ON SOME INEQUALITIES WITH POWER-EXPONENTIAL FUNCTIONS

VASILE CÎRTOAJE

Department of Automation and Computers
University Of Ploieşti
Ploiesti, Romania
EMail: vcirtoaje@upg-ploiesti.ro

13 October, 2008

Received:

Accepted:
Communicated by:
2000 AMS Sub. Class.:
Key words:

Abstract:

09 January, 2009
F. Qi

26D10.
Power-exponential function, Convex function, Bernoulli's inequality, Conjecture.

In this paper, we prove the open inequality $a^{e a}+b^{e b} \geq a^{e b}+b^{e a}$ for either $a \geq b \geq \frac{1}{e}$ or $\frac{1}{e} \geq a \geq b>0$. In addition, other related results and conjectures are presented.

Inequalities With PowerExponential Functions

Vasile Cîrtoaje

```
vol. 10, iss. 1, art. 21, }200
```

Title Page
Contents

44

Page 1 of 14
Go Back
Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-5756

Contents

1 Introduction 3
2 Main Results 4
3 Proofs of Theorems 5
4 Other Related Inequalities 10

Inequalities With PowerExponential Functions

Vasile Cîrtoaje
vol. 10, iss. 1, art. 21, 2009

Title Page
Contents

$\mathbf{4}$	
$\mathbf{~ P a g e ~} 2$ of 14	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

1. Introduction

In 2006, A. Zeikii posted and proved on the Mathlinks Forum [1] the following inequality

$$
\begin{equation*}
a^{a}+b^{b} \geq a^{b}+b^{a}, \tag{1.1}
\end{equation*}
$$

where a and b are positive real numbers less than or equal to 1 . In addition, he conjectured that the following inequality holds under the same conditions:

$$
\begin{equation*}
a^{2 a}+b^{2 b} \geq a^{2 b}+b^{2 a} \tag{1.2}
\end{equation*}
$$

Inequalities With Power-

 Exponential FunctionsVasile Cîrtoaje
vol. 10, iss. 1, art. 21, 2009

Title Page
Contents

$\mathbf{4 4}$	
$\mathbf{4}$	
Page 3 of 14	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

2. Main Results

In what follows, we will prove some relevant results concerning the power-exponential inequality

$$
\begin{equation*}
a^{r a}+b^{r b} \geq a^{r b}+b^{r a} \tag{2.1}
\end{equation*}
$$

for a, b and r positive real numbers. We will prove the following theorems.
Theorem 2.1. Let r, a and b be positive real numbers. If (2.1) holds for $r=r_{0}$, then it holds for any $0<r \leq r_{0}$.

Theorem 2.2. If a and b are positive real numbers such that $\max \{a, b\} \geq 1$, then (2.1) holds for any positive real number r.

Theorem 2.3. If $0<r \leq 2$, then (2.1) holds for all positive real numbers a and b.
Theorem 2.4. If a and b are positive real numbers such that either $a \geq b \geq \frac{1}{r}$ or $\frac{1}{r} \geq a \geq b$, then (2.1) holds for any positive real number $r \leq e$.

Theorem 2.5. If $r>e$, then (2.1) does not hold for all positive real numbers a and b.
From the theorems above, it follows that the inequality (2.1) continues to be an open problem only for $2<r \leq e$ and $0<b<\frac{1}{r}<a<1$. For the most interesting value of r, that is $r=e$, only the case $0<b<\frac{1}{e}<a<1$ is not yet proved.

