
Estimation of Averages

Sean Ellermeyer

vol. 10, iss. 4, art. 93, 2009

Title Page

Contents

JJ II

J I

Page 1 of 18

Go Back

Full Screen

Close

ON THE ESTIMATION OF AVERAGES OVER
INFINITE INTERVALS WITH AN APPLICATION TO

AVERAGE PERSISTENCE IN POPULATION
MODELS

SEAN ELLERMEYER
Department of Mathematics and Statistics
Kennesaw State University
Kennesaw, GA 30144–5591, USA

EMail: sellerme@kennesaw.edu

Received: 18 May, 2009

Accepted: 20 October, 2009

Communicated by: P. Cerone

2000 AMS Sub. Class.: 26D15, 37B55, 92D25.

Key words: Upper average, Lower average, Estimation of average value, Persistence, Aver-
age persistence, Non-autonomous population models, Chemostat.

Abstract: We establish a general result for estimating the upper average of a continuous
and bounded function over an infinite interval. As an application, we show that a
previously studied model of microbial growth in a chemostat with time–varying
nutrient input admits solutions (populations) that exhibit weak persistence but
not weak average persistence.
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1. Introduction

For a fixed real numberb0 and a functionx : [b0,∞) → < that is continuous and
bounded on[b0,∞), theupper averageof x is defined as

A+ (x) = lim sup
t→∞

1

t− b0

∫ t

b0

x (u) du

and thelower averageof x, denoted byA− (x), is defined as above using the limit
inferior instead of the limit superior. Sincex is continuous and bounded,A+ (x) and
A− (x) both exist, are finite, and their definitions do not depend on the numberb0 in
the sense that ifc0 > b0 then

lim sup
t→∞

1

t− b0

∫ t

b0

x (u) du = lim sup
t→∞

1

t− c0

∫ t

c0

x (u) du,

and likewise when the limit inferior is used. Furthermore, it is clear that

x− ≤ A− (x) ≤ A+ (x) ≤ x+,

where
x+ = lim sup

t→∞
x (t)

and
x− = lim inf

t→∞
x (t) .

Our purpose is to establish a general result, Theorem2.4, that can be used to es-
timateA+ (x) and to then apply the theorem to a problem involving the question
of persistence in a non–autonomous model of microbial growth in a chemostat. In
particular, we use the theorem to show that a single species chemostat model with
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time–varying nutrient input that was studied in [5] admits solutions,x, that satisfy
A+ (x) = 0 < x+. Such solutions are said to exhibit weak persistence but not weak
average persistence. Although Theorem2.4 is motivated by questions that arise in
studies of persistence of solutions of non–autonomous differential equations, the
general nature of the threorem suggests that it might be a useful tool in many other
applications that require the estimation of time averages over infinite intervals.

The term “persistence” is used in population modelling to describe the idea that
a population is in some sense able to survive for an indefinitely long period of time.
A function x : [b0,∞) → [0,∞) that describes the evolution of a population over
time is said to exhibitextinctionif x+ = 0 and is said to exhibitpersistenceother-
wise. This basic concept of persistence is adequate for the study of autonomous
population models in which it is generally the case that the population (or each
of the interacting populations) being modelled either becomes extinct or satisfies
x− > 0. However, this is not always the case in non–autonomous population mod-
els. Such models require consideration of a more explicit hierarchy of persistence
defined asstrong persistence(SP) meaning thatx− > 0, strong average persistence
(SAP) meaning thatA− (x) > 0, weak average persistence(WAP) meaning that
A+ (x) > 0, andweak persistence(WP) meaning thatx+ > 0. It can easily be seen
that SP⇒SAP⇒WAP⇒WP.

For models that take the form of autonomous dynamical systems satisfying cer-
tain general conditions that are likely to be present in population models (such as
dissipativity and isolated boundary flow), it has been shown in [4] that SP and WP
(and consequently all four types of persistence defined above) are equivalent. A
similar result given in [6] shows thatuniformweak and strong persistence are also
equivalent in autonomous models. (Uniform weak persistence requires that there
existM > 0 such thatx+ > M for all non–trivial solutions,x, of a given system
and uniform strong persistence requires that there existm > 0 such thatx− > m for
all non–trivialx.) The equivalence of uniform strong and weak persistence was ex-
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tended, under certain additional assumptions, to non–autonomous systems in [11].
In [9], criteria for the equivalence of all four types of persistence (without refer-
ence to uniformity) were obtained for a non–autonomous single species chemostat
model. Similar criteria were obtained for non–autonomous Kolmogorov–type sys-
tems in [1, 8, 12]. However, it is not generally true for non–autonomous systems
that the various different types of persistence are equivalent. This is shown to be the
case, for example, for the non–autonomous systems studied in [2, 3, 5, 7]. The ap-
plication of Theorem2.4that we provide in Section3 verifies a claim (that WP does
not imply WAP) made in [5, page 143] in reference to a model of a single species in
a chemostat with a time–varying nutrient environment.
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2. Estimation of Upper Averages

