + Flp—1yns1-

Now, for each k € N

Finy1 = FoFl—iyn + FaopiFe—nns

3
N
Q

Foi1 Fe—1yn+1

3
R
Q

k
Fn+1

3
N
Q

(Fp + F,_1)"
kE,FR 4+ FF

3
N
Q



Hence

F " 2a _ _
2a
+((p = DEFP + 1)
pe p(p—1)

= TFan::f +pFP],
which implies that p**!|| F},, whenever (p, &) # (2,1). This proves (i).
Now, if (p,a) = (2,1) then F}, is even, 3|n and % is odd. On the other hand, 8||Fs and
by the proof of part (i), 8||F,, which completes the proof of part (ii). O

Theorem 3.9. For all k > 1, the equation F,, = F* has only the solutions F,, = F,, = 1, or
k=3, m=3andn =6.

Proof. Let k > 1,n >m > 3 and F,, = F*. As F,,|F,, we have m|n and so n = dm, for
some d € N. Also, by Lemma 2.2, F,,,|d. Now, if p is a prime divisor of F},, such that p®||F,,,
where (p,a) # (2,1), then p is also a divisor of d and by Theorem 3.8, p®*°|| F},, where p°||d.
On the other hand, p*®||F;, and so a + b = ka, i.e., b = (k — 1)a. Now, we have

k— 1 Z d:pbd/ Zpb :p(k_l)a Zpk‘—l Z k:7

which is impossible and hence F,, = 2. If p > 3 and p divides n, then F,|2*, which is also
impossible. Hence n = 253" and as Fy, Fy ¢ 2% we must have n = 6. O]

R. D. Carmichael [2] showed that if n > 2 and n # 6,12 then F,, has a prime divisor p,
which does not divide the Fibonacci numbers F),, for all 1 < m < n. Applying this result
one can obtain the general solutions of the equation £y, --- F, = F, and more generally the
solutions of the equation Fy, ---F, = Fy, ---F, . For some applications of this beautiful
theorem, see [1].

We say a solution of the equation Fy, --- F, = [}, --- Fp, is nontrivial, whenever a;, b; >
Jand a; #bj, foralli=1,...,mand j=1,...,n.

Theorem 3.10. i) The only nontrivial solutions of the equation F, F,,---F,, = F, with
n>1anda; <---<a, are

(3,3,3;6) , (3,4,4,6;12) , (3,3,3,3,4,4;12)
=Fy - F, are

n

i1) The only nontrivial solutions of the equation F,, - - F,

am

(3,...,3;6,...,6) , m=3n

(3,...,3,6,...,6,4,...,4:12,...,12) , a+3b=4n

a b
— ——
(3,....3.4,...,4:6,...,6,12,...,12) , a=3b+4n
a b
—— —

(6,...,6.4,...,4:3,...3,12,...,12) , 3a=b+4n



Proof. The proofs of both parts follow easily from Carmichael’s theorem. m

The following theorem is another consequence of Carmichael’s theorem.

Theorem 3.11. Suppose py,ps, ..., pn are arbitrary distinct prime numbers. Then there are
only finitely many n-tuples (ay, ..., a,) of nonnegative integers such that pi* - --pt~ € P.
Proof. Assume {(aj,,...,a; )}, is an infinite sequence of distinct n-tuples such that for

each ¢ the number k; = pi* - - - pi» belongs to P. Then there exist some natural numbers m;
and n; such that F),, = k;F,,,,. Without loss of generality, we may assume that n; # m; and
nis are all distinct and greater than 12. Since there are infinitely many n-tuples, we may
ignore the prime factors of the equations F),, = k;F},,, so that we obtain an equation of type
as in Theorem 3.10, which contradicts Theorem 3.10. O

Although we were able to obtain the general solutions of the equation Fy, ---F, = F,
using Carmichael’s theorem, an elementary proof may nevertheless be of interest.
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