Inequalities With PowerExponential Functions

Vasile Cîrtoaje
vol. 10, iss. 1, art. 21, 2009

Title Page
Contents

Page 4 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

3. Proofs of Theorems

Proof of Theorem 2.1. Without loss of generality, assume that $a \geq b$. Let $x=r a$ and $y=r b$, where $x \geq y$. The inequality (2.1) becomes

$$
\begin{equation*}
x^{x}-y^{x} \geq r^{x-y}\left(x^{y}-y^{y}\right) . \tag{3.1}
\end{equation*}
$$

By hypothesis,

$$
x^{x}-y^{x} \geq r_{0}^{x-y}\left(x^{y}-y^{y}\right) .
$$

Since $x-y \geq 0$ and $x^{y}-y^{y} \geq 0$, we have $r_{0}^{x-y}\left(x^{y}-y^{y}\right) \geq r^{x-y}\left(x^{y}-y^{y}\right)$, and hence

$$
x^{x}-y^{x} \geq r_{0}^{x-y}\left(x^{y}-y^{y}\right) \geq r^{x-y}\left(x^{y}-y^{y}\right) .
$$

Title Page

Proof of Theorem 2.2. Without loss of generality, assume that $a \geq b$ and $a \geq 1$. From $a^{r(a-b)} \geq b^{r(a-b)}$, we get $b^{r b} \geq \frac{a^{r r} b^{r a}}{a^{r a}}$. Therefore,

$$
\begin{aligned}
a^{r a}+b^{r b}-a^{r b}-b^{r a} & \geq a^{r a}+\frac{a^{r b} b^{r a}}{a^{r a}}-a^{r b}-b^{r a} \\
& =\frac{\left(a^{r a}-a^{r b}\right)\left(a^{r a}-b^{r a}\right)}{a^{r a}} \geq 0
\end{aligned}
$$

Contents

Page 5 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

In order to prove this inequality, we show that

$$
\begin{equation*}
c^{s}-d^{s}>s(c d)^{\frac{s-1}{2}}(c-d)>c-d \tag{3.2}
\end{equation*}
$$

The left side of the inequality in (3.2) is equivalent to $f(c)>0$, where $f(c)=$ $c^{s}-d^{s}-s(c d)^{\frac{s-1}{2}}(c-d)$. We have $f^{\prime}(c)=\frac{1}{2} s c^{\frac{s-3}{2}} g(c)$, where

$$
g(c)=2 c^{\frac{s+1}{2}}-(s+1) c d^{\frac{s-1}{2}}+(s-1) d^{\frac{s+1}{2}} .
$$

Since

$$
g^{\prime}(c)=(s+1)\left(c^{\frac{s-1}{2}}-d^{\frac{s-1}{2}}\right)>0
$$

$g(c)$ is strictly increasing, $g(c)>g(d)=0$, and hence $f^{\prime}(c)>0$. Therefore, $f(c)$ is strictly increasing, and then $f(c)>f(d)=0$.

The right side of the inequality in (3.2) is equivalent to

$$
\frac{a}{b}(a b)^{a-b}>1
$$

Write this inequality as $f(b)>0$, where

$$
f(b)=\frac{1+a-b}{1-a+b} \ln a-\ln b
$$

In order to prove that $f(b)>0$, it suffices to show that $f^{\prime}(b)<0$ for all $b \in(0, a)$; then $f(b)$ is strictly decreasing, and hence $f(b)>f(a)=0$. Since

$$
f^{\prime}(b)=\frac{-2}{(1-a+b)^{2}} \ln a-\frac{1}{b},
$$

the inequality $f^{\prime}(b)<0$ is equivalent to $g(a)>0$, where

$$
g(a)=2 \ln a+\frac{(1-a+b)^{2}}{b}
$$

Inequalities With Power-

 Exponential FunctionsVasile Cîrtoaje
vol. 10, iss. 1, art. 21, 2009

Title Page
Contents

Page 6 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Since $0<b<a<1$, we have

$$
g^{\prime}(a)=\frac{2}{a}-\frac{2(1-a+b)}{b}=\frac{2(a-1)(a-b)}{a b}<0
$$

Thus, $g(a)$ is strictly decreasing on $[b, 1]$, and therefore $g(a)>g(1)=b>0$. This completes the proof. Equality holds if and only if $a=b$.