Throughout, we will assume without loss of generality that0 ≤ x (t) ≤ 1 for all
t ∈ [b0,∞) and hence that

0 ≤ x− ≤ A− (x) ≤ A+ (x) ≤ x+ ≤ 1.

Our main result, Theorem2.4, provides sufficient conditions forA+ (x) ≤ k for
prescribedk ∈ (0, 1). The proof of Theorem2.4 is accomplished via three lemmas.

Lemma 2.1. Suppose that0 < k < 1, and suppose thatan → ∞ andbn → ∞ are
sequences such that

b0 < a1 < b1 < a2 < b2 < · · ·
and

x (t) > k for all t ∈ (an, bn) , n = 1, 2, . . .

x (t) ≤ k for all t ∈ [bn−1, an] , n = 1, 2, . . .

Also, suppose that

(2.1) lim
n→∞

1

bn − b0

n∑
i=1

(bi − ai) = 0.

ThenA+ (x) ≤ k.

Proof. Let ε > 0 be fixed but arbitrary.
Since condition (2.1) is satisfied and since

0 <
bn − an

bn − b0

≤ 1

bn − b0

n∑
i=1

(bi − ai)
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for all n ≥ 1, then

lim
n→∞

bn − an

bn − b0

= 0.

Thus, there exists an integerN ≥ 1 such that both

(1− k) · 1

bn − b0

n∑
i=1

(bi − ai) <
ε

2

and
bn − an

bn − b0

<
ε

2

for all n ≥ N .
Let T = bN . Then, clearly, for eacht ≥ T there existsn ≥ N such thatbn ≤ t <

bn+1. We will consider the three casest = bn, bn < t ≤ an+1, andan+1 < t < bn+1

separately. (Note that the result of Case 1 is used in proving Case 2 and that the
result of Case 2 is used in proving Case 3.)

Case 1If t = bn, then

1

t− b0

∫ t

b0

x (u) du =
1

bn − b0

(
n∑

i=1

∫ ai

bi−1

x (u) du +
n∑

i=1

∫ bi

ai

x (u) du

)

≤ 1

bn − b0

(
n∑

i=1

∫ ai

bi−1

k du +
n∑

i=1

∫ bi

ai

1 du

)

= k + (1− k) · 1

bn − b0

n∑
i=1

(bi − ai)

< k +
ε

2
.
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Case 2If bn < t ≤ an+1, then

1

t− b0

∫ t

b0

x (u) du =
1

t− b0

∫ bn

b0

x (u) du +
1

t− b0

∫ t

bn

x (u) du

=
bn − b0

t− b0

· 1

bn − b0

∫ bn

b0

x (u) du +
1

t− b0

∫ t

bn

x (u) du

≤ bn − b0

t− b0

(
k +

ε

2

)
+ k · t− bn

t− b0

= k

(
bn − b0

t− b0

+
t− bn

t− b0

)
+

bn − b0

t− b0

· ε

2

< k +
ε

2
.

Case 3If an+1 < t < bn+1, then

1

t− b0

∫ t

b0

x (u) du =
1

t− b0

∫ an+1

b0

x (u) du +
1

t− b0

∫ t

an+1

x (u) du

≤ 1

an+1 − b0

∫ an+1

b0

x (u) du +
t− an+1

t− b0

≤ k +
ε

2
+

bn+1 − an+1

bn+1 − b0

< k + ε.

We have shown that for arbitraryε > 0 there existsT > b0 such that

1

t− b0

∫ t

b0

x (u) du < k + ε

for all t ≥ T . This establishes the stated result.
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Lemma 2.2. Let cn anddn be sequences such that0 < cn < dn for all n and such
that cn/dn → 0. Also, suppose that there existsη > 0 such that

dn+1 > η
n∑

i=1

di for all n

and letrn be the sequence

rn =

∑n
i=1 ci∑n
i=1 di

.

Thenrn → 0.

Proof. First we note that0 ≤ L ≡ lim supn→∞ rn ≤ 1.
Also, for eachn ≥ 1 we have∑n+1

i=1 ci∑n+1
i=1 di

<

∑n
i=1 ci∑n

i=1 di + dn+1

+
cn+1

dn+1

=
rn

1 + dn+1∑n
i=1 di

+
cn+1

dn+1

,

which shows that
rn+1 <

rn

1 + η
+

cn+1

dn+1

for eachn ≥ 1. Taking the limit superior asn → ∞ yieldsL ≤ L/ (1 + η) from
which we conclude thatL = 0 and hence thatrn → 0.

Lemma 2.3. Letan andbn be sequences such that

b0 < a1 < b1 < a2 < b2 < · · ·

and such that
bn − an

bn − bn−1

→ 0.
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Also suppose that there existsη > 0 such that

bn+1 − bn > η (bn − b0) for all n.

Then

lim
n→∞

1

bn − b0

n∑
i=1

(bi − ai) = 0.

Proof. If we definecn = bn − an anddn = bn − bn−1, then the stated result follows
immediately from Lemma2.2.

By combining Lemmas2.1and2.3, we obtain our main result.

Theorem 2.4.Suppose that0 < k < 1 and suppose thatan →∞ andbn →∞ are
sequences such that

b0 < a1 < b1 < a2 < b2 < · · ·
and

x (t) > k for all t ∈ (an, bn) , n = 1, 2, . . .

x (t) ≤ k for all t ∈ [bn−1, an] , n = 1, 2, . . .

Also suppose that
bn − an

bn − bn−1

→ 0

and that there exists aη > 0 such that

bn+1 − bn > η (bn − b0) for all n.

ThenA+ (x) ≤ k.
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As a remark, we note that the idea underlying Lemma2.1 is that condition (2.1)
implies that the percentage of the interval[b0, T ] on whichx (t) > k becomes in-
creasingly negligible asT →∞. If condition (2.1) can be verified, then Lemma2.1
can be applied directly to obtain the estimateA+ (x) ≤ k. However, condition (2.1)
is difficult to verify directly in many cases of interest.
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3. An Application

As an application of Theorem2.4, we verify a claim made in [5] regarding a family
of non–autonomous systems

s′ (t) = D (q (t)− s (t))− s (t) x (t) ,(3.1)

x′ (t) = (s (t)−D) x (t) ,

that models the growth of a microbial culture in a chemostat. In these equations,x
denotes the microbial population in the chemostat culture vessel ands denotes the
concentration of a particular nutrient that the microorganisms must have in order to
survive and reproduce. The family of systems (3.1) is parameterized by the controls
D > 0 andq : [b0,∞) → [0,∞) which signify, respectively, the dilution rate of
the chemostat and the concentration of fresh nutrient that is being supplied to the
culture vessel. For the interested reader, an exposition on the theory of chemostats
that begins from first principles can be found in [10].

A pair of functions(s, x) is termed to beadmissiblewith respect to system (3.1)
if s (t), x (t) > 0 for t ∈ [b0,∞) and there exist controlsD > 0 andq : [b0,∞) →
[0,∞) continuous and bounded on[b0,∞), such that(D, q, s, x) satisfies system
(3.1) for all t ≥ b0. It was claimed but not proved in [5, page 143] that there exists
an admissible pair,(s, x), for which

(3.2) x (t) = exp (−t− t sin (ln t))

and that the function (3.2) satisfiesA+ (x) = 0 < x+, thus demonstrating that the
family (3.1) admits solutions that exhibit weak persistence but not weak average
persistence. The existence of an admissible pair withx component as defined in
(3.2) is easily verified via a criterion given in [5, Eq. (9)] . It is also clear that
x+ = 1 > 0. In what follows, we will use Theorem2.4 to show thatA+ (x) = 0,
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thus completing the verification of the claim. Our strategy in applying Theorem2.4
to the function (3.2) will be to show that

A+ (x) = lim sup
t→∞

1

t− e2kπ

∫ t

e2kπ

x (u) du ≤ exp
(
−e2kπ

)
for each integerk ≥ 0. Once this has been established, the fact thatA+ (x) = 0 will
follow from the fact thatexp

(
−e2kπ

)
→ 0 ask →∞.

In order to construct the sequencesan andbn needed in Theorem2.4, we will
need the following facts about the behavior ofx on the interval

[
e2(m−1)π, e2mπ

]
for

each integerm ≥ 1:

1. x (t) decreases fromexp
(
−e2(m−1)π

)
at t = e2(m−1)π to exp

(
−e2(m− 1

2)π
)

at

t = e2(m− 1
2)π.