Proof of Theorem 2.4. Without loss of generality, assume that $a \geq b$. Let $x=r a$ and $y=r b$, where either $x \geq y \geq 1$ or $1 \geq x \geq y$. The inequality (2.1) becomes

$$
x^{x}-y^{x} \geq r^{x-y}\left(x^{y}-y^{y}\right) .
$$

Since $x \geq y, x^{y}-y^{y} \geq 0$ and $r \leq e$, it suffices to show that

$$
\begin{equation*}
x^{x}-y^{x} \geq e^{x-y}\left(x^{y}-y^{y}\right) . \tag{3.3}
\end{equation*}
$$

For the nontrivial case $x>y$, using the substitutions $c=x^{y}$ and $d=y^{y}$ (where $c>d$), we can write (3.3) as

$$
c^{\frac{x}{y}}-d^{\frac{x}{y}} \geq e^{x-y}(c-d) .
$$

In order to prove this inequality, we will show that

$$
c^{\frac{x}{y}}-d^{\frac{x}{y}}>\frac{x}{y}(c d)^{\frac{x-y}{2 y}}(c-d)>e^{x-y}(c-d) .
$$

The left side of the inequality is just the left hand inequality in (3.2) for $s=\frac{x}{y}$, while the right side of the inequality is equivalent to

$$
\frac{x}{y}(x y)^{\frac{x-y}{2}}>e^{x-y}
$$

Inequalities With Power-

 Exponential FunctionsVasile Cîrtoaje
vol. 10, iss. 1, art. 21, 2009

Title Page

Contents

Page 7 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

We write this inequality as $f(x)>0$, where

$$
f(x)=\ln x-\ln y+\frac{1}{2}(x-y)(\ln x+\ln y)-x+y
$$

We have

$$
f^{\prime}(x)=\frac{1}{x}+\frac{\ln (x y)}{2}-\frac{y}{2 x}-\frac{1}{2}
$$

and

$$
f^{\prime \prime}(x)=\frac{x+y-2}{2 x^{2}}
$$

Case $x>y \geq 1$. Since $f^{\prime \prime}(x)>0, f^{\prime}(x)$ is strictly increasing, and hence

$$
f^{\prime}(x)>f^{\prime}(y)=\frac{1}{y}+\ln y-1 .
$$

Let $g(y)=\frac{1}{y}+\ln y-1$. From $g^{\prime}(y)=\frac{y-1}{y^{2}}>0$, it follows that $g(y)$ is strictly increasing, $g(y) \geq g(1)=0$, and hence $f^{\prime}(x)>0$. Therefore, $f(x)$ is strictly increasing, and then $f(x)>f(y)=0$.

Case $1 \geq x>y$. Since $f^{\prime \prime}(x)<0, f(x)$ is strictly concave on $[y, 1]$. Then, it suffices to show that $f(y) \geq 0$ and $f(1)>0$. The first inequality is trivial, while the second

Inequalities With Power-

 Exponential FunctionsVasile Cîrtoaje
vol. 10, iss. 1, art. 21, 2009

Title Page
Contents

Page 8 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
it follows that $g(y)$ is strictly decreasing, and hence $g(y)>g(1)=0$. This completes the proof.

Equality holds if and only if $a=b$.
Proof of Theorem 2.5. (after an idea of Wolfgang Berndt [1]). We will show that

$$
a^{r a}+b^{r b}<a^{r b}+b^{r a}
$$

for $r=(x+1) e, a=\frac{1}{e}$ and $b=\frac{1}{r}=\frac{1}{(x+1) e}$, where $x>0$; that is

$$
x e^{x}+\frac{1}{(x+1)^{x}}>x+1
$$

Since $e^{x}>1+x$, it suffices to prove that

$$
\frac{1}{(x+1)^{x}}>1-x^{2}
$$

For the nontrivial case $0<x<1$, this inequality is equivalent to $f(x)<0$, where

$$
f(x)=\ln \left(1-x^{2}\right)+x \ln (x+1) .
$$

We have

$$
f^{\prime}(x)=\ln (x+1)-\frac{x}{1-x}
$$

Inequalities With PowerExponential Functions

Vasile Cîrtoaje
vol. 10, iss. 1, art. 21, 2009

Title Page
Contents

Page 9 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
$f^{\prime}(0)=0$. Therefore, $f(x)$ is strictly decreasing, and hence $f(x)<f(0)=0$.

4. Other Related Inequalities

Proposition 4.1. If a and b are positive real numbers such that $\min \{a, b\} \leq 1$, then the inequality

$$
\begin{equation*}
a^{-r a}+b^{-r b} \leq a^{-r b}+b^{-r a} \tag{4.1}
\end{equation*}
$$

holds for any positive real number r.
Proof. Without loss of generality, assume that $a \leq b$ and $a \leq 1$. From $a^{r(b-a)} \leq$ $b^{r(b-a)}$ we get $b^{-r b} \leq \frac{a^{-r b} b^{-r a}}{a^{-r a}}$, and

$$
\begin{aligned}
a^{-r a}+b^{-r b}-a^{-r b}-b^{-r a} & \leq a^{-r a}+\frac{a^{-r b} b^{-r a}}{a^{-r a}}-a^{-r b}-b^{-r a} \\
& =\frac{\left(a^{-r a}-a^{-r b}\right)\left(a^{-r a}-b^{-r a}\right)}{a^{-r a}} \leq 0
\end{aligned}
$$

because $b^{-r a} \leq a^{-r a} \leq a^{-r b}$.
Proposition 4.2. If a, b, c are positive real numbers, then

$$
\begin{equation*}
a^{a}+b^{b}+c^{c} \geq a^{b}+b^{c}+c^{a} . \tag{4.2}
\end{equation*}
$$

This inequality, with $a, b, c \in(0,1)$, was posted as a conjecture on the Mathlinks Forum by Zeikii [1].

Proof. Without loss of generality, assume that $a=\max \{a, b, c\}$. There are three cases to consider: $a \geq 1, c \leq b \leq a<1$ and $b \leq c \leq a<1$.
Case $a \geq 1$. By Theorem 2.3, we have $b^{b}+c^{c} \geq b^{c}+c^{b}$. Thus, it suffices to prove that

$$
a^{a}+c^{b} \geq a^{b}+c^{a} .
$$

Inequalities With PowerExponential Functions

Vasile Cîrtoaje
vol. 10, iss. 1, art. 21, 2009

Title Page
Contents

Page 10 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

For $a=b$, this inequality is an equality. Otherwise, for $a>b$, we substitute $x=a^{b}$, $y=c^{b}$ and $s=\frac{a}{b}$ (where $x \geq 1, x \geq y$ and $s>1$) to rewrite the inequality as $f(x) \geq 0$, where

$$
f(x)=x^{s}-x-y^{s}+y
$$

Since

$$
f^{\prime}(x)=s x^{s-1}-1 \geq s-1>0
$$

$f(x)$ is strictly increasing for $x \geq y$, and therefore $f(x) \geq f(y)=0$.
Case $c \leq b \leq a<1$. By Theorem 2.3, we have $a^{a}+b^{b} \geq a^{b}+b^{a}$. Thus, it suffices to show that

$$
b^{a}+c^{c} \geq b^{c}+c^{a}
$$

which is equivalent to $f(b) \geq f(c)$, where $f(x)=x^{a}-x^{c}$. This inequality is true if $f^{\prime}(x) \geq 0$ for $c \leq x \leq b$. From

$$
\begin{aligned}
f^{\prime}(x) & =a x^{a-1}-c x^{c-1} \\
& =x^{c-1}\left(a x^{a-c}-c\right) \\
& \geq x^{c-1}\left(a c^{a-c}-c\right)=x^{c-1} c^{a-c}\left(a-c^{1-a+c}\right)
\end{aligned}
$$

we need to show that $a-c^{1-a+c} \geq 0$. Since $0<1-a+c \leq 1$, by Bernoulli's inequality we have

$$
\begin{aligned}
c^{1-a+c} & =(1+(c-1))^{1-a+c} \\
& \leq 1+(1-a+c)(c-1)=a-c(a-c) \leq a .
\end{aligned}
$$