2. x (t) increases fromexp
(
−e2(m− 1

2)π
)

at t = e2(m− 1
2)π to 1 at t = e2(m− 1

4)π.

3. x (t) decreases from1 at t = e2(m− 1
4)π to exp (−e2mπ) at t = e2mπ.

The properties ofx given above can be deduced using elementary calculus and
the fact that

x′ (t) = −x (t) (1 + cos (ln t) + sin (ln t)) = −x (t)
(
1 +

√
2 sin

(
ln t +

π

4

))
.

To define the sequencesan and bn, we first letk ≥ 0 be a fixed but arbitrary
integer and defineb0 = e2kπ. Next, for each integern ≥ 1 we definean to be the

unique point in the interval
(
e2(k+n− 1

2)π, e2(k+n− 1
4)π
)

such thatx (an) = exp (−b0)

and we definebn to be the unique point in the interval
(
e2(k+n− 1

4)π, e2(k+n)π
)

such

thatx (bn) = exp (−b0).
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It can be verified thatan andbn satisfy the equations

an = exp

(
2

(
k + n− 1

2

)
π + arcsin

(
1− b0

an

))
,(3.3)

bn = exp

(
2 (k + n) π − arcsin

(
1− b0

bn

))
,(3.4)

thatan, bn →∞, and that

b0 < a1 < b1 < a2 < b2 < · · · .

Also, it follows from equations (3.3), (3.4) that

e−2nπan → e2(k− 1
4)π,(3.5)

e−2nπbn → e2(k− 1
4)π.(3.6)

Furthermore, for eachn ≥ 1, we have

x (t) > exp (−b0) for all t ∈ (an, bn) ,

x (t) ≤ exp (−b0) for all t ∈ [bn−1, an] ,

and by using (3.5), (3.6) and the fact that

bn − an

bn − bn−1

=
e−2nπbn − e−2nπan

e−2nπbn − e−2π · e−2(n−1)πbn−1

, n ≥ 1,

we obtain

lim
n→∞

bn − an

bn − bn−1

= 0.

http://jipam.vu.edu.au
mailto:sellerme@kennesaw.edu
http://jipam.vu.edu.au


Estimation of Averages

Sean Ellermeyer

vol. 10, iss. 4, art. 93, 2009

Title Page

Contents

JJ II

J I

Page 15 of 18

Go Back

Full Screen

Close

Finally, for eachn ≥ 1 we have

bn+1 − bn

bn − b0

=

bn+1

bn
− 1

1− b0
bn

>
bn+1

bn

− 1

= exp

(
2π − arcsin

(
1− b0

bn+1

)
+ arcsin

(
1− b0

bn

))
− 1

> exp
(
2π − π

2
+ 0
)
− 1

= e
3π
2 − 1,

which shows that

bn+1 − bn >
(
e

3π
2 − 1

)
(bn − b0) for all n ≥ 1.

Theorem2.4 thus yields the conclusion thatA+ (x) ≤ exp
(
−e2kπ

)
and, since

the integerk ≥ 0 is arbitrary, we conclude thatA+ (x) = 0.
As a concluding remark, we note that the construction used in defining the se-

quencesan andbn in the above argument can also be used to show that the integral∫∞
1

x (u) du diverges. If we takek = 0, thenb0 = 1 and

bn = exp

(
2nπ − arcsin

(
1− 1

bn

))
for all n ≥ 1.

We then define

cn = exp

(
2

(
n− 1

2

)
π + arcsin

(
1− 1

bn

))
.
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and observe thatan < cn < bn and that

bn − cn =
1

e−2nπbn

·
exp

(
− arcsin

(
1− 1

bn

))
− exp

(
−π + arcsin

(
1− 1

bn

))
1
bn

for eachn ≥ 1.
Using (3.6), we obtain

lim
n→∞

1

e−2nπbn

= e
π
2

and L’Hôpital’s Rule yields

lim
s→0+

exp (− arcsin (1− s))− exp (−π + arcsin (1− s))

s

= lim
s→0+

exp (− arcsin (1− s)) + exp (−π + arcsin (1− s))√
2s− s2

= ∞,

which shows that

lim
n→∞

exp
(
− arcsin

(
1− 1

bn

))
− exp

(
−π + arcsin

(
1− 1

bn

))
1
bn

= ∞

and hence thatlimn→∞ (bn − cn) =∞. Divergence of the integral
∫∞

1
x (u) du then

follows from the fact thatx (t) > e−1 for all t ∈ (cn, bn), n ≥ 1.
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