Inequalities With PowerExponential Functions

Vasile Cîrtoaje
vol. 10, iss. 1, art. 21, 2009

Title Page
Contents

Page 11 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Conjecture 4.4. Let r be a positive real number. The inequality

$$
\begin{equation*}
a^{r a}+b^{r b}+c^{r c} \geq a^{r b}+b^{r c}+c^{r a} \tag{4.4}
\end{equation*}
$$

holds for all positive real numbers a, b, c with $a \leq b \leq c$ if and only if $r \leq e$.
We can prove that the condition $r \leq e$ in Conjecture 4.4 is necessary by setting $c=b$ and applying Theorem 2.5.

Proposition 4.5. If a and b are nonnegative real numbers such that $a+b=2$, then

$$
\begin{equation*}
a^{2 b}+b^{2 a} \leq 2 \tag{4.5}
\end{equation*}
$$

Proof. We will show the stronger inequality

$$
a^{2 b}+b^{2 a}+\left(\frac{a-b}{2}\right)^{2} \leq 2
$$

Without loss of generality, assume that $a \geq b$. Since $0 \leq a-1<1$ and $0<b \leq 1$, by Bernoulli's inequality we have

$$
a^{b} \leq 1+b(a-1)=1+b-b^{2}
$$

and

$$
b^{a}=b \cdot b^{a-1} \leq b[1+(a-1)(b-1)]=b^{2}(2-b)
$$

Therefore,

$$
\begin{aligned}
a^{2 b}+b^{2 a}+\left(\frac{a-b}{2}\right)^{2}-2 & \leq\left(1+b-b^{2}\right)^{2}+b^{4}(2-b)^{2}+(1-b)^{2}-2 \\
& =b^{3}(b-1)^{2}(b-2) \leq 0
\end{aligned}
$$

Inequalities With PowerExponential Functions

Vasile Cîrtoaje
vol. 10, iss. 1, art. 21, 2009

Title Page
Contents

Page 12 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Conjecture 4.6. Let r be a positive real number. The inequality

$$
\begin{equation*}
a^{r b}+b^{r a} \leq 2 \tag{4.6}
\end{equation*}
$$

holds for all nonnegative real numbers a and b with $a+b=2$ if and only if $r \leq 3$.
Conjecture 4.7. If a and b are nonnegative real numbers such that $a+b=2$, then

$$
\begin{equation*}
a^{3 b}+b^{3 a}+\left(\frac{a-b}{2}\right)^{4} \leq 2 \tag{4.7}
\end{equation*}
$$

Conjecture 4.8. If a and b are nonnegative real numbers such that $a+b=1$, then

$$
\begin{equation*}
a^{2 b}+b^{2 a} \leq 1 \tag{4.8}
\end{equation*}
$$

Inequalities With Power-

 Exponential FunctionsVasile Cîrtoaje
vol. 10, iss. 1, art. 21, 2009

Title Page
Contents

$\mathbf{4}$	
$\mathbf{4}$	
Page 13 of 14	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

References

[1] A. ZEIKII, V. CÎRTOAJE AND W. BERNDT, Mathlinks Forum, Nov. 2006, [ONLINE: http://www.mathlinks.ro/Forum/viewtopic. php?t=118722].

Inequalities With PowerExponential Functions

Vasile Cîrtoaje
vol. 10, iss. 1, art. 21, 2009

Title Page
Contents

$\mathbf{4}$	
$\mathbf{4}$	
Page 14 of 14	